
DevOps for Software Engineering

Khondoker Yasin Ahnaf Prio
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

yasin011@morris.umn.edu

ABSTRACT
DevOps is a combination of practices and tools in soft-
ware development (Dev) and operations (Ops). DevOps
focuses on: collaboration, automation, continuous integra-
tion/delivery, continuous testing, and continuous Monitor-
ing. In this paper, we are going discuss why DevOps is im-
portant and the problems it tries to solve. We will then dive
deeper into continuous monitoring and automation by look-
ing at the design and implementation of an “FG” (Filling-
the-Gap) tool. The paper then concludes with a summary
of research which tries to evaluate DevOps and how it can
affect software engineering.

Keywords
DevOps, Automation, Continuous Integration, Continuous
Delivery, Collaboration, Continuous Feedback, Continuous
Monitoring

1. INTRODUCTION
DevOps, the combination of development and operations

according to Jabbari, et al [1], is a development method-
ology in software engineering that aims to improve software
quality, the software development design cycle, and, the
maintenance of software after deployment [4]. When there
is a gap between the development and operations team, it
can lead to a lot of conflict and friction in software compa-
nies. For example, development teams often focus on the
constant addition of new features to the product, where
operation teams focus on stability and maintenance of the
software instead. As more work is being done on features,
and then tested and staged, the development environment
is evolving in ways that operations might not be aware of.
The operations team might utilize more tools to implement
smoother maintenance that the developers might not know
about either. It is fairly difficult to ensure proper software
engineering when different teams are responsible for differ-
ent environments and live in their own worlds. The prac-
tice of DevOps aims at closing this gap between operations
and development [5]. By promptly using DevOps, devel-
opers can identify bugs in the code immediately and correct
them way earlier in the software development life cycle tack-
ling the problem of high costs for problems and defects that

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2019 Morris, MN.

are found later in the cycle. DevOps helps to guide effec-
tive business decisions by using metrics driven monitoring to
identify product features that need more attention. DevOps
also provides opportunities for open communication and col-
laboration. This helps guarantee the sharing of knowledge
between teammates and across teams. To summarize, the
development and operations teams can now work together
more efficiently to reach their common goals by the practice
of DevOps.

In Section 2, we get familiarized with some fundamental
concepts and terms in Software; followed by section 3 where
we study the five key aspects of DevOps. In Section 4, we
learn about the architecture of a DevOps tool that aims
to enhance software engineering. In Section 5, we are then
introduced to a study that evaluates DevOps and its impact
on the success of software development followed by a brief
summary of key findings from all the sections combined to
conclude the paper.

2. BACKGROUND
To understand DevOps and how it affects software engi-

neering, we need to learn more about some key terms in the
software development design cycle.

Many software development methodologies organize the
process of developing software into small iterations to reach
the complete final software prod. This includes the act of
writing code, analyzing requirements, writing tests, docu-
menting and such. Throughout the entire development cy-
cle, developers collaborate by storing work in a repository.
In software development, a repository is a central file storage
location where developers can use to collaborate. A Build
is the process of creating the application program through
compilation of source code to object code.

Software systems often involve multiple services, which
might even be interlinked sometimes, where each of the ser-
vices has its own goal to ensure for the successful delivery
of the software. Each service is labeled as Service-level ob-
jective (SLO): the objective defined to be accomplished by
a particular service for the end user. A popular metric used
to measure how effective software components are at solving
a problem domain is Quality of Service (QoS). QoS is the
measurement of completion of the service-level objective. It
will consist of attributes and metrics used to measure the
SLO. For example, an application that was made to send
message reminders hourly to remind their clients to stay hy-
drated: the message service component would have the SLO
to provide messages on time. An example of an attribute of
the QoS for this specific SLO would be the time it takes for



the server to process and send data packets to the client in
the form of a notification.

To understand the field of software operations better, we
need to be introduced to some other key terms. We need to
understand the client-server infrastructure that most soft-
ware systems utilize. The client (perhaps the customer’s
computer) sends requests to the server (such as pressing a
submit button on a survey or asking to view a specific URL).
The server then provides the response based on the request.
Sometimes there might be multiple requests from different
clients to the server at the same time. A client that arrives
to find all servers busy generally joins one or more queues.
The server responds to clients according to their relative
priority or position in the queuing system.

