
Software-Defined Networking in The Internet of Things

John H. Schonebaum
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

schon094@morris.umn.edu

ABSTRACT
This paper provides an overview of the Software Defined
Network (SDN) architecture. The demands of modern net-
working, like cellular and the Internet of Things (IoT), have
created a strain on traditional networking methods. Software-
Defined Networking attempts to to create a new networking
structure that is more centralized, flexible, and dynamic.
This is accomplished by separating the control plane (the
decision-making logic) of a network from the data plane (the
physical routers and switches). We will give an overview of
the history and purpose of SDN, then examine a proposal
for an SDN controller that focuses on operating in the IoT
landscape.

Keywords
internet of things (IoT), software defined networking (SDN)

1. INTRODUCTION
Increasingly, electronic devices are being designed with

internet capability. The range of devices able to access the
internet has expanded from laptops and desktop computers
to include a wide variety of machines with varying levels
of complexity and ability. For consumers, a smart home
might be equipped with sensors that control room temper-
ature over a network. Smart devices are being developed
for home use that range from voice-controlled personal as-
sistants to kitchen appliances. Sensors used in automobiles
are able to transmit wireless data, leading to optimal travel
patterns. This networking paradigm is collectively known
as the Internet of Things.

The variety of IoT devices has created challenges that cur-
rent networks can not adequately address. These devices
have a broad range of hardware and software limitations,
communication interfaces, and sensor capability. The num-
ber of IoT devices is growing and shows no sign of stopping.
In 2017, the number of IoT devices increased by 31% to 8.4
billion. By 2020, it is projected to grow to 30 billion.[7] In
their current state, networks will be slow to meet the de-
mands of the new Internet of Things paradigm. Software
Defined Networking is a new networking methodology that
if applied properly can address these issues.

In this paper, we will cover the basics of SDN and examine

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2018 Morris, MN.

Figure 1: layered view of networking functionality
[2]

an SDN architecture designed to work in multi-network IoT
environments. First, we provide a view of a Software Defined
Network and its components. Then, we present an example
of a proposed SDN architecture that is designed to work
in an IoT environment. The researchers responsible used a
technique called Network Calculus to model the Quality of
Service performance of the network. The Genetic Algorithm
was adapted to optimize the performance of the architecture.

2. BACKGROUND

2.1 Network Structure
A simplified view of networks can be organized into three

planes. (see Figure 1) Forwarding devices such as routers
and switches are on the bottom, in the data plane. A switch
is a hardware device that is used to connect multiple devices
on a local network. A router, which has a similar function
to switches, is slightly more sophisticated. Routers transfers
packets of data between different networks (for example, a
home network and the internet). Packets are the formatted
unit of data used in networking. They contain source and
destination network addresses, as well as information that
can be compiled into usable files. The control plane repre-
sents the decision making logic that governs the data plane.
Above, the management plane is made up of the tools used
to monitor and configure a network. Traditional IP net-
works are enormously complex and difficult to manage, as
well as being near impossible to make significant changes
to.[2]In a traditional network, the control and data plane



Figure 2: view of SDN infrastructure [2]

are vertically integrated. The control plane, which decides
how to handle traffic, and the data plane, which forwards the
network traffic, are bundled inside networking devices and
highly decentralized. A network manager must individually
configure each networking device, which greatly reduces the
flexibility of the network and hinders innovation in network-
ing technology. New network protocols can take years to
to be designed, evaluated, and deployed. For example, the
transition from IPv4 to IPv6 has taken roughly a decade
and is largely incomplete. Changing network architecture
is seen as unfeasible. Network configuration errors are ex-
tremely common. A single misconfigured device can cause
a host of networking errors, like packet loss and forward-
ing loops, and sometimes a single misconfigured router can
compromise the entire network.

2.2 SDN Infrastructure
The primary goal of Software Defined Networking is to

separate the control and data planes. This is accomplished
by creating a network operating system, or SDN controller.
Instead of handling network decision making themselves, the
forwarding devices become simply routers and switches. The
SDN controller becomes the centralized “brain” of the net-
work. The virtualization of these functions leads to several
benefits. A view of the SDN infrastructure is given in Fig-
ure 2. We will begin by defining some of the terms used to
describe the layers of an SDN network.

Forwarding Devices are data plane devices that perform
actions on incoming packets of data. The actions forwarding
devices take are defined by instructions from southbound in-
terfaces. The Data Plane is made up of forwarding devices
by wired or wireless connections. The Southbound Inter-
face is between the control and data planes. The south-
bound API defines how forwarding devices and the control
plane interact. The control plane is the intelligent logic that
forms the “brain” of the network. Forwarding devices are
programmed by the control plane through the southbound
interface. The control plane houses all applications and con-
trollers that govern the forwarding devices.

