Decentralized Social Networks: Pros and Cons of the
Mastodon Platform

Charlot R. Shaw
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
shawx538@morris.umn.edu

ABSTRACT

Mastodon is a federated social network designed to allow di-
versity in users, small but interconnected communities, and
user-ownership of their data. It builds on standardized pro-
tocols, and follows a decentralized model. This architecture
allows for more truly public online spaces, and has a num-
ber of difference from its closest popular alternative, Twit-
ter. However, the Mastodon network is negatively affected
by various forces, and is potentially more fragile than its
distributed nature suggests.

Keywords

Mastodon, Social Networks, Decentralized Social Networks

1. INTRODUCTION

Online social networks have become a common platform
the world over, a means of communicating and a medium
of discovery. Despite their global reach, the most common
social networks operate on a centralized model with a single
platform provider, operating the entire platform. For ex-
ample, there is only one Twitter service, and it is the one
managed by Twitter. However, the centralized model is not
the only option. A decentralized social network known as
Mastodon has been operating since 2016, and has accumu-
lated a mesh of independent communities and users (over a
million at time of writing). Mastodons decentralized struc-
ture changes how its users interact with one another, how
the social network grows, and how it behaves under stress.
Although far from flawless, Mastodon, and its continuing
growth show that the centralized model is not the only op-
tion for online social networks.

2. MASTODON
2.1 Background
2.1.1 Federation

Federation is the concept that independent servers can
communicate through a common protocol and work together
without sacrificing independence. A common example would

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

UMM CSci Senior Seminar Conference, November 2020 Morris, MN.

be email, in which different email providers can send mes-
sages between themselves on behalf of their users. A user
with a gmail address can message someone with a proton-
mail address just as easily as they could message a fellow
gmail user, and there is no need for a a supervising entity
that manages all email.

Email is one exmaple of a federated protocol, but there
are others. The World Wide Web Consortium(W3C) pub-
lished the ActivityPub standard [2] in 2018, a federated
protocol for social media. This standard is not a social net-
work, it is instead an agreed upon set of signals and ac-
tions that allow common interactions in social media, such
as following a user, liking some content, or sharing content
of one’s own. Software that implements the standard can
inter-operate with one another, and form a federated net-
work. Data from one program is intelligibly presented on
users in other programs, and connections between users on
different implementations is as simple as connecting to a
user on the same implementation. This network is collo-
quially termed the Fediverse (Federated universe), and this
paper will use the term when discussing the ActivityPub
network as whole.

2.1.2 Mastodon

Mastodon is a microblogging software built on subset of
the ActivityPub standard, and published under the Affero
General Public License 3.0 in 2016. It will be familiar to
users of Twitter, with users posting short messages, known
as Toots, and receiving Toots written by other users they
are subscribed to. With federation, users sign up for a spe-
cific server, also known as an instance. They receive a feed
of public Toots written by other users on the server, this is
known as the local timeline. Additionally, they see all pub-
lic Toots from users anyone on the server has subscribed to.
This is the federated timeline, and provides the most com-
plete vision of the fediverse as a whole for an individual user.
As there is no managing entity, there is no server which sees
every message in the fediverse, or even the subset of the
fediverse that consists only of Mastodon servers. Because
of this, there is no truly global view, each user can only
see what their instance can see. Some servers host bots,
Mastodon account controlled by software, that systemati-
cally follow as many other users as possible. As these bots
exist on the server, the content the bot has followed appears
in the federated timeline, widening the servers perspective
on the fediverse.

2.1.3 Federation Follower Example

Suppose we have a mastodon instance, running at the

URL xeno.space, with a user, Alex. Alex finds a blog-
ger they like, Babbar, has posted about his Mastodon ac-
count on yottabyte.rocks, and wants to follow him. When
Alex tells their server this, xeno.space opens a connection to
yottabyte.rocks, and requests yottabyte.rocks let xeno.space
know whenever the account babbar@yottabyte.rocks posts a
public message, and that Babbar has a new follower named
alex@xeno.space.