To understand how the system works operations team of-
ten uses a Monitoring Platform. Monitoring platforms are
used as a tool for testing and verifying that end-users in-
teract with the software as expected. A server log is a log
file generated by a server consisting of a list of activities
performed. For example, web server logs maintain a history
of page requests, where one could track interactions taking
place in the queuing system. Software monitoring is often
used by businesses to ensure uptime, performance, and func-
tionality is as expected. They mostly use the server log file
for analysis to achieve this.

3. FIVE KEY ASPECTS OF DEVOPS
In this section, we are going to go into more depth about

the five key aspects of DevOps and how they result in more
effective software quality and development.

3.1 Collaboration
Collaboration practices in DevOps aim to connect the de-

velopment and operations team by sharing knowledge. Ef-
fective communication can help teams during requirements
gathering, development, testing, and deployment. In the
DevOps methodology it is proposed that every team mem-
ber is kept informed about the software product throughout
its life cycle [2]. Product development conflicts may arise
as a result of poor communication such as information that
is received unclear or late [8]. Team members can discuss
and seek insights on what they are working on during meet-
ings [8] and can be a platform to keep everyone up to date
with the progress made [2] and to prevent duplication of
work. Stand-up meetings provide common physical space
for a chance of interactions which can be very helpful. [8]

3.2 Automation
Automation refers to the technique of initiating or con-

trolling processes by automatic methods to keep human in-
volvement to a minimum. Automation standardizes how the
software is built, how each team responds to change made to
the software, and how the software is tested and reviewed.
This ensures the processes are executed the same every time,
reducing the chances that defects or bugs slip through be-
cause of human error. Automation can also improve com-
munications between the development and operations teams
by generating automatic feedback at key moments in the de-
velopment process.

3.3 Continuous integration and deployment
Continuous integration according to Shanin et. al refers

to the active sharing of code inside a central repository [7].

If a set of developers merge and share their code with one
another frequently, there might be less conflicts when they
put it together. In this process, every time code merges
together in a repository, automated builds are run to test
the software that it aligns correctly with the work already
done. In summary, continuous integration refer to the fre-
quent connecting of smaller chunks of code into the main
code base to ensure smoother delivery of software.

DevOps supports frequently and reliably releasing new
features and products which includes continuous deploy-
ment. The continuous deployment practice includes and ex-
tends on continuous integration practices. It tries to incor-
porate new changes into production environments by provid-
ing as much automation support as possible [7] and bridge
discontinuities between development and deployment teams.
In other words, continuous deployment refers to not only fre-
quent integration of new code into the development cycle but
also rapid deployment of it on the production environment.

3.4 Continuous Testing
Software testing is the process of evaluating different com-

ponents in a software to make sure they are functioning as
expected. Continuous testing refers to the active flow of
incorporating testing inside the development cycle. Devel-
opers write tests and code simultaneously. Continuous test-
ing is a constant balance between good test quality and test
speed. The goal is have tests that are effective enough to
reduce the cost of later testing, where finding bugs and de-
fective code becomes more difficult, while maintaining fast
testing that doesn’t that much time. Continuous testing
does not ensure no bugs whatsoever but increases the con-
fidence significantly that the software deployed will not in-
clude them. Continuous testing practices include having au-
tomated tests continuously running as the developer writes
code, providing rapid feedback about failures the code is
being developed [6]. In a study by Saff et. all, “partici-
pants using continuous testing were three times more likely
to complete the task before the deadline than without” [6].

3.5 Continuous Monitoring
Continuous monitoring refers to the collection of metrics

of the deployed software and the sharing of it with devel-
opers. Monitoring is often done with the usage of monitor-
ing platforms by operations team in companies but is rarely
shared with the developers. The sharing of the reports of
the application to the developers aims to provide easy-to-
use feedback allowing better understanding of the perfor-
mance and availability of the application. Continuous feed-
back from end uses provide visual evidence and full context
for analyzing behavior to locate points of work the software
that is receiving most action. DevOps promotes the usage of
this metrics to drive business as well as development features
and design decisions. An example of continuous monitoring
is explained furthermore in the description of the FG tool.

