
Shaping Smart City Systems

Rodney Holman
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

holma198@morris.umn.edu

ABSTRACT
Increasing urban populations and higher standards of living
demand more city services and more prompt responses of
these services. A smart city could potentially reach this de-
mand, and in recent years, smart city technologies have be-
come more and more common. Smart cities are comprised
of many technology systems that communicate with each
other and aid in the task of day-to-day municipal functions.
This concept is still relatively new and the term “smart city”
is not standardized to one definition. To further complicate
things, many problems can arise if implementation of smart
city systems is done improperly. The purpose of this paper
is to highlight the benefits of a smart city with real world ex-
amples, the functionality of a smart city system, and finally
a way to avoid potential risks from a smart city system.

Keywords
Smart City, SOXFire, Internet of Things

1. INTRODUCTION
Traffic management, air quality control, and garbage col-

lection are just a few of the typical services a city provides.
Without these services, cities and quality of life can suffer
drastically, and unfortunately this is often the case in far too
many urban areas. Over the years, the blanket term “smart
city” has been used to describe a city which has adopted a
network of information technologies to be able to react to
and mitigate some of these daily urban issues.

To illustrate the demands of a smart city, it would be
wise to first examine the benefits of a smart city. An ex-
ample of usefulness can be seen in India’s “Smart Cities
Mission”. This program aims to select certain cities to ul-
timately implement smart city systems. The goal of this
smart city program is to improve walk-ability, public tran-
sit, city governance accessibility to citizens, and infrastruc-
ture among other goals. In the case of India, each of these
goals are achieved through programs within the smart city
initiative [2]. A specific example of a problem being solved
with a smart city system would be digital identity. Rivera et
al. [4] utilizes a Blockchain network, which in essence is a se-
cure distributed and decentralized database network. This
system simplifies city services that require citizen interac-

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2019 Morris, MN.

tion such as payment for certain services, or it can be used
for census information. Another example demonstrated by
Yonezawa et al. [8] would be vehicle-mounted sensors to
gather city data, such as pollutants, to store data over a
network from which results can be gathered and responded
to appropriately.

This paper provides a look into the fundamental processes
of a smart city system, the network behind a smart city
system, and finally conflicts that can happen between the
networks in the system as well as ways of mitigating these
conflicts.

The network is fundamental to the functionality of all the
parts in a smart city. The network interface, SOXFire, that
this paper examines in Section 3 is implemented by [8]. This
network aims at being scalable for any city’s size and de-
mands while being robust and specific enough for each of
the city’s services. For instance, the network would have to
process the data that sensors produce from a pedestrian ser-
vice and the data a sensor collects on pollution levels from
a pollution service. This data is later visualized with visu-
alization tools as depicted in Section 4.

Lastly, conflicts between networks are discussed in Section
5. In addition, a solution called CityGuard is presented by
Meiyi Ma et al. [3]. This solution utilizes an algorithm that
is run against a simulation of services within New York City,
NY. The algorithm attempts to resolve the conflicts in every
network to maintain safety within the city.

2. BACKGROUND
To fully understand smart city systems, it is first impor-

tant to understand the underlying basic processes of a smart
city. The first portion of this background gives an overview
of these processes. This is followed up by information re-
garding the sensors that make up a smart city.

2.1 Smart City Process
Each smart city strives in some way to meet the follow-

ing goals: data collection, data analysis, and reaction to the
data. While services may vary by municipality, the pro-
cess remains the same. This process can be viewed on a
macro scale and in a constant loop as depicted in Figure
1 [5]. Ideally this loop represents every system in a smart
city, as opposed to each system individually. In this loop,
the city provides data through a network of various sensors.
This data is then analyzed through models and analytical
tools which is acted upon by stakeholders and citizens of
the city. This affects the city in different ways which creates
new data for the network, and the loop continues in this cy-



Figure 1: A Smart City Loop [5].

cle. Another approach of classifying smart city goals derives
from the “3-C concept” as described by Kumar et al. [2].
This concept is simply an acronym meaning “Convenience,
Competence, and Cleverness”. These terms highlight what
attributes describe an ideal network of smart city systems
and how each smart city service should function.

