
Wing Design Using SAIL

Leonid Scott
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

scot0530@morris.umn.edu

ABSTRACT
In engineering spaces where modeling is difficult, engineers
seek a variety of well performing solutions in order to con-
centrate resources on promising areas of the problem space.
We call this process illumination. Gaire et al have designed
an algorithm specifically for illumination of problem spaces
where the underlying model is computationally expensive.
This algorithm, Surrogate Assisted Illumination (SAIL) uses
an evolutionary algorithm called MAP-Elites to do illumina-
tion. However, SAIL introduces a Gaussian process to simu-
late the computationally expensive model, and Bayesian op-
timization for quality control of the Gaussian process. SAIL
has demonstrated potential for finding a variety of well per-
forming solutions when applied to the design of aerodynamic
hulls for velomobiles. We will walk through each of the com-
ponents of the SAIL algorithm, and the results of the velo-
mobile experiment.

Keywords
Evolutionary Computation, MAP-Elites, Gausian Processes,
Bayesian Optimization

1. INTRODUCTION
Fluid dynamics stands as one of the most difficult prob-

lem spaces to model and thus design in. The equations that
govern fluid flow, known as the Navier-Stokes equations, are
a set of of partial differential equations with no known so-
lution. As a result, aerospace engineers must use extraordi-
nary computational power to approximate Navier-Stokes re-
sults. High fidelity models of aerodynamic devices can take
hours to simulate and still impart noticeable error. Given
the difficulty in modeling fluid flow, designing wing shapes
is an extraordinary challenge.

Optimization tools aid in this challenge by helping engi-
neers at the end of the design cycle by refining a design to
what is known as a local optima. In difficult problem spaces
such as fluid dynamics, there is no guarantee that an opti-
mizer has found the best possible solution across the entire
problem space. However, the optimizer can be very confi-
dent that it has found the best solution in one small region.
We call the optimal solution across the entire problem space
a global optima, and an optimal solution in a subsection of

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, April 2019 Morris, MN.

the problem space a local optima.
In 2014, Autodesk, a producer of modelling and optimiz-

ing software found that their software was being used in a
peculiar way by engineers. Instead of using optimizing tools
at the end of the design process to refine designs, engineers
used them at the beginning to explore the space of possible
designs[2]. Instead of using these tools to find, with great
accuracy, one local optima, they were used to find several lo-
cal optima throughout the problem space. By finding several
local optima, designers could see what tradeoffs are inher-
ent in the problem space, and hone in on regions of interest.
This process is known as illumination.

Over the course of several years, a research group consist-
ing of Adam Gaier, Alexander Asteroth, and Jean-Baptiste
Mouret have developed a purpose built algorithm to illumi-
nate problem spaces, particularly when models are compu-
tationally expensive. This algorithm, known as Surrogate-
Assisted Illumination (SAIL) uses a thus far reliable method
for exploring problem spaces known as evolutionary compu-
tation, albeit in a very specialized form. The goal of SAIL is
to produce a series of high performing solutions, across the
problem space, to challenging engineering problems.

2. EVOLUTIONARY ALGORITHMS
SAIL uses a type of evolutionary algorithm (EA) to ex-

plore and exploit the problem space. Evolutionary algo-
rithms are stochastic algorithms (algorithms including ran-
domness) inspired by biological evolution. The premise of
an evolutionary algorithm is that a population of poten-
tial solutions is tested against a model of the problem and
assigned a fitness score. The individuals with the best fit-
ness scores move onto the next generation and produce “off-
spring”. Over many generations the performance against the
model will improve until a target performance is obtained,
or the algorithm reaches a fixed number of generations.

3. SAIL ARCHITECTURE
SAIL is made up of three major components: MAP-Elites

is the evolutionary algorithm that illuminates problem spaces.
Gaussian processes approximate the computationally expen-
sive model. Finally, Bayesian optimization enforces quality
control of the Gaussian process. This section will explain
each of these components in depth before constructing Sur-
rogate Assisted Illumination.

3.1 MAP-Elites
MAP-Elites is an evolutionary algorithm developed in April

2015 by Jean-Baptiste Mouret and Jeff Clune [4]. The pur-



Figure 1: Process of moving from an individual genome to a fitness score.

pose of MAP-Elites is to illuminate the problem space. That
is, to produce a series of high performing solutions that
represent different trade offs and insights into the problem
space. Before moving into the details of MAP-Elites, it is
important to understand the terminology surrounding indi-
viduals in MAP-Elites (See Figure 1).