The next time Babbar posts something that is marked
as public, yottabyte.rocks sends a message to xeno.space,
which then notifies Alex. xeno.space also places Babbars
post in the federated timeline, for other xeno.space users to
see.

2.2 Graphs

The connections between users and those they follow, or
between intercommunicating servers form graphs, collections
of nodes with connections between them. This data is one
of the best ways available to understand the Mastodon net-
work, but we need to make sure we understand what graph
we are referring to, as there are two interconnected ones that
shape the Mastodon network’s activity.

The network graph consists of the connections made by
servers when their users interact. These are carried out
through HTTP(s) requests, and routed by the DNS servers
that underpin the internet. They are utilitarian in nature,
created by the software, and as much as possible hidden from
the user. The content of these messages has forms specified
by the ActivityPub standard, thus allowing the different
servers to parse the messages automatically.

The social graph is the relations between users: who fol-
lows who, who has liked which posts, etc. This graph is made
of the connection records in each instance’s database. They
are created as reactions to signals received through the net-
work graph, and the network graph forms and abandons con-
nections between servers based on them. These records are
available on request, to verify that babbar@yottabyte.rocks
really is being followed by alex@xeno.space for example.

The network graph is complex, but not altogether novel.
It consists of the connections between servers required to
exchange the messages required by the social graph. The
social graph is constrained by the structure of the network
graph, with users being able to discover new content only
by their instance encountering it while serving a fellow users
request, no matter how popular that content is elsewhere in
the network.

Mastodon has not implemented a recomender algorithm to
steer user connections; this community driven discovery pro-
cess is the only way users encounter each other on-platform.
Thus makes Mastodon a valuable data-source for the behav-
ior of communities online, especially decentralized ones. [7]

However, the decentralized nature of Mastodon does make
study difficult in some ways. There is no way to access
the network wholesale through negotiation with a single en-
tity. Instead, researchers carry out automated explorations
of public instance and user data, starting with as broad a
list of servers as possible, and following the connections be-
tween users to discover new instances and thus map the
network. [7]

Some of the crawls considered in this paper were carried
out over six months starting in August of 2018, and covered
479,425 users, an estimated 46% of all users in the Mastodon
network. [7] The other crawl considered was carried out be-

tween April 2017 and July 2018, and found 239 thousand
unique users and 62% of all toots in the crawled graph. The
remaining could not be accessed due to the instances con-
figuring themselves to block crawling, or the toots being
non-public.

These datasets include both snapshots of the network,
and long term data on how Mastodon grew and changed.
Although not discussed thoroughly here, the overall trend
is steady growth, with spikes occurring that likely corre-
spond to popular campaigns on other platforms, includ-
ing #DeleteFacebook, or with publication of article about
Mastodon in mass media, such as Wired Magazine. [3]

3. EFFECTS OF MASTODONS MODEL

With the rough structure of Mastodon understood, and
an introduction to the data out of the way, we can now talk
about what this means. First, the main issue that Mastodon
sets out to address, and how it does so. Second, the differ-
ences in its structure compared to Twitter, its closest pop-
ular analog. Third, some issues with Mastodons federation
model, and some proposed strategies to mitigate them.

3.1 Benefits

To understand what benefits Mastodon provides, and what
issues it was designed to avoid, let’s compare it with its
closest analog, Twitter. Though their internal structures
are vastly different, they both are microblogging platforms,
focused on short, public messages. Mastodon improves on
Twitter in three ways we will enumerate here: public space,
privacy and diversity.