2.2 Sensor Types
A smart city is a network of sensors that report data

through various means. In order to understand how that
data is reported through SoxFire, it is first important to
know what kinds of sensors and data need to be accounted
for. Each sensor and data type require different approaches
for monitoring and interpretation. The benefits and disad-
vantages of each sensor based on its application are pictured
in Figure 2. The Figure depicts spatial coverage, which is
the amount of area a sensor can reasonably cover, and tem-
poral frequency which is the how frequently data can be
collected for a given area. An example would be a satellite
(airborne) having the advantage of being able to record data
on a large scale but also having the disadvantage of being
able to do so infrequently due to computational and cost re-
straints as well as the mobility of the sensor changing from
a given area. There are many different types of sensors for
collecting information in a city. The three primary types of
sensors are stationary sensors, Drive-By or vehicle-mounted
sensors, and crowd sensing sensors.

2.2.1 Fixed Sensors
Fixed sensors, also known as stationary sensors, are the

most common devices for gathering information in a smart
city application, particularly for environmental sensing. This
form of collecting information is usually accurate but limits
the area that can be covered due to its static location. These
sensors are typically more expensive than using
vehicle-mounted sensors due to a greater number required
for the same area, installation costs, and required mainte-
nance at each stationary sensor location. [1]

Figure 2: Comparing spatial (distance) and tempo-
ral (time) benefits of sensor types [1].

2.2.2 Vehicle-Mounted Sensors
An alternative to fixed sensors are vehicle-mounted sen-

sors. These “drive by” sensors can provide information at
a much greater scale than fixed sensors. These sensors are
also useful for environmental data, and some specific ap-
plications include gas leak and pothole detection as well as
pollution monitoring [1]. Some specific sensor types used
on vehicles include but are not limited to UV, temperature,
and nitrogen dioxide/nitric oxide pollution (NOx) sensors.

2.2.3 Crowd Sensing
Certain types of data require more detail than a quan-

titative data sensor can provide. Within this category of
data collection are two subcategories provided by Yonezawa
et al. [8] : participatory and expert crowd sensing. Partic-
ipatory crowd sensing involves regular citizens voluntarily
reporting something about the city. An example would be
a large pothole being reported by a concerned citizen. Al-
ternatively expert crowd sensing would involve city officials
and employees gathering and reporting data specific to their
own daily tasks. For both types of data collection, the typ-
ical data being collected is an image and/or a form of some
kind sent via a smartphone app, though quantitative data
can also be provided [8].

3. THE NETWORK
The network is vital for storing the information gathered

from sensors in a database such that actions can be taken
from the data. While there are no restrictions to a particular
network, there are a few desirable qualities of a smart city
network that should be accounted for.

3.1 Network Requirements
Perhaps the biggest issue a smart city network is con-

fronted with is the different types of sensors. The smart city
network must be able to record data from all these sensor
types regardless of differences in data types and request fre-
quency. Further complicating the problem space, the system



Figure 3: Virtual Sensors in SOXFire [8].

must also be properly extendable and scalable to account for
numerous different city departments at a city scale. Feder-
ation is how this is achievable. Federation, in a general
sense, is a group of networks agreeing upon operation stan-
dards collectively [6]. This is particularly important with
user identity and authentication for a smart city applica-
tion. In addition, federation also improves extendability of
the networks in the system. Federation will be further ex-
plored in Section 3.2.1. Lastly, security poses another issue
for data collection, which needs to also be balanced with the
accessibility and usability required by users participating in
crowd sensing [8].

3.2 SoxFire
A working implementation of a smart city network in-

terface introduced by Yonezawa et al. [8] called SoxFire
addresses these requirements. This network was used in Fu-
jisawa, Japan and field tested on both vehicle and crowd
sensors. SOXFire is open source and built upon an XMPP
protocol.