3.1.1 Genotypes
An important aspect in the application of any evolution-

ary algorithm is the way that individuals are represented. In
engineering contexts, there is a need to represent a physical
object in all of its complexities in a compact and understand-
able form. In evolutionary algorithms, this representation is
referred to as an encoding or a genotype interchangeably.
For example, a common way to represent a two dimensional
foil (wing shape) is with a format called the NACA 4 Digit
Series [5]. NACA 4 digit foils contain three numbers refering
to important geometric features of the foil shape, but also
directly relate to foil performance.

Figure 2: Description of NACA 4 Foil.

Figure 2 describes these three values geometrically: M
refers to how “arched” the foil is. P describes where the
most “arched” part of the foil exists. Finally, T , refers to the
thickness of the foil at its thickest point. Figure 1 shows a
solutions space, the space of all genomes. In this example,
we hold thickness constant so the solution space is in two
dimensions. With this compact genotype for a 2D foil, it is
possible to represent a large range of complex shapes with
only three numbers.

3.1.2 Phenotypes
Once we have a representation of an individual, we can

start deriving its behaviors, or phenotypes. In this example,
those behaviors are the lift and drag of the foil in a certain
fluid condition as well as cross-sectional area (the space be-
tween the top and bottom lines in Figure 2). In Figure 1, the

feature space, the space of all possible phenotypes, will exist
in three dimensions: lift, drag, and cross-sectional area. The
function that takes in an individual and returns its pheno-
type is known as the behavior function, b(x).

3.1.3 Fitness
MAP-Elites requires some sort of specific score so that it

can definitively tell that one foil is “better” than another.
The fitness function f(x), takes an individual and its be-
haviors and returns a score quantifying how well it accom-
plishes our specified goals. When developing a foil shape, we
most certainly care about lift and drag, but for weight and
structural reasons, we might also care about the foil’s cross-
sectional area. A fitness function that encompasses these
behaviors into a single score might look like this:

f(x) = a ∗ Lift(x)− b ∗Drag(x)− c ∗Area(x)

where a, b, and c are constants defined by the engineer based
on which factors are more important than others. Here, f(x)
is set such that a higher fitness score means a foil is better
at achieving our goals, but it doesn’t have to be that way.
Fitness functions can be setup such that a good score is a:
small score, a small absolute value, etc.

3.1.4 MAP-Elites
MAP-Elites works by discretizing the feature space into a

set of bins. Each bin in the grid represents tradeoffs between
features. For example, the feature space in Figure 3 is split
into three sections per dimension, with three dimensions,
this results in 27 bins in the feature space. The highlighted
box indicates individuals with high lift, medium drag, and
medium cross sectional area.

Each generation in MAP-Elites begins by creating an in-
dividual from the search space and computing its behaviors
using the behavior function. The results of the behavior
function will place it in a bin of the feature space. If there
is already an individual in that bin, the fitness function will
be computed on both individuals, and the individual with
the superior fitness will end that generation occupying the
bin. If there is no individual in that bin, the new individual
simply occupies it.

In the initial generation (generation 0), a randomly gen-
erated population of individuals is created from the search
space. Those individuals then compete for spots in the fea-



Figure 3: How MAP-Elites disrectizes a feature
space. Here, each of three dimensions is split into
three sections, yielding 27 “bins”.

ture space. The individuals who occupy a bin at the end of
a generation are known as elites. During each subsequent
generation, a new individual is randomly generated. That
new individual will compete with the elites from the previ-
ous generation for a bin in the feature space.

By default, MAP-Elites creates new individuals by choos-
ing a random elite and “tweaking” it. This process is called
mutation. Because small changes in the genome of an indi-
vidual can result in large changes in behavior, it is common
for the mutated individual to compete in a different bin than
the parent.

The designer can decide how MAP-Elites terminates. Ter-
mination can happen after: A fixed number of generations
or computational cost is exceeded. One or many elites have
a fitness over a given threshold. Alternatively, after a certain
number of bins are filled.

The last point alludes to an important aspect of MAP-
Elites: not all bins can always be filled. In our example,
physics does not allow a foil to have high lift, zero drag, and
minimal cross-sectional area. For this reason, the highest
lift, lowest drag, lowest cross-sectional area bin might not be
filled. In addition to finding good solutions for a problem,
MAP-Elites also offers insights on just where the physics of
a problem caps performance of solutions.