3.1.1 Public Space

Twitter is definitely a public space in one sense, with any
action occurring before a potentially vast audience. How-
ever, as Aral Balkan observes [1], Twitter is closer to a shop-
ping mall. The public is admitted to the property, and quite
often people carry out social interactions there. However,
the purpose of a mall is not to facilitate a public space, but
rather to achieve profits. Socializing at the mall serves this
motive, but if the socialization hampers the commerce of the
mall, it’s in the mall’s interests to put a stop to it. Simi-
larly, the mall focuses its amenities on those who contribute
to profits. Twitter is in the position of a mall here, main-
taining an appearance of being an open and public space,
while maintaining the same profit motive.

Mastodon at first glance has merely shuffled this problem
around, with each and every instance being a mall-like space.
However, the Mastodon network as a whole doesn’t belong
to any one instance. The public space Mastodon creates is
the network between every node, which is a open protocol.

3.1.2 Privacy

Twitter holds all its user’s data, and tracks them even
offsite. [5] Their motivation for this is profit, through selling
that data, access to that data, or insights derived from that
data. Privacy from this standpoint, is something between
users. Although options like blocking unwanted contacts,
or protected Twitter accounts offer more privacy, none of
them protect the user from Twitter itself. Consider two sce-
narios: If a hundred random people learned a different fact
about you, that would be potentially unpleasant. However,
if one person learned one hundred different facts about you,
the situation is worse. The odds of something you would

not wish known is a hundred times greater. The amount of
information that person can infer, correctly or not, is also
increased. In Twitter’s case, this same entity is also collect-
ing information on everyone else, not just you. Twitter may
claim that no humans read this data, or that it works with-
out exposing user information. The author of this paper
does not find comfort in the reassurance that our surveil-
lance is automated and industrialized.

Being decentralized, Mastodon already has a vast advan-
tage in terms of truer privacy. Again, issues arise with the
administrators of an instance having access to the data of
the instance users, but there is no central entity that sees all
information. Furthermore, each instance has less users than
Twitter, and so less data to offer if they wished to monetize
it. If an instance did monetize its user’s data, Mastodon has
tools to allow easy switching of instances, so users would
have little reason to stay on an instance that did not respect
their privacy.

This creates an environment where instance owners have
strong incentives to protect users information, and users are
not locked into any particular host.

3.1.3 Diversity

Twitter, as singular platform, is placed in the unenviable
position of trying to please everyone. With all users existing
in more or less the same virtual space, there is bound to be
conflict between user’s different styles of communication, ex-
pectations of behavior, etc. assuming that all parties on the
platform are acting in good faith. Twitters terms of service,
and various moderation systems are necessarily generic, and
whether they are fair guidelines or well applied is beyond
the scope of this paper. It is sufficient to note that they
exist, and must necessarily take a one-size-fits-all approach.

Mastodon, by its decentralized model, does not have ev-
ery one on the same platform. Each instance can create and
enforce its own code of conduct, with users being able to opt
out by switching instances or hosting their own instance if
they find themselves in an uncomfortable position. Instance
moderators also have effective tools to filter content coming
from other servers, so content coming in through the feder-
ation can be rejected if it doesn’t fit the code of conduct.

This raises an issue of siloization, of users only encoun-
tering those who have compatible viewpoints, and creating
a fractured perception of reality. This issue is wider than
Mastodon, and occurs on most social networks, including
centralized ones. The author acknowledges this, but did not
focus their research on this issue specifically, and so cannot
state whether or not Mastodon handles this issue better or
worse than other platforms.

3.2 Differences

Not all of Mastodon’s features are clearly beneficial or
detrimental. The instance structure provides explicit groups
whose interrelations are of interest. Additionally, instances
have individual traits, some explicit and others implicit that
are visible in the social graph.

3.2.1 Instance Topics

Starting with instances, Zignani et al. collected the top-
ics that instances chose to self-describe with. A very large
group of these describe themselves as “General”, or do not
state any topics at all. Unsurprisingly, for an open source
network growing by word of mouth, the specific topics “Tech-

nology” and “Programming” were the most common topics,
with various forms of science cumulatively taking second
place. Instances dedicated to various forms of art, including
“writing” and “anime” were also well represented. [7]

Aside from the amount of servers dedicated to a topic,
there is also interesting patterns in how users interact with
topics. For example, instances dedicated to “Journalism” or
“General”, are more common than average, but have lower
user counts per-instance. [3] From this, one could suppose
that servers with less to differentiate themselves from others
on a common topic tend not to attract users as readily as a
server that is unique in its topic.