3.2.1 XMPP
The XMPP protocol is used for several applications, but

primarily for online chat applications such as “WhatsApp”.
The term SOX in SOXFire is derived from the term Sensor-
Over-XMPP. XMPP is particularly useful because it comes
packaged with many of the useful features and requirements
built in, such as authentication and encryption, and the abil-
ity to easily add custom functionality as was done with SOX-
Fire. Lastly, federation in XMPP includes several properties
useful for SOXFire. XMPP federation includes two primary
features: decentralization and gateways. The protocol is de-
centralized by providing each network user with a unique id
called a Jabber ID or JID. Using the JID, the server can
be run on any domain. Gateways are utilized by XMPP to
allow a single client to access other networks even if they
are not XMPP. In addition to this, users can register with
the gateway to auto-authenticate. [7] To visualize a gate-
way, it may be helpful to think of a bouncer at a prestigious
club. They will let you in, no questions asked, if they al-
ready know who you are. These features are why XMPP
federation is fundamental for extendability and scalability
with many separate sensor networks.

3.2.2 Virtual Sensors
SOXFire is composed of “virtual” sensors which are useful

for scalability of the differing sensor types. These virtual
sensors are composed of two nodes which include data in-
formation and meta information. The data would simply
be specific to what a certain sensor recorded whereas the

meta node would contain information about which sensor
published the information. For example, a temperature sen-
sor would report that it is 75 degrees outside as data, and
report that it is located on top of a building on 7th Street
as metadata.

Another component of these virtual sensors would be pub-
lish and subscribe events, alternatively known as “PubSub”
events. Each virtual sensor corresponds to a real sensor
in the city. Whenever a sensor publishes information, the
virtual sensor retrieves both the data and metadata of the
sensor and the application(s) in which the data is used sub-
scribes to these events.

In the case of SOXFire, crowd sensing data is published to
a virtual sensor by groups of individuals whom voluntarily
provide this information. Another case specific to SOXFire
involves web scraping, which utilizes virtual sensors on rel-
evant web pages. This is useful for monitoring information
that is outside of a city’s sensor network but may still be use-
ful for the city. Figure 3 displays how the various methods of
collecting information in the city are handled by SOXFire’s
virtual sensors and PubSub events.

3.2.3 The Backend
The server implementation of SOXFire is built upon Open-

Fire, which is designed for XMPP protocols that use Java.
The primary difference of SOXFire’s implementation is that
it allows subscription and federation simultaneously. This is
necessary for sensors to seamlessly communicate with sensor
networks, and each sensor network to have subscriptions to
the virtual sensors amongst the entire city’s physical sensors.
In addition user connections are monitored to keep track of
metadata. This metadata is used to keep track of the loca-
tion and the service that the data is originating from so the
information can be organized and categorized by origin.

The server API is straightforward and hides the two dif-
ferent node types from the user. It is designed to be easy to
use and focus primarily on the subscription and publishing
events from the virtual sensors.

3.2.4 Results
SOXFire’s implementation in Fujisawa, Japan is still ex-

perimental with field trials being run rather than being a
finished product ready for any city to adopt. Regardless, it
still provides a compelling proof of concept that successfully
handles data of various kinds (air pollution and crowd sens-
ing). In addition, the network has a visualization dashboard
application as discussed in Section 4.

4. DATA INTERPRETATION
Among the most important aspects of a smart city is inter-

preting what data is recorded and appropriately acting upon
it. Many smart city systems provide tools to help visualize
and locate problems within a city.

In the SOXFire implementation, once data is gathered it
is represented through a “dashboard” view as seen in Figure
4. This view displays text, image and map data that are
gathered in real time from the sensor network. The view
is customizable with widgets that can be moved and added
specific to the user. The Figure depicts various information
collected by services in Fujisawa, Japan, including a city
monitoring camera, participatory crowd sensing widget, and
a weather widget.