3.2 Gaussian Process
Like many evolutionary algorithms, MAP-Elites evaluates

the model’s fitness and behavior functions several times per
generation. Considering a single MAP-Elites run can involve
hundreds of thousands, or even millions of generations, the
model needs to be computationally inexpensive. However,
in engineering contexts like fluid dynamics, computing lift
and drag of a foil in high fidelity can take hours. In these
cases, the model is prohibitively computationally expensive
for use in traditional evolutionary algorithms.

SAIL avoids computing the model directly most of the
time by utilizing surrogate models to approximate the model.
Surrogate models strategically execute the model in only
limited points of the problem space. They then use this
information to extrapolate what other parts of the model
should behave like. Gaier et al have chosen to use Gaussian
processes (GPs) as a surrogate model because they require
very few queries from the model in order to start extrap-
olating from the problem space. In addition, GP’s include
information about how confident they are about the extrap-

olation of a certain point in the problem space.
Space constraints limit us from diving into the statistics

driving Gaussian processes. Instead, we will walk through
how they are used.1 Figure 4 shows a Gaussian process that
is trying to model a target function shown in black. The GP
has four observed points to build its model from (shown as
red dots in Figure 4). With these observations, the GP can
begin to extrapolate what a value of f(x∗) might be for a
given x∗. The GP will return a prediction, and a confidence
in its extrapolation of f(x∗).

If we extrapolate a large number of points we get Figure
4. The GP prediction for each of these extrapolations form
the blue dashed line. We call this dashed line, the mean
prediction of the Gaussian process. The confidence at each
extrapolation blends into two lines: upper and lower con-
fidence intervals. These confidence bounds define the top
and bottom of the GP prediction the figure. The confidence
bounds in Figure 4 are drawn such that we are 95% certain
that the true value of f(x∗) is within these bounds. More-
over, for each extrapolated x∗, we are most confident that
the true value of f(x∗) is on the mean prediction line. From
there, the likelihood of the true value of f(x∗) drops off with
distance from the mean prediction line.

Areas that have low confidence, and a wide spread are said
to have high variance. The variance contracts around our
observed points, and expands as we get farther away from
the observed points. This leads to an important feature of
Gaussian processes: Where there is data, we are confident,
where there is no data, we are less confident.

3.3 Bayesian Optimization
The fact that Gaussian processes are confident where there

is data, and less confident where there is not, allows us to
ask an important question: If we were to add another point
to our Gaussian process, where would we do it? If our objec-
tive is to maximize the function modeled by our Gaussian
processes in Figure 4, then our new point can help us do
that in one of two ways: First, we could try to pick a point
where our prediction is maximized, near x = 5; this is called
exploiting our problem space. Second, there are two areas
between x = 0 to x = 2 and x = 5 to x = 7 with high
variance. Selecting a point in this area would improve the
overall accuracy of our model, and there might just be a
maxima to our function in that region. Selecting a point for
this rational is called exploring the problem space.

1If you would like to learn the mechanics behind Gaus-
sian processes, Dr. Nando de Freitas has a fantastic set
of recorded lectures: https://youtu.be/4vGiHC35j9s

https://youtu.be/4vGiHC35j9s


Figure 4: A Gaussian processes modelling a function
f(x) with four points (top image), and five points on
the bottom. One of the observed values is on the far
right. For both GP’s, the UCB acquisition function
is computed in purple. Taken from [1]

The degree to which we should explore or exploit the prob-
lem space is a difficult question. Bayesian optimization at-
tempts to balance these objectives by providing a rule for
computing the utility of observing another point. There are
many different ways of computing utility with Bayesian op-
timization; Gair et al decided to use the Upper Confidence
Bound Optimizer :

UCB(x) = µ(x) + kσ(x)

The utility of observing a new value from the model, the
UCB(x) at a point x, is the linear combination of the the
mean prediction at a point, µ(x), and some constant k, times
the variance, σ(x), at some point. Varying k tunes the model
to favor exploration vs exploitation in different quantities.
We call the resulting function the acquisition function.

Figure 4 shows how a Bayesian optimization is applied
to a Gaussian processes. The UCB, in purple, is computed
along the x axis. The top image shows the GP with four
observations. At this stage, the model is not doing too well
at approximating the true function. Maximizing the acquisi-
tion function gives us a point with both a high approximated
value and a high variance.