4. DEVOPS TOOL: FILLING-THE-GAP (FG)
In this section, we shall learn more about a filling-the-gap

(FG) tool [4], that connects the software performance met-
rics to developers. We will look at the key objectives of the
FG tool followed by the architecture of the tool: the FG
Design-Time component, the FG Runtime component, and
the Monitoring History Database. We will look at the esti-
mation techniques and finally how to analyze data collected



Figure 1: FG Tool Architecture

to improve performance. We will also define a working ex-
ample of a hypothetical application and try to apply the FG
tool in certain contexts and try to evaluate how it might
help the software engineering cycle.

For the sake of better understanding of how the FG tool
works and how we may apply it, we are going to define the
goals and objectives of a hypothetical application as a run-
ning example. The application only has one SLO for sim-
plicity, and that is to get notifications on time as reminders
to end users who sign up for these notifications. The user
will interact with the client and set down the specific timings
when they would like to get notified and set their notification
message content.

4.1 Objectives
The key objective of this FG tool according to Perez, et

al are as follows [4]:

• To parametrize software performance in the design-
time and the run-time.

• To provide the developer with a report of the run-time
application behavior.

The run-time here refers to our application that is de-
ployed and users are interacting with. In the context of our
running example of the notification application, this would
benefit us in trying to measure the QoS of notification SLO
in run-time. We would be able to know if users are get-
ting delayed messages, times of peak demand, different cat-
egories of reminder messages etc. The design-time is where
the developers are working on addition of new or refining of
already in place features. By measuring them and providing
them with the developers, they can now constantly measure
success and work more efficiently.

4.2 Architecture of the FG Tool
In this Section, we will learm more in depth about the

FG runtime, the database where we store all the monitoring
data and then finally the FG designtime.

4.2.1 FG Runtime
The FG Runtime is connected to an external monitor-

ing platform to collect metrics relevant for the performance
of the application to collect data for further FG analysis,
and this component needs to be configured with the queries

necessary for the full extraction of all data relevant for FG
analysis.

In our example application, this might include the set-
ting up of a monitoring platform to see the interactions of
end users with the input form to set categories of reminder
they would like to get. We would measure metrics such as
thinking time spent by taking time stamps of these interac-
tions at the start and the end. The FG runtime, would then
include setting up queries to the historic database to store
these interactions data for further FG analysis.

For the queries to be configured the component requires
input are:

• Frequency (F): This parameter determines how fre-
quent the FG analysis will be run. One could make
sure during the testing stage, this is increased to gain
rapid knowledge about the application behavior. After
the testing stage has been analyzed enough for broader
understanding the parameter could then be lowered
down when running on the production server to keep
resources consumption down.

• Horizon of analysis (H): This parameter determines
which time period input data we would like to base
our assumptions on for the FG Analysis. For instance,
x hours means that only the data collected during the
last x hours are considered.

In our running application example, one could focus
on a particular peak demand time as H specifically to
understand resource consumption during this time and
prioritize goals on how to handle it.

• Monitoring Intensity (MI): This parameter determines
how intensive the data collection must be, in the range
(0, 100). In this scenario, the value y indicates that
y percentage of the total available samples were col-
lected.

• Maximum Collection Window (MCW): FG Analysis
requires the need to keep count of calls to the applica-
tion methods inside the system. The MCW parameter
enables the user to set maximum length of the accu-
mulation time frame for which it is still keeping count.
The FG tool will not collect more data after reading
the MCW amount.

This is useful as a noteworthy number of data collec-
tors may bring about an undesired overhead. For our
running example applicationt test environment, the
MCW parameter can be set to a maximum. For pro-
duction, the MCW can be set to low, which together
with a little MI as well will ensure minimal overhead.

4.2.2 FG Monitoring History DB
The FG Runtime component filters the data received and

relays it to the Monitoring History DB. This database guar-
antees that a backup copy is kept of all application interac-
tion for future bug identifications or cross-feature develop-
ment.

If in our notification example, one would like to go back
a previous analysis to build on top of, they may choose to
do by querying previously collected data in the Monitoring
History DB.



4.2.3 FG Design-Time
The monitoring system retrieves, processes the data and

then relays into the system for the estimation methods. Es-
timation routines are run to update the metrics of measure-
ment in the QoS model by the design time component.

The types of metrics that can be collected by a monitoring
platform depend on the system that the FG estimation tool
is tracking. A list of the different parameters that can be
observed for different kinds of systems is listed in Figure 2.