Figure 4: SoxFire Dashboard [8].

5. SENSOR SYSTEM CONFLICTS
Unfortunately, simply meeting the network requirements

of a sensor system and appropriately gathering senor data is
not enough to have a safe and efficient smart city. Issues can
occur within the greater network of sensors in which certain
smart city systems may violate other smart city system goals
without proper communication between the systems. This
is often the case due to different safety requirements and
end goals of each system and different groups developing
and maintaining these systems [3]. Each service in the city
is likely to have its own sensor system with its own network,
which can further increase the likelihood of problems arising.
A service, in this case, would be any entity in the city whose
objective is to accomplish a set of tasks or maintain certain
goals. Meiyi Ma et al. [3] describe the various types of
conflicts between smart city systems and a feedback loop
based algorithm which addresses these issues.

5.1 Conflict Types
The two primary types of conflicts defined in [3] are device

and environmental.
Device conflicts involve a single device being given two

commands at once. Opposite actions as well as similar but
different actions fall under this category. An example would
be if a traffic service requests to turn a traffic light green
and a pedestrian service requests that same light to be red.
Specifically, this is an opposite device conflict, because op-
posite actions are requested on the same device.

Environmental conflicts are those that involve multiple
devices and systems. A good example of a smart city sys-
tem conflict would be between an emergency services system
and a traffic system. If a fire department requires a given
street and traffic has been routed to that street, there is a
conflict of systems. Conflicts like these can be mitigated
first by defining them. This conflict can be defined as any
action taken on one system that violates an action or safety
threshold of another.

Figure 5: CityGuard Overview [3].

5.2 CityGuard
CityGuard addresses both conflict types in a feedback

loop: a situation in which the output of the loop contin-
uously becomes the input of the loop. In the case of City-
Guard, each system has actuators that automate actions of
those systems on a macro scale. These actuators are acti-
vated based on the output of the city information gathered
by the sensor networks. Whenever the actuators launch ac-
tions, the results of those actions are continuously fed in.
CityGuard interjects conflict mitigation between city system
actions and the actuators as seen in Figure 5; this conflict
mitigation attempts to make service actions in the city safer.

In Figure 5, the services {S1 ... Sn} all have actions {A1

... An} to be analyzed in CityGuard. The state of the city
is simulated with each action; because of this, each action
has its own simulation state associated with it {V1 ... Vn}.
These are all necessary for CityGuard to find and resolve
device and environmental conflicts. After CityGuard runs,
the resolved actions are given to the actuators so that they
can be activated in the city.

CityGuard operates on a number of “rules”. These rules
are defined by the city in which it is implemented. A rule
could be a noise threshold for a residential neighborhood.
CityGuard could not violate that noise threshold regardless
of the circumstances. Because CityGuard cannot violate
these rules, it may not always mitigate a conflict, but it can
reduce the severity of the conflict. These rules are known by
CityGuard as requirements. These requirements are visible
in Figure 5 as {R1 ... Rn}.

Much like SOXFire, CityGuard utilizes metadata of indi-
vidual sensor devices to properly identify where and which
department requested an action. In addition to this infor-
mation, the duration and prior conditions of an action are
interpreted.

5.2.1 Conflict Detection and Resolution
In order to understand the algorithm behind CityGuard,

it is important to understand the sub components in conflict
detection and resolution. Figure 6 displays the algorithm as
a diagram with additional safety and performance require-
ments, states of the city, and service actions. This diagram
also displays the various sub components within CityGuard.

The first sub component is CityGuardSUMO, Simulation
of Urban MObility, which utilizes several simulated states of
the city to monitor and predict secondary effects of traffic
systems, such as increased congestion from a change in a
traffic light at an intersection. The secondary effects would
be classified as possible environmental conflicts, much like
the example with the fire department and traffic system.