The inverse of this patterns exists, with topics served by
few instances with a disproportionate number of users. This
has it’s clearest examples in instances covering erotic or sex-
ual subjects. Though few in number, these instances host
a larger number of users than servers not focused on erotic
content.

3.2.2 Instance Behavior Patterns

Topics might reveal patterns of behavior across instances,
but within an instance, unique patterns also emerge. Look-
ing at the social graph, one finds that users in an instance
behave like other users in the same instance, specifically in
terms of their interactions and connections.

One could assume that intraconnections between users on
the same server would be more common, as they have imme-
diate access to each other and would share common interests.
Some instances, following this pattern, have few connections
to other instances. However, this is not the common case,
with Zignani et al. finding that 35-40% of all users have
significant inter-instance connection. [8] Is the opposite true
then? Are users using their home instance simply as a ser-
vice to access the wider fediverse? Again, Zignani finds this
to somewhat untrue, with some instances being very outgo-
ing, and others very insular. (Ignoring the extreme case of
the user on a single user instance, who has only outgoing
connections.) Mastodon allows a wide variety of instance
behavior, and Zignani et al. find that the instances match
this diversity.

In general we confirm that the architecture based
on independent instances has a stronger impact
on the how users’ ego-networks cluster; some-
times instances act as a bound on how the neigh-
borhood of their members clusters, other times
instances promote an external clustering.

The culture of an instance has a measurable effect on its
users behavior. This also is expressed in how likely users
are to form mutual connections, or only one-sided ones (Fol-
lower /Followee). This is not correlated with instance sizes;
it is not the case that users in smaller instances are seeking
connections with larger servers. Nor are large servers seek-
ing small servers in any significantly differing way. Instead,
users are still following the unique style of their own server.

A crucial thing to note though, is all the effects of instance
style are of lesser import than the effects of instance location.
Users have a very strong tendency not to interact with users
outside their country; fewer than 10% of users have 50% or
more of their connections going to users in instances in other
countries. [§]

3.3 Drawbacks

BN Instances
s Toots
. Users

Netherlands
Germany
France
United States

Japan

DigitalOcean, LLC
OVH SAS

SAKURA Internet Inc.
Cloudflare, Inc.

Amazon.com, Inc.

0 10 20 30 40
oL
Figure 1: Distribution of instances, users, and

toots(messages) across top 5 countries and hosting
providers.

Mastodon is decentralized, a fully functional network of
independent servers. However, there are a number of pres-

sures that can cause hidden interdependencies between servers.

These drives towards re-centralization are present in the
Mastodon network, and we will explore how they can mani-
fest, and the consequences for the network if left unchecked.

3.3.1 Massive Servers

Most users coming from a centralized service want to join
the biggest server, or don’t understand that mastodon.social
is not the only option. mastodon.social itself as the largest
server, headed by the primary developer, has tried various
tactics to balance between people joining the network at all,
and people joining mastodon.social specifically. [4]

This is bigger than mastodon.social, as there are other
servers of enormous size out there. In fact, 52% of all users
on Mastodon are hosted in only 10% of all servers. [3] This is
a threat to the diversity of the network, as moderators and
admins on those 10% of all servers hold far greater sway
over the network than a more even distribution would grant
them. Though problematic in and of itself, these massive
servers will be shown to have other effects later on.