For our application example, the monitoring platform met-
rics required would be the total number of requests to esti-
mate how many users are actually using our services. Through-
put, queue length, response times and queue length (arrival
time) would give us the ability to observe resource consump-
tion. To understand more about end user think time, we
would need parameters such as throughput, total number of
requests, and mean number requests.

Population is the estimation of the total user clients. This
is achieved by counting the number of active requests exe-
cuted to each main application method.

Resource consumption is the estimation of the resource
(CPU) consumption. The several alternative methods, based
on different sets of information are:

• Utilization and throughput: A few methods utilize two
quantities to understand the CPU utilization for each
type of request. For the throughput, the number of
calls to each application method within the QoS is
tracked. They also configure an application-level data
collector to enlist the calls to internal methods in the
program.

• Response time and Queue Length: This refers to the
number of requests waiting to be executed in each ap-
plication method in each resource. To collect this infor-
mation, they set up a monitoring platform that counts
the number of call and reaction time. They at that
point utilize statistical methods to assess the queue
length at a particular time period.

The consumption of different resources (CPUs, disks) is
very difficult to access as typical server logs specifically track
only generalized client requests. A way to get these metrics
would be to configure in-depth monitoring tools. The FG
run-time joined with the monitoring platform aims to mea-
sure these resources consumption by doing that.

In our notification application example, it is crucial for
us to be able to capture resource consumption to try to fine
tune different server resources dynamically at demand peaks
to ensure better QoS for the notifications to reach end users
with no delay. The FG run-time is where all this information
will be captured.

4.3 Estimation techniques for FG Tool
The FG Estimation techniques aim to measure the con-

sumption experienced when multiple clients attempt to ac-
cess hardware and software resources. These are parameters
that will be part of the QoS model, could not be directly cap-
tured through monitoring platform and therefore have to be
estimated.

The first of the two estimation techniques for the FG tool
is based on looking at the queue for the number of requests
that are still outstanding and have not been processed. The
queue can be found by looking at server logs as we defined

Figure 2: Monitoring data required for the FG anal-
ysis

Figure 3: Information Gained by QoS Model

them in the background. The count is taken from the logs
in the server for requests on application methods and their
specific time stamp for that method. The second estimation
technique depends on response time, which can be acquired
by dynamic testing or by injection of timers in the applica-
tion code.

Three main sets of information were identified. They then
further identified six more parameter sets as well. For the
scope of this paper, we are not going to address the third
information set: environment stages which aims to measure
more details run-time metrics of PaaS and IaaS product
models and so does not affect our running application ex-
ample.

The parameters which are directly a result of FG analysis
in the QoS model are: User population, resource consump-
tion of each request class, users’ think time. This is shown
in the Figure 3.

The Qos model’s resource information set is derived from
the resource consumption parameter set from the monitoring
platform. For our application, this could mean a report of
how much of CPU power we might be utilizing on run time
just for querying on the database, or how much CPU power
we are spending on just sending texts after we have a result
from running a query.

Other examples of parameters on the QoS model include
the workload information set estimated from the population
parameter. Data such as user’s think time is based on es-
timations from the think time parameter of the monitoring
platform data.

4.4 Summary of FG Tool
In this section, we talked about a tool to fill the gap be-



tween development and operations. The focus has been on
the design of the tool, its architecture and how one would
implement this tool. We did this by identifying how it would
fit in with our working application example of a text notifi-
cation software.

The first key objective of the FG tool uses analysis to esti-
mate the QoS of a software application. Estimation routines
are run on software repeatedly to figure out how close the
software is to meeting its basic requirements. Different pa-
rameters can be tweaked to customize data collected from
monitoring platform. After data has been collected we can
run FG Analysis to provide the developer with reports, so
they can get constant feedback on how their software is op-
erating. This will allow the identification of services that
need more attention.

5. DEVOPS RESULTS
In this Section, we will present the research of Perera, et

al [3] which studied organizations that practice DevOps to
evaluate if it impacts good software development metrics.
In the following subsections, we are going to discuss the
research methods of the study followed by their results and
analysis.

5.1 Methods
Perera, et al [3] identified key variables that they believed

had an effect on the success of software development. The
three key concept they identified are reflected in Figure 5.

The quality concept had two separate variables: product
quality and the quality of the development. Product qual-
ity referred to the quality of the software written and had
indicators such as functionality, reliability. The quality of
development referred to the process and not the function-
ality of the end product and included proper development
practices such as documentation for maintenance etc. It was
interesting to see how maintainability was also listed as an
indicator, which reflects on the fact that good quality code
also provides support for maintenance besides being func-
tional and efficient. The portability indicator reflects on the
ability to move systems with ease into new platforms.