The Northbound Interface abstracts the lower-level func-
tions of the southbound interface. It is used as an API for
developers to send instructions to the forwarding devices.
Network Applications provide monitoring and configuration
of the network. Firewalls and load balancers are also in-

cluded here.[2] This is equivalent to the Management Plane
of the previous view.

With SDN, an administrator can change any network switches
rules when necessary – prioritizing, deprioritizing or even
blocking specific types of packets. it enables the adminis-
trator to manage traffic loads in a flexible and more efficient
manner. A network administrator need only deal with one
centralized controller to distribute policies to the connected
switches, instead of configuring multiple individual devices.
SDN also virtualizes hardware and services that were pre-
viously carried out by dedicated hardware, resulting in the
touted benefits of a reduced hardware footprint and lower
operational costs.

2.3 OpenFlow switches
OpenFlow is a communication protocol that allows net-

work controllers to to manage the delivery of data packets
over a network of switches. It was one of the first pro-
grammable networks developed, and has become synony-
mous with Software Defined Networking. OpenFlow switches
are utilized in the SDN architecture studied in this paper.
OpenFlow was developed by a team of researchers at Stan-
ford University as a way to experiment with new network
protocols and network traffic.[3]

OpenFlow switches work by providing an open protocol
to program the flow table in different forwarding devices.
An OpenFlow switch is made up of three parts: A Flow
Table that tells the device how to process incoming data,
a Secure Channel that connects the switch to an SDN con-
troller and the OpenFlow Protocol, which is the standard
for an OpenFlow-enabled controller to communicate with
a switch. Switch and router manufacturers will be able to
add OpenFlow functionality to their existing hardware by
installing the Secure Channel software and implementing a
Flow Table.

3. IOT SDN CONTROLLER
In order to address the changing network landscape and

new IoT paradigm, researchers from the University of Cal-
ifornia Irvine have developed and tested a novel controller.
This controller extends their previous work on MINA (Multi-
network INformation Architecture), which is a middleware
designed specifically to work with dynamic and heteroge-
neous networks. The QoS performance (delay, throughput,
and jitter) was analyzed using the Network Calculus model.
Throughput is defined as the rate of successful data delivery
per second, similar to bandwidth. Delay, or latency, is how
long it takes for a unit of data to travel through the network.
In networking, jitter refers to the variance in sending data
packets. If packets are not sent in equal intervals, it could re-
sult in congestion of the network [8]. The team developed a
Genetic Algorithm based routing control algorithm in order
to make the network more flexible and adaptable. This GA-
based flow scheduling algorithm is compared to the common
scheduling algorithms bin packing and load balancing.

3.1 MINA Middleware
MINA was designed as a platform that can operate in

multi-network environments and maximize network capabil-
ities. Its chief design philosophies are a tree-based hierarchi-
cal structure and and the Observe-Analyze-Adapt approach,
as seen in Figure 3. At the top of a MINA system, Tier 1, is a
centralized server that handles information sent from the de-



Figure 3: OAA Paradigm of MINA [5]

vices beneath it. Tier 2 consists of resource-handling nodes,
such as routers and access points. Beneath that is Tier 3,
which is made up of mobile nodes that are connected to the
Tier 2 nodes.

The first step of the OAA approach is observe. The nodes
in a network are evaluated and placed in a tree structure
based on their capabilities and parent-child relationship with
other nodes. Network analysis proceeds in the Analysis step.
The formal method Maude is used to judge the network
transmissions from the nodes and generate a set of QoS
parameters. Using the information gathered in the previ-
ous steps, network resources are dynamically reallocated to
maximize efficiency.[5]

3.2 Modeling with Network Calculus
In order to analyze the communication delays and perfor-

mance of a communication network, a model called Network
Calculus is used. Network Calculus is a methodology that
provides insight into the packet sending and receiving prob-
lems in networking. Network calculus fundamentally relies
on min-plus convolution.

The diagram in Figure 4 represents the transmission of
bits of data on a node in a time interval [0,t). The ar-
rival traffic, service capability, and departure traffic can be
modeled as curves. A(t) represented the data volume that
arrived, S(t) is the data volume served, and D(t) is the data
volume departed. It is assumed that each node has a con-
stant capacity R. The service curve is defined by S(t) =
R[t − T ]+, where R is the capacity [x]+ = max (0, x), and
T is the transmission delay (the difference in time between
the first bit entering the queue and the last bit leaving.[4]

The analysis of network traffic in Network Calculus de-
pends on the technique of min-plus convolution, which is
represented by the symbol ⊗. In mathematics, convolution
is an operation on two functions that produces a third. Min-
plus convolution is used to generate a departure curve from
the arrival and service curves of data over time.