3.3.2 Social Graph Failure Example

Supposing we have three users, on three different servers.
alex@xeno.space who follows babbar@yottabyte.rocks, who
in turn follows angela@tea-and-coookies.com. Angela can
see Babbar’s posts, and Babbar can see Alex’s. If Babbar
replies to Alex, Angela would see that reply, and might even
reply herself, which would mean anyone who followed her
would then see that post. This is how messages can spread
beyond the single hop to the followers of the poster and their
federated timelines.

Now consider yottabyte.rocks fails, perhaps due to a soft-
ware bug. Alex’s posts might now have no way to reach
Angela, and Alex can’t see Babbar or his posts. Until yot-
tabyte.rocks comes back online, Babbar can neither post,
nor can anyone see his posts. If yottabyte.rocks is unrecov-
erable, Babbar has ceased to exist.

In a centralized service, the network status tends to be
more binary. Either the service is up and running, or it is
down. Some grey areas exist in case a regional server goes
down, and so traffic must be routed to a distant server at a

o
40 4 o
o
o o
30 A o
[o 8
g 8
o (<]
£
= 20 A (<]
§ o
) é %
N i
<10K 10K- 100K 100K M >1 M Mastodon .
(Overall) ~ Twitter

Mastodon Instances (binned by #toots)

Figure 2: Distribution of downtime over number of
toots on an instance, with the average totals and a
comparable snapshot of Twitter.

slower rate.

In Mastodon and other decentralized networks, the net-
work often fails by degrees, which is a significant feature,
but also means that the network is practically never going
to be in a perfect state.

3.3.3 Centralization Through Hosting Providers

As most instance are hosted by volunteers and often funded
by themselves or through donations, there is an emphasis on
cost-efficiency in hosting providers. This means that only
three hosting services support for more than 62% of all users.
Amazon alone hosts 6% of all instances, but due to the size
of those instances, those account for 30% of all users in the
Mastodon network. Cloudflare is the second most common
hosting service, and it hosts 5.4% of all servers, and 31.7%
of all messages. [3] Though a massive failure in Amazon or
Cloudflare would be a nightmare scenario for much of the in-
ternet, smaller changes in policy, price or technology could
negatively effect large portions of the Mastodon network.
Consider Figure 1, which shows how top heavy this distri-
bution is. Something not shown in the graph is the long tail
of diverse hosting providers, with the average host holding
only 10 instances.

Given these warnings, what is the actual uptime of the
Mastodon network? Following the data from Raman et al in
Figure 2, we can see that for the average user, Mastodon has
an order of magnitude worse availability than Twitter did
when it was of a similar size in 2007, 1.25% versus 10.75%. [3]
Surprisingly, although less active instances have more down-
time, the toot counts of an instance is not a good predictor
of it’s uptime.[3]

3.3.4 User Abandonment and the Social Graph

We can now see the downtime of individual servers, which
affect the the users on them, but how is the network af-
fected when connections are severed? This is measured by
the Largest Connected Component(LCC), which measure
how far a post could spread by sharing alone. Not all users
are connected to each other, so there will be separate islands
in the social graph, where a post has spread as far as it the-
oretically could, and there are no more connections to the
remaining parts of the graph.

Fraction in LCC
—— Removed from Mastodon
--- Removed from Twitter

Connected Components
—— Removed from Mastodon
—--- Removed from Twitter

800K
1.0

v

700K £

g 2

§ o8 L 600K S

g £

£ k500K 8

S 0.6 2

ot k400K %

(3] ()

o [=

s 0.4 I 300K §

— ()
b

° 200K 2

N 0.2 S

@ g

100K 3

#

0.0 0K
0 20 40 60 80 100
% of random users removed
Figure 3: Mastodon’s proportion of connected

users(solid green), and number of strongly con-
nected components(solid red). A snapshot of Twit-
ter(dashed lines) from 2011 provided for compari-
son. X axis is percentage of total nodes removed.