The responsiveness concept aims to address the need for
a company to quickly incorporate changes in the software
product due to certain decision changes made by the busi-
ness or because of bug detection. It is the measurement of
how fast the development team implements changes after a
new requirement is set. The indicators includes the number
of new releases of the software that had the new require-
ments as requested by the business needs. Number of bug
fixes or releases in general was chosen as a key indicator as
well.

The last concept was the ability of a company to quickly
adapt to new technologies. It measures the agility of the
company with indicators such as the speed, leanness and
flexibility.

Interviews were then conducted with DevOps experts at
15 different organizations to go over a questionnaire based
on DevOps metrics and key indicators. 150 organizations
of different sizes all over Sri Lanka were sent then a ques-
tionnaire to gather data on the impact of DevOps in their
organization. This included information on how much differ-
ent DevOps practices they implemented affected the quality,
responsiveness and the agility to adapt to new technologies.

According to Perera, et al [3], the key practices of DevOps

Figure 4: Variables with corresponding indicators

Figure 5: Correlation

are: culture, automation, monitoring and sharing.If we would
like to tie their DevOps practices with our Five key as-
pects of DevOps from Section 2, we could map Culture and
Sharing as DevOps: Collaboration, Measuring as a part
of DevOps: Monitoring, Automation remaining constant
and lastly Continuous Deployment which is built on top of
DevOps: Continuous Integration.

Afterward, three main hypothesis were derived to evaluate
if DevOps had an impact on these key success concepts.

• Hypothesis 1: Implementation of DevOps would pos-
itively impact the quality of software, i.e., there is a
positive relationship between the implementation of
DevOps and the quality of the software being devel-
oped.

• Hypothesis 2: Implementation of DevOps would pos-
itively impact the responsiveness to business needs:
there is a positive relationship between DevOps and
appropriate responsiveness to business needs.

• Hypothesis 3: DevOps would positively impact the
adaptation to new technologies: there is a positive re-
lationship between DevOps and the ability to adapt to
new technologies.

5.2 Analysis
After the results from the questionnaire were collected and

combined, statistical analysis was performed to see if there is
a relationship between the usage of DevOps and key success
metrics.

It should be noted that these results were self reported
and so might have validity problems. The answers the de-
velopers put down in the questionnaire may be exaggerated



Figure 6: Linear Regression Model Coefficients

and various biases may affect the results. They might not
remember everything with details to input data that truly
represent their DevOps practices or they might be told to
answer in a specific way by their supervisor. There is no
way accurate way to validate them and thus draw research
observations and relationships with full certainty. But be-
cause they had such a large number of participants from
different companies, we can assume that the data collected
is not completely biased and invalid, and so study them to
understand the nature of DevOps in these companies.

The Pearson product moment correlation coefficient was
calculated between quality of software and DevOps, respon-
siveness to business needs and DevOps and adaptation to
new technologies and DevOps. The Pearson correlation co-
efficient has a range from +1 to -1. A value of 0 indicates
that there is no specific relationship between the two vari-
ables that we are analyzing. If the value is greater than
zero than that would depict a positive linear relations. One
could think of it as a directly proportional relationship i.e.
as the value of one increases it so does the other. The larger
the value and closer to +1 the more dependant they are. If
the value is less than zero than that would depict a nega-
tive linear relationship. One could think of it as a indirectly
proportional relationship i.e. as the value of one increases
the other decreases.

The results of these statistical analysis is shown in the Fig-
ure 5. The Pearson correlation coefficient in all of our cases
was positive. These depicts that most of these companies ac-
cording to their response on the questionnaire believed that
the usage of DevOps had a positive impact in the quality, the
responsiveness and the adaptation to new technologies. The
highest coefficient was with the quality of software. Agility
to adapt to new technologies was the second closest and was
large enough to deduce that DevOps also had a positive ef-
fect on this success metric. The responsiveness to business
needs of a company also had a positive relationship with the
practice of DevOps but not as much as the other two.