We select that point, re-compute the Gaussian processes
and rebuild the acquisition function. The updated GP and
acquisition function is shown on the bottom image. Again,
UCB balances exploration vs exploitation and finds a point
with a high predicted value, and high certainty. Using Bayesian
optimization allows the GP to model the underlying func-
tion with very few points, and make significant progress with
each observation.

3.4 SAIL Algorithm
Understanding Gaussian processes and Bayesian optimiza-

tion allows us to construct Surrogate Assisted Illumination
(SAIL). The pseudocode of SAIL is shown in Algorithm 1.
SAIL consists of three phases: 1) Creation of the Gaussian
processes, 2) The production of the acquisition map, and 3)
The production of the prediction map.

The first stage of the algorithm consists of sampling the
problem space and building a Gaussian processes that will
model fitness. Recalling the foil terminology used in section
3.1, SAIL would create random individuals with M and P

Algorithm 1: Surrogate Assisted Illumination (SAIL)

1 1) Create Gaussian Process Model
2 X ← Rand1:G // Create G random individuals

3 P ← PE(X ) // Precisely evaluate individuals

4 GP ← Gaussian process(X ,P) // Train GP

5 2) Produce Acquisition Map
6 while precise evaluation budget not exhausted do
7 acquisition()← UCB(GP(x))
8 (Xacq,Pacq) = MAP-Elites (acquisition(),X )

// Create and illuminate acquisition

function

9 x← Xacq(Rand) // Select random individuals

from acquisition map

10 X ← X ∪ x,P ← P ∪ PE(x)
11 GP ← Gaussian process(X ,P)

// Precisely evaluate new individuals, add

them to GP, retrain GP

12 end
13 3) Produce Prediction Map
14 prediction()← mean(GP(x))
15 (Xpred,Ppred) = MAP-Elites (prediction(),X )

// Illuminate mean prediction from GP

values, compute the precise model for each of them, and use
those results to build a Gaussian process.

The second stage of SAIL trains the Gaussian processes
by producing an acquisition map. Here, an acquisition func-
tion is computed from the Gaussian process using the Upper
Confidence Bound (UCB). It is important to note that even
though UCB is a linear combination of components, these
components are in no way simple shapes. For this reason,
the acquisition function will not have an intuitive shape ei-
ther. Moreover, the acquisition function reflects the dimen-
sionality of the feature space. In a high dimensional feature
space, the aquisition function will be a complicated high di-
mensional function. Considering this, finding optima in the
acquisition function can become a challenge. MAP-Elites
is perfectly suited to find not just the global optima of the
acquisition function, but illuminate the acquisition function
across the entire feature space. The resulting set of high
utility individuals is called the acquisition map.

SAIL takes a random set of individuals from the acquisi-
tion map, and runs the computationally expensive model on
them. Now there is a larger set of observed values that can
be used to retrain the Gaussian processes. The loop will en-
ter its next iteration, repeating the process of creating the
acquisition function, illuminating the acquisition function
to create an acquisition map, selecting individuals from the
acquisition map for precise evaluation, and rebuilding the
Gaussian process with the new observations. This processes
will continue until a fixed computational budget is reached.

Through extensive iteration, the Gaussian process solid-
ifies into a robust model that accurately describes the un-
derlying function. The goal of SAIL is to illuminate the
underlying function. This task is fulfilled in the third stage
of SAIL by illuminating the mean prediction of the Gaussian
processes using MAP-Elites. The result of this illumination
is a set of well performing solutions describing the various
optima of the problem space. We call this resulting set of
solutions the prediction map.



4. 3D FOIL EXPERIMENT: VELOMOBILE
EXPERIMENT

Gaier et al included two experiments in their paper. Due
to space constraints, we will only visit the more ambitious
of the two: The application of SAIL to design three dimen-
sional shapes of aerodynamic hulls for velomobiles. Velomo-
biles, shown in Figure 5, are fully human powered“bicycles”.
The cyclists in a velomobile sit in a recumbent position, like
one would sit in a paddle boat, and are enclosed in an aero-
dynamic hull. The hull allows engineers to carefully craft
the airflow around the velomobile to reduce drag. Beause
of this reduced drag, velomobiles hold several world speed
records for human powered devices.

Figure 5: Milan Velomobile. Taken from [3]

Figure 5 shows how velomobiles have unintuitive hull shapes.
The strange contours to these hulls provide an interesting
problem space to illuminate. Moreover, the fluid dynamics
software that simulates how air moves around the hull shape
has high computational cost, stressing the need for a data
efficient approach to illumination. In short, the illumination
of velomobile hulls is a good testing ground for SAIL.