D(t) = A(t) ⊗ S(t)

This is translated to:

D(t) ≥ inf
s≤t

(A(s) + S((t− s))

The operator inf stands for the infimum. The infimum, or
greatest lower bound, of a subset X of a set Y is the greatest
element in set Y that is less than or equal to all elements in

Figure 4: System with service, arrival, and depar-
ture curves

set X.[6] In this case, a point on the departure curve is found
by adding the arrival volume of data and the transmission
delay (S(t)).

Network Calculus is a useful measure if measuring Quality
of Sevice (QoS) in a complex network for several reasons.
First, the service curve of a node with multiple flows of data
can still be calculated. It can be assumed that each node
has a FIFO (first in, first out) scheduler. A flow i would
have a leftover service curve:

Si =
θi∑
j 6=i θ

j
R[t− T ]+

Here, R is the transmission rate of the node. θ is the
weight, or data rate.

Sometimes data transferred in a network may make mul-
tiple hops to reach a destination. This is known as ad-hoc,
or multi-hop networking. [1] Network calculus handles this
by combining multiple service curves with min-plus convo-
lution.

S(t) = S1 ⊗ S2 ⊗ ...⊗ Sn

A multi-hop path is demonstrated in Figure 5. The com-
bined service curve S(t) is made up of the arrival and depar-
ture curves of several nodes. S(t) is made of several service
curves chained together using the associative property of
min-plus convolution. [4]

The Network Calculus model of the proposed SDN plat-
form was tested against an experiment platform using the
Qualnet network simulation software, as seen in Figure 6.
The simulation was conducted on a two-hop network with
two servers, one router, and 5 clients. One server provided



Figure 5: Association of service curve [4]

Figure 6: Validation results of Network Calculus
method [4]

a video streaming service to the client, while the other a
Skype audio service. Both servers used a 100Mbps Ethernet
link to connect with the router. The clients connected to
the server with a 2 Mbps 802.11b wireless link. [4] For each
of the 5 clients in the graph, all three QoS parameters have
a similar performance. The results of the simulation proved
consistent with the Network Calculus model. This demon-
strates that Network Calculus is an effective way to predict
the performance of a network in an IoT environment.

3.3 Genetic Algorithm
An SDN controller can be used to optimize the perfor-

mance of a network, and they are particularly useful in an
Internet of Things network made up of data flows with differ-
ing levels of Quality of Service requirements. A centralized
view of the network allows the SDN controller to precisely
find the correct path for routing flows of data. In order to
demonstrate the effectiveness of SDN in IoT environments ,
Qin et al implemented an SDN controller that uses a Genetic
Algorithm based flow scheduling algorithm.[4]

The Genetic Algorithm is a method for solving optimiza-
tion problems that is based on biological natural selection.
Genetic Algorithms are used to find highly efficient solutions
to search problems. The five general phases of the Genetic
Algorithm are given in Figure 7, and are as follows:

1. The initial population is created. The population is
made up of candidates. The candidates are possible
answers to the search problem to be solved. Each can-
didate is made up of a set of variables called genes,
tied together into chromosomes.

2. A fitness function determines the ability of each can-
didate, and assigns them a fitness score.

3. The selection phase picks the fittest candidates based
on their scores. Two parents will be chosen from the
candidates to pass on their genes to the next genera-
tion.

Figure 7: The general flow of GA [9]

4. Crossover involves exchanging the chromosomes of the
parents to create offspring. The offspring are added to
the population. The chromosomes of the offspring are
made up of a combination of the parents’ genes.

5. The final stage is mutation. Genes of the offspring’s
chromosome are changed randomly.

The population is kept at a fixed size, and as new off-
spring are created candidates with the lowest fitness scores
are eliminated from the population. This is a process that
repeats until the population does not create offspring that
are significantly different from the initial population.[9]

This methodology was applied by Xiang et al to satisfy
QoS requirements for networks. A network can be seen as a
directed graph, where data is sent between each of the nodes
(see Figure 8). The cost of traveling between two nodes can
be weighted in terms of Quality of Service requirements.
The communication path in a network can neatly match the
chromosome concept of Genetic Algorithms. In terms of the
Genetic Algorithm, each path through the graph from source
node s to destination d is a member of the population. The
chromosomes are made up of nodes along the path. No loops
in the graph are allowed; meaning there are no repeated
genes (or nodes) in the chromosome. A fitness value fro
each chromosome can be calculated by adding the end-to-
end delay, jitter, and throughput on the path.