After all of the three hypothesis listed were evaluated to
discover there was a positive relationship, Perera, et al [3]
did additional statistical analysis to examine how much each
DevOps practice impacted each of the success concepts. A
linear regression model was setup to achieve this through
predictive analysis. It aimed to examine how the differ-
ent DevOps practice variables impact the dependant success
concept. By doing this, we could now rank which practices
in particular are significant to ensure quality, responsiveness
and agility. The larger the coefficient in the linear regression
equation, the more of an impact in had. This can be seen
in the Figure 6.

This data suggest that the quality of software was most
impacted by the cultural practices of DevOps, followed by

automation, measuring, sharing and finally continuous de-
ployment. Responsiveness to business needs was most im-
pacted by culture followed by automation, and then sharing,
measuring and finally continuous deployment. The adap-
tation to business needs was mostly impacted by culture,
followed by sharing, and then automation, measuring and
finally continuous deployment.

Overall, the cultural aspect of DevOps had the most im-
pact on quality, with continuous deployment having the least
impact.

These provide key insight as one could observe the prob-
lem domain and prioritize certain DevOps accordingly. If
a particular company is having a hard time ensuring good
quality of software they might like to implement DevOps
since it has shown results to improve that more than it im-
proves responsiveness. Focus should be put to implement
the cultural practices first, followed by Automation as they
have the higest impact on the success concepts. Continu-
ous Deployment should be the least significant practice they
implement after the other ones have been set forth.

The sharing of knowledge has shown to have a higher im-
pact on the ability to adapt to newer technologies compared
to its impact on the other two key successes.

Continuous Deployment has the least impact on respon-
siveness to business needs which is surprising as the indica-
tor of this metrics was defined as the number of fix releases.
This is very contradictory. If the total number of releases
is closely related to responsiveness to business needs, con-
tinuous deployment should have a major impact on this as
it ensures continuous delivery of new code into the develop-
ment pipeline and then in production. This study reflected
that it is not so and developers should prioritize automa-
tion, culture and sharing more than continuous deployment
to ensure better responsiveness.

6. CONCLUSIONS
In this paper we learnt about what DevOps constitutes

and the key practices of DevOps. We defined them as Col-
laboration, Automation, Continuous Integration, Continu-
ous Testing and Continuous Monitoring. We learned about
how each of these practices aim to solve challenges faced
in the development cycle and operations cycles which relate
to maintenance after deployment. We looked at a DevOps
tools that incorporated two of these key aspects. We leart
about the architecture of this tool and how to implement it
followed by a study that evaluated the usage of DevOps and
its effect on success in a software company.

7. ACKNOWLEDGMENTS
I would like to thank my professors: Nic Mcphee and

Elena Machkasova for their invaluable feedback and guid-
ance. I would also like to thank Emma Sax for her feedback.

8. REFERENCES
[1] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer.

What is DevOps?: A systematic mapping study on
definitions and practices. In Proceedings of the Scientific
Workshop Proceedings of XP2016, XP ’16 Workshops,
pages 12:1–12:11, New York, NY, USA, 2016. ACM.

[2] T. Masombuka and E. Mnkandla. A DevOps
collaboration culture acceptance model. In Proceedings
of the Annual Conference of the South African Institute



of Computer Scientists and Information Technologists,
SAICSIT ’18, pages 279–285, New York, NY, USA,
2018. ACM.

[3] P. Perera, M. Bandara, and I. Perera. Evaluating the
impact of DevOps practice in Sri Lankan software
development organizations. In 2016 Sixteenth
International Conference on Advances in ICT for
Emerging Regions (ICTer), pages 281–287. IEEE, 2016.

[4] J. F. Perez, W. Wang, and G. Casale. Towards a
DevOps approach for software quality engineering. In
Proceedings of the 2015 Workshop on Challenges in
Performance Methods for Software Development,
WOSP ’15, pages 5–10, New York, NY, USA, 2015.
ACM.

[5] J. Roche. Adopting DevOps practices in quality
assurance. Commun. ACM, 56(11):38–43, 2013.

[6] D. Saff and M. D. Ernst. An experimental evaluation of
continuous testing during development. SIGSOFT
Softw. Eng. Notes, 29(4):76–85, July 2004.

[7] M. Shahin, M. A. Babar, and L. Zhu. The intersection
of continuous deployment and architecting process:
practitioners’ perspectives. In Proceedings of the 10th
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, page 44. ACM,
2016.

[8] M. Walls. Building a DevOps culture. ” O’Reilly Media,
Inc.”, 2013.