First, Raman et al. considered the effect of users leaving
the network, to see how a mass abandonment scenario could
spiral, prompting further abandonment. Mastodon has a
strong social graph at the outset, with 99.95% of all users
in the LCC. With the top 1% of most connected users re-
moved, the LCC only covers 26.38% of all users. This is
an incredibly steep drop. For comparison, Twitter in 2011
had an LCC which covered 95% of all users, and with the
removal of the top 10%, only dropped to 80%. [3]

It is possible that Mastodons instance system contributes
to the creation of these keystone users, in that popular users
are followed from many instances, but other connections be-
tween those instances are not established. If the popular
user vanishes, all those interconnections go with them. An-
other possibility could be that these users with high amount
of connections could be explorative bots. Raman et al. do
not state whether they attempted to filter out bot users. If
this is true, the social graph could have a different shape for
human users.

3.3.5 Infrastructure failure and the Social Graph

Earlier, we noted the unintentional centralization of in-
stances and hosting providers. Raman et al. now examine
the issues such centralization can cause.

In the case of instances, the largest instances can be clas-
sified by number of messages, or by number of users.

mastodon.social holds the greatest number of users, but

mstdn.jp has more toots, despite having over 3,000 less users. [3]

Similarly, hosting providers can be ranked by number of in-
stances hosted or by number of users those instances sup-
port. Both rankings have similar effects on the size of the
LCC when used to remove hosting providers, but removal by
number of users causes catastrophic failure in the number
of components of the LCC. Removal of 5 hosting providers
by number of users breaks the graph into 272 components,
whereas removal by number of instances only results in 139
components. 3.3.5 This directly shows the effect of massive
instances, and how unintentional centralization weakens the
fediverse. Losing comparable number of number of random

I by Users Hosted —— Size of LCC
I by Toots Posted ___ No. of Connected
B Dby Instances Hosted components

8

]

.AE c
208 250 §
g £
£ o
Sos 200 g
k] ©
3]
2 £
g 0.44 r 150 5]
s 2>
3 o
c

& 02 L 100 §
T T T T T T T T T T ‘7‘

0 200 400 600 800 0 5 10 15 20 *

Top N Instances Removed Top N AS removed

(a) (b)

Figure 4: Removals sorted by users hosted (red),
toots posted (green), and instances hosted (blue).
Raman et al. use the term Autonomous System(AS)
to refer to Hosting Providers.

instances would be a linear decay, but with the top 5 hosting
providers hosting 20% of instances and 85% of all users [3],
failure on the hosting provider level leaves a massive gap in
the network.

3.4 Possible Improvements

Though all these issues are problematic, most of them
seem rooted in socioeconomic constraints. However, that
does not mean that software solutions cannot play a part.
Raman et al. studied the effectiveness of replication, of
storing toots and other data on servers other than origi-
nal instance. This adds a significant layer of complexity, as
Mastodon is structured around a users’ instance being the
sole source of truth about them. However, replication strate-
gies hold large potential. All the proposed system relied on a
global index of toot replicas being maintained, likely through
a distributed hash table.

3.4.1 Subscription Replication

One of the simplest methods of replication was having in-
stance store copies of toots they received through subscrip-
tions, with instances looking for a toot on an offline server
looking up backup replicas.

This is less effective, as it essentially spreads the central-
ization out one hop in all directions. According to simu-
lation carried out by Raman et al. under this system a
network with the top ten servers by toots removed, the net-
work would lose access to only 2.1% of all toots. Compared
to the 62.69% loss without replication, this is already a sig-
nificant improvement. This improvement largely holds true
for the removal of the top ten hosting providers by toots,
with 18.66% lost with replication, compared to 90.1% with-
out. [3]

Subscription based replication re-centralizes itself rapidly
though, as the majority of replicas would be hosted on servers
with a large amount of subscribers. These large servers
would already be among the worst ones to lose, even if they
were not a key part of a backup mechanism. The same is-
sue is also mirrored in in terms of popular users receiving
excessive amount of backup, whereas more out of the way
users receive none; 23% of all toots would have more than
10 replicas, while 9.7% would have no replicas at all. [3]

3.4.2 Randomized Replication

Avoiding the centralization inherent in following the social
graph, the other technique Raman et al. studied was random
replication, where every new toot is replicated on one or
more servers chosen at random from the whole federation.