Gaier et al encountered several difficulties with this ex-
periment. Most prevalently, the data efficient nature of this
problem rules out use of MAP-Elites as a control. With
MAP-Elite’s heavy reliance on the computationally expen-
sive model, illuminating these shapes would take hundreds,
if not thousands of hours. Previous experiments in [3] demon-
strate SAIL’s ability to create near optimal solutions in fluid
dynamic contexts, so the focus shifted from testing SAIL’s
ability to compete against other illumination algorithms, to
focusing on how different velomobile representations affect
performance of the SAIL algorithm. Two representations, or
encodings, of velomobile shape, are used in this experiment:
a parameterized, and deformed encoding.

4.1 Parameterized Encodings
The parameterized encoding uses a set of aerofoil shapes

to create a three dimensional velomobile hull as seen in Fig-
ure 6.

Figure 6: Parameterized Encoding. Taken from [3]

There are four foil shapes in the parameterized encoding.
The top foil shape, a symmetrical foil, defines the hull at
its widest point from above. The mid foil shape represents
the foil at it’s centerline. The ridge foil represents the hull
where the cyclist’s knees protrude upward. Finally, the rib
foil affects how aggressively curved the surface of the hull
will be. All in all, this encoding will contain 16 parameters.
An advantage of an encoding like this is that each of the
16 parameters directly change the aerodynamic properties
of their respective foil shapes.

4.2 Deformation Encodings
Where the parameterized encoding represent key aspects

of the shape directly relating to performance, deformed en-
codings take another approach. Deformation encodings “de-
couple the complexity of a the design from the complexity of
the representation [3]”. That is, these encodings allow SAIL
to find key features of foil performance on its own. Figure 7
shows an example of a deformation encoding:

Figure 7: Deformed Encoding. Taken from [3]

Deformation encodings start with a base design, and sur-
round it with a lattice, or grid, of control points. These
control points can be shifted in a particular axis. As a con-
trol point is moved, the base design will deform to adjust
to the shifted control point. Gaier et al allow 16 different
points to be altered, each in only one axis.

4.3 Experimental Setup
The goal of this experiment is to see how two features, cur-

vature and volume, impact the drag of a velomobile shape.
It is known that an increase in volume leads to an increase
in drag, but a designer might want to explore how volume
impacts drag to accommodate shifting requirements regard-
ing volume (the pedaling mechanism requiring more space).
Moreover, designs with less curvature generally have less
drag, but the thin carbon fiber might require additional
(heavy) reinforcement to prevent flutter at high speed.

SAIL started with 200 velomobile shapes to train the GP.
During each iteration of the illumination phase, 10 individ-
uals were chosen from the acquisition map to improve the
GP. There were a total of 100 illumination iterations lead-
ing to 200 + 10 ∗ 100 = 1200 precise evaluations during the
illumination phase. The feature map was discretized into a
25 x 25 map, leading to 625 bins.

Fitness was computed as the drag force on the velomobile
as it travels at 20 m/s (44.7 mph). A low drag force will
represent a better velomobile.

4.4 Results: Design Performance
Figure 8 shows the prediction maps for both the deformed

and parameterized encodings as well as a comparison against



the two. In the left two images, a lighter color indicates
more drag, and a cooler color indicates less. We are aiming
to minimize drag, so darker regions are preferred.

Figure 8: (Left) Prediction maps from deformed and
perameterized encodings. (Right) Comparison of
the two encodings. Taken from [3]

The deformation encoding has a set of empty bins in the
high volume, high curvature section of its prediction map.
This is because the deformed encoding is too tightly con-
strained to create high volume, high curvature solutions. It’s
clear that drag does increase with volume. Encoding con-
straints aside, curvature does not seem to impact on drag.

The right side of Figure 8 shows the deformation encod-
ings’ successes against the parameterized encoding. Lighter
color highlights regions where deformation has a better fit-
ness than the parameterized encoding; cooler color indicates
the converse. There is only color where there is a significant
change in fitness between the two encodings. Deformation
does better in the high volume, low curvature region of the
feature space, where as the parameterized encoding does
better around the edges of the feature space.