Figure 6: CityGuard Algorithm [3].

Device Conflict Detection and Resolution is another sub
component which is used to monitor devices for conflicts of
any kind. Conflicts are organized into three groups: Oppo-
site, Duration, and Numeric. Each device is checked for a
conflict in any of these conflict groups, and if one is found
it is resolved with a corresponding resolver to that conflict
group. An example could be autonomous vehicles around
the city being set to 50 MPH by one service, and 60 MPH
by another service. A device conflict has occurred, specifi-
cally an numeric device conflict, and it will be resolved in
the corresponding resolver of that conflict type.

Environmental Conflict Detection and Resolution takes
the returned environmental conflict values from SUMO and
classifies them into categories (single, opposite, additive, and
dependent conflicts) similarly to the Device Conflict sub
component. The primary difference from SUMO is that this
sub component checks for additive affects, meaning that all
the possible conflicts are checked together for classification in
this conflict category. If, for instance, a traffic service routes
traffic onto a road and a waste management service directs
a fleet of garbage trucks onto that same road an additive vi-
olation has occurred on that road for congestion, even if no
services by themselves have violated that congestion thresh-
old. Dependent environmental conflicts are also checked. A
dependent conflict could be a traffic service routing traffic
while an accident service is still mitigating a traffic accident
and needs the road cleared. The traffic service is dependent
on the accident service to complete.

The Overall Resolver is the last check before actions are
made in the city. Actions deemed as safe by both of the two
conflict resolvers are considered safe here. Actions deemed
unsafe by the Environmental Conflict Resolver are rejected
here. Actions deemed unsafe by the Device Conflict Resolver
are rechecked for other possible actions that will not violate
any safety thresholds. If no alternative action is found, it is
rejected. If an action is found it is then considered safe and
the action is applied.

5.2.2 Algorithm
CityGuard utilizes an algorithm with three main steps:

Pre-processing, Device Conflict, and Environmental Conflict
(see Figure 6).

Pre-processing: involves a set of actions {A1 ... An},
a set of simulation states {SV1 ... SVn}, and a set of city
states {V1 ... Vn} that the simulation state is set to. For
each action A in the action set {A1 ... An}, the current set
of simulation states are set to the result of CityGuardSUMO
with the arguments {A1 ... An} and {SV1 ... SVn}. This
result and the requirement of the action is determined to be
safe or not, and if it is not safe it is resolved in the resolver.

Device Conflict: The Action set {A1 ... An} is passed
into the device checker. If the result of the device checker
yields no new conflict, this is passed to the Environmental
Conflict portion of the algorithm. If a device conflict is found
by the device checker, each device conflict case is classified
and resolved in a resolver for that type of conflict.

Environmental Conflict: CityGuardSUMO is run with
Pre-processed action set {A′

1 ... A′
n} and the city simula-

tion states {SV1 ... SVn}. This result is stored as {SV′
1

... SV′
n}. {SV′

1 ... SV′
n} and the city requirements {R1

... Rz}, z in this case being the number of requirements, are
checked with the Environmental Checker to be classified as
a conflict or not and of what type of conflict. Each action
in the action set {A′

1 ... A′
n} is resolved in the correspond-

ing resolver of its category and finally passed to the Overall
Resolver.

5.2.3 Results
CityGuard was evaluated in a simulation of Manhattan,

NY extended from SUMO data. Various city services are in-
troduced in this simulation, ranging in priority from a traffic
congestion service to an emergency response service. City-
Guard drastically improved safety metrics such as halving
the wait time of emergency vehicles in some instances. Wait
time is measured by the length of time a vehicle waits in a
lane at an intersection. Traffic collisions were also success-
fully mitigated when running CityGuard. There are com-
promises, however, that are necessary to make these gains.
In the simulation, normal vehicle wait time increased from
98.5 seconds to 100.2. It is important to note that this is
still lower than the 121.82 second wait without any services.
The improvements that CityGuard offers become more pro-
nounced when more services are running. If 5 services are
running, CityGuard reduces CO emission by 51.3%. That



reduction increases to 73.7% when 10 services are intro-
duced.