When performing crossover, the top two ranked chromo-
somes with common genes are chosen as parents. Sub-paths
of the parents’ chromosomes are used to create offspring.
During Mutation, a bottleneck node is chosen from the path
where the node causes the most delay. This node is replaced
by a random mutation path that can reach the same destina-
tion. For example, imagine two parent paths a,b,c,d,e and
a,s,b,e. Two children are created, a,b,e and a,s,b,c,d,e from
the crossover point b.

The output of the Selection and Mutation is eight chro-
mosomes ranked according to fitness. The top two chromo-
somes become the parents of the next round. The algorithm
runs until a chromosome with a suitable fitness score is gen-
erated or a predetermined generation size is reached.

4. METHOD
In order to test the performance of their SDN controller,

Qin et al built a prototype in the Qualnet simulation plat-



Figure 8: Topology of a network system, consisting
of eight nodes and edges connecting the nodes. Each
node is denoted by a tuple <ndl, lr, dv>, the ele-
ments being node delay, node loss rate, and node
delay variation. Each edge is denoted by a tuple
<cost, bw, and ldl>, the elements being cost, band-
width, and link delay.[9]

Figure 9: Throughput performance result [4]

form. The performance was compared against two other
popular scheduling algorithms, bin packing and load bal-
ancing. The simulation was carried out over a network with
three data servers, three edge switches, two core routers,
and 12 access points with 45 end devices (there is one flow
of data for each of the end devices represented on the x
axis of Figures 9,10, and 11). The 45 flows are divided into
the type of data they are transmitting. Flows 1-21 are file
sharing, 22-36 are tele audio, and 37-45 are video streaming.

5. RESULTS
During the simulation, three QoS parameters were mea-

sured: throughput(Figure 9), delay(Figure 10), and jitter(Figure
11). In the throughput test, the proposed algorithm has an
average 8% performance advantage compared to load bal-
ance. When testing delay,the proposed algorithm is signif-
icantly better for Tele-Audio flows than either of its com-
petitors. For the jitter test, the proposed algorithm is on
average better than Bin Packing or Load Balancing. The
performance of the proposed algorithm compared to the oth-
ers proves it is a feasible method of network flow scheduling.

Figure 10: Delay performance result [4]

Figure 11: Jitter performance result [4]



6. CONCLUSION
Software Defined Networking is an emerging field in the

space of computer networking. It attempts to address the is-
sues of complexity and inflexibility that are present in tradi-
tional networks. Currently, forwarding devices on a network
handle both the transmission of data and deciding how the
data is handled. Software Defined Networking attempts to
separate these two planes of activity. It does so by creating
an SDN controller that manages the data forwarding activ-
ity of network devices. The centralized and programmable
networks will lead to benefits like improved adaptability and
control of networks.

In this paper, I examined a proposed SDN controller that
is designed to be used in the IoT. The Network Calculus
model was used to estimate the performance of the controller
in a IoT multinetwork. The controller adapted the Ge-
netic Algorithm to optimize network traffic, and was demon-
strated to perform well against other algorithms. This con-
troller could be an effective tool to manage network activity
in a heterogeneous IoT multinetwork environment.

Acknowledgments
I would like to thank Kristin Lamberty and Elena Machkasova
for their advising and feedback. I would also like to thank
my alumni reviewer, Joseph Thelen, for taking the time to
critique my paper.

7. REFERENCES
[1] R. W. Heath. Multi-hop networking.

[2] D. Kreutz, F. M. V. Ramos, P. E. Veŕıssimo, C. E.
Rothenberg, S. Azodolmolky, and S. Uhlig.
Software-defined networking: A comprehensive survey.
Proceedings of the IEEE, 103(1):14–76, Jan 2015.

[3] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: Enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, Mar. 2008.

[4] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and
N. Venkatasubramanian. A software defined networking
architecture for the internet-of-things. In 2014 IEEE
Network Operations and Management Symposium
(NOMS), pages 1–9, May 2014.

[5] Z. Qin, L. Iannario, C. Giannelli, P. Bellavista,
G. Denker, and N. Venkatasubramanian. MINA: A
reflective middleware for managing dynamic
multinetwork environments. In 2014 IEEE Network
Operations and Management Symposium (NOMS),
pages 1–4, May 2014.

[6] Wikipedia contributors. Infimum and supremum —
Wikipedia, the free encyclopedia, 2019. [Online;
accessed 1-March-2019].

[7] Wikipedia contributors. Internet of things —
Wikipedia, the free encyclopedia, 2019. [Online;
accessed 1-March-2019].

[8] Wikipedia contributors. Network performance —
Wikipedia, the free encyclopedia, 2019. [Online;
accessed 1-March-2019].

[9] F. Xiang, L. Junzhou, W. Jieyi, and G. Guanqun. Qos
routing based on genetic algorithm. Computer
Communications, 22(15):1392 – 1399, 1999.