This adds a great deal of complexity, needing a systems
to fairly distribute replication duties, and avoid the abuse
by over burdening an individual server with replication re-
quests. It also would need a way to index all instances,
without that system itself becoming a point of centraliza-
tion.

If these issues are overcome, then a single randomly placed
replica can keep 99.2% of all toots available after removing
the 25 instances by number of toots. Subscription based
replication would have 95% of toots still available after-
wards. More randomized replicas have increasingly better
persistence, as demonstrated by Figure 5.

Although complicated, randomized replication could pro-
vide a way to avoid the downsides of semi-centralized net-
works, though it does not actually address the issue of cen-
tralization in the network itself.

Toot Availability (%)

0 5 10 15 20 0 25 50 75 100
Top N AS removed Top N Instances removed

Figure 5: Availability percentage of all toots with
the top ten hosting providers and instances re-
moved. Raman et al. use the term Autonomous
System(AS) to refer to Hosting Providers.

4. CONCLUSIONS

Mastodon as a platform has its shares of downsides, in-
cluding the drive towards centralization and the impact of
unreliable servers. Some of these problems Mastodon can
engineer solutions towards such as replication [3]. Others,
such as the growth of megaservers are still a subject of de-
bate, and likely will need to be resolved through community
action over software features. [4]

Some of these changes are simply differences to what has
come before in the history of social networks. Though not
decentralized, one could point towards the micro-communities
of reddit as an example of a similar arrangement of users and
interests on a significant platform. It is not a stretch to say
that the limitations imposed by Mastodon’s structure are
within the constraints other social networks have imposed,
and still been successful.

Mastodon also shows a way out of the non-public gather-
ing places issue that most other social networks represent.
This is a significant benefit, besides the emphasis on user
control and strong moderation tools that it provides. Ac-
cess to the source code is also highly beneficial.

The most important detail however, is that Mastodon isn’t
a theoretical idea. It is a network, growing in the wild,
and built to uphold a common standard published by the
W3C. [2] Though analysis of how it grows and the issues it
faces is important, it also is not waiting for to be theoreti-
cally sound. With frequent updates from over eight hundred
authors [6], Mastodon is present and active.

Acknowledgments

The author would like to thank their academic advisor, as-
sociate professor Elena Machkasova, their seminar advisor,
professor Nic McPhee, and seminar teacher, professor KK
Lamberty.

S. REFERENCES

[1] A. Balkan. Encouraging individual sovereignty and a
healthy commons, 2017.

[2] E. S. A. G. Christopher Lemmer Webber,

Jessica Tallon and E. Prodromou. Activitypub.
Technical report, World Wide Web Consortium, 2018.

[3] A. Raman, S. Joglekar, E. D. Cristofaro, N. Sastry, and
G. Tyson. Challenges in the decentralised web: The
mastodon case. In Proceedings of the Internet
Measurement Conference, IMC 19, page 217229, New
York, NY, USA, 2019. Association for Computing
Machinery.

[4] E. Rochko. The role of mastodon.social in the
mastodon ecosystem, 2019.

[5] M. Stockley. More relevant ads with tailored audiences,
2013.

[6] TootSuite. Authors.md, 2020.

[7] M. Zignani, S. Gaito, and G. P. Rossi. Follow the
“mastodon”: Structure and evolution of a decentralized
online social network. In Twelfth International AAAI
Conference on Web and Social Media, 2018.

[8] M. Zignani, C. Quadri, S. Gaito, H. Cherifi, and G. P.
Rossi. The footprints of a “mastodon”: How a
decentralized architecture influences online social
relationships. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 472-477. IEEE, 2019.