The simulation also revealed information about the ser-
vices themselves and their interactions. The accident ser-
vice had the largest spatial impact while the noise mitiga-
tion service had the least. Device conflicts were prominent
throughout the simulation; the congestion and pedestrian
services had conflicts with one another around 48.3% of the
time. Looking at environmental conflicts, it was found that
running 7 services or more significantly increases the chance
of conflicts. Environmental conflicts were found to occur 2-4
times more frequently than device conflicts [3].

6. CONCLUSIONS
Smart city systems may not fix every urban problem com-

pletely, however, the proper network and conflict mitigation
systems can yield some compelling results. This paper has
examined the network requirements of a smart city neces-
sary for intracity communication between devices. While
SOXFire specifically is one of many possible solutions, it
does satisfy the network requirements for a smart city net-
work and successfully accomplishes its task for retrieving
and publishing city system actions. Further work still needs
to be done to fully explore the network’s capabilities and to
add to the data analysis portion of the system to further
automate the systems within that smart city.

CityGuard clearly shows positive results in a wide range of
categories, but most importantly in safety. A conflict mit-
igation system like CityGuard not only shows exceptional
promise, but it appears to become necessary as more city
systems are added to the smart sensor network. In addition
to this, the simulation environment that CityGuard is tested
in introduces automated responses to sensor data, which can
mitigate the shortcomings of SOXFire. CityGuard itself,
however, will need further testing in a real world environ-
ment before it can be proven viable for a real smart city.

Acknowledgments
Thanks to KK Lamberty, Ian Buck, and Elena Machkasova
for their advice and feedback.

7. REFERENCES
[1] A. Anjomshoaa, S. Mora, P. Schmitt, and C. Ratti.

Challenges of drive-by IoT sensing for smart cities:
City scanner case study. In Proceedings of the 2018
ACM International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous
Computing and Wearable Computers, UbiComp ’18,
pages 1112–1120, New York, NY, USA, 2018. ACM.

[2] N. M. Kumar, S. Goel, and P. K. Mallick. Smart cities
in India: Features, policies, current status, and
challenges. In 2018 Technologies for Smart-City Energy
Security and Power (ICSESP), pages 1–4, March 2018.

[3] M. Ma, S. M. Preum, and J. A. Stankovic. Cityguard:
A watchdog for safety-aware conflict detection in smart
cities. In Proceedings of the Second International
Conference on Internet-of-Things Design and
Implementation, IoTDI ’17, pages 259–270, New York,
NY, USA, 2017. ACM.

[4] R. Rivera, J. G. Robledo, V. M. Larios, and J. M.
Avalos. How digital identity on blockchain can

contribute in a smart city environment. In 2017
International Smart Cities Conference (ISC2), pages
1–4, Sep. 2017.

[5] J. M. Schleicher, M. Vögler, C. Inzinger, and
S. Dustdar. Towards the internet of cities: A research
roadmap for next-generation smart cities. In
Proceedings of the ACM First International Workshop
on Understanding the City with Urban Informatics,
UCUI ’15, pages 3–6, New York, NY, USA, 2015. ACM.

[6] Wikipedia. Federation (information technology) —
Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Federation
%20(information%20technology)oldid=866156138,
2019. [Online; accessed 30-March-2019].

[7] Wikipedia. XMPP — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=XMPPoldid=
889703389, 2019. [Online; accessed 30-March-2019].

[8] T. Yonezawa, T. Ito, J. Nakazawa, and H. Tokuda.
Soxfire: A universal sensor network system for sharing
social big sensor data in smart cities. In Proceedings of
the 2nd International Workshop on Smart Cities,
SmartCities ’16, pages 2:1–2:6, New York, NY, USA,
2016. ACM.