4.5 Results: Model Accuracy
After each run, the individuals in the prediction map were

precisely evaluated in order to record errors in the final GP
model. Figure 9 shows that roughly 60% of the drag calcu-
lations for individual’s where within 5% of the computation-
ally expensive model. The left side of Figure 9 shows the
deformed encoding has slightly lower error than the param-
eterized encoding. However, it’s unclear why.

Figure 9: GP error for both encodings. From [3]

4.6 Results: Design Exploration
The two encodings lead to very different looking solutions

that occupy the same bins in the prediction map at the
end of the SAIL run. Figure 10 shows two sets of similarly
performing solutions (one of each encoding) that occupy the
same bin. Across the prediction map, the parameterized
encoding is taller than its deformation analog.

Gaier et al suspect that parameterized encodings are taller
than deformed encodings because they have more freedom
to pinch the nose of the velomobile than deformed encodings

Figure 10: Two sets of similarly performing solu-
tions that highlights the geometric tendencies of
each encoding. The left side includes two similarly
performing low volume velombiles. The right in-
cludes two similar high volume designs. The red
indicates how aerodynamic pressure is distributed
over the velomobile shape. Areas of greater inten-
sity of red indicate higher aerodynamic pressure.
The numbers above the figures refer to drag force
of the individual in newtons. Taken from [3]

can. A pinched nose reduces frontal area, thereby reducing
pressure on the nose of the velomobile. While deformed
designs lack this geometric freedom, they make up for it
by smoothing out the shape along the length of the entire
velomobile, especially where the ridges meet the hull.

These experiments show how various encodings can reach
similarly performing solutions from different directions. More-
over, they showcase SAIL’s ability to create a variety of high
performing solutions independent of encoding.

5. CONCLUSIONS
The velomobile experiment demonstrates several of SAIL’s

capabilities. They show the potential of SAIL as a powerful
algorithm for illuminating problem spaces in computation-
ally difficult problem spaces. Moreover, SAIL could be used
for testing the limits of various encodings. Before commit-
ting to a specific encoding, SAIL can show whether or not
that encoding is capable of reaching far areas of the fea-
ture space. Moreover, SAIL can give an engineer insights
as to how each individual point of variation in the encoding
contributes to performance.

A particular advantage of SAIL is that it returns, not only
a set of high performing solutions, but also the Gaussian
proccess model. This model can be used to gain additional
insights into the problem space

Gaier et al mention that a potential bottleneck for SAIL
is the behavior function. For example, computing curvature
for each velomobile precisely would be too computationally
expensive. The authors used a simplified model to compute
curvature that was significantly faster. Gaier et al propose
the expanded use of surrogate models in the behavior func-
tion in cases where the behavior function is too computa-
tionally expensive to run for every individual in a SAIL run.

Acknowledgments
There are many people who deserve acknowledgment for
the help they have provided me during this senior seminar.
Thank you to Andrew Kroska, Islamzhan Saliyev, and Kir-
bie Dramdahl for their gracious time, and review of this
paper. Thank you to my advisor, Dr. Nic McPhee, for
his continued mentorship and time throughout this semester
and my college career. Thank you to the Computer Science
faculty at University of Minnesota Morris. Finally, thank
you to Alexa Barta for her continued support.



6. REFERENCES
[1] AdCo Engineering GW. Bayesian optimization.

[Online; accessed 8-March-2019].

[2] E. Bradner, F. Iorio, and M. Davis. Parameters tell the
design story: Ideation and abstraction in design
optimization. In Proceedings of the Symposium on
Simulation for Architecture & Urban Design, SimAUD
’14, pages 26:1–26:8, San Diego, CA, USA, 2014.
Society for Computer Simulation International.

[3] A. Gaier, A. Asteroth, and J.-B. Mouret. Data-efficient
design exploration through surrogate-assisted
illumination. Evol. Comput., 26(3):381–410, Sept. 2018.

[4] J.-B. Mouret and J. Clune. Illuminating search spaces
by mapping elites.

[5] Wikipedia. NACA airfoil — Wikipedia, The Free
Encyclopedia, 2019. [Online; accessed 17-April-2019].


	Introduction
	Evolutionary Algorithms
	SAIL Architecture
	MAP-Elites
	Genotypes
	Phenotypes
	Fitness
	MAP-Elites

	Gaussian Process
	Bayesian Optimization
	SAIL Algorithm

	3D Foil Experiment: Velomobile Experiment
	Parameterized Encodings
	Deformation Encodings
	Experimental Setup
	Results: Design Performance
	Results: Model Accuracy
	Results: Design Exploration

	Conclusions
	References

