
Decentralized Social Networks: Pros and Cons of the
Mastodon Platform

Charlot R. Shaw
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

shawx538@morris.umn.edu

ABSTRACT

Mastodon is a federated social network designed to allow di-
versity in users, small but interconnected communities, and
user-ownership of their data. It builds on standardized pro-
tocols, and follows a decentralized model. This architecture
allows for more truly public online spaces, and has a num-
ber of difference from its closest popular alternative, Twit-
ter. However, the Mastodon network is negatively affected
by various forces, and is potentially more fragile than its
distributed nature suggests.

Keywords
Mastodon, Social Networks, Decentralized Social Networks

1. INTRODUCTION
Online social networks have become a common platform

the world over, a means of communicating and a medium
of discovery. Despite their global reach, the most common
social networks operate on a centralized model with a single
platform provider, operating the entire platform. For ex-
ample, there is only one Twitter service, and it is the one
managed by Twitter. However, the centralized model is not
the only option. A decentralized social network known as
Mastodon has been operating since 2016, and has accumu-
lated a mesh of independent communities and users (over a
million at time of writing). Mastodons decentralized struc-
ture changes how its users interact with one another, how
the social network grows, and how it behaves under stress.
Although far from flawless, Mastodon, and its continuing
growth show that the centralized model is not the only op-
tion for online social networks.

2. MASTODON

2.1 Background

2.1.1 Federation
Federation is the concept that independent servers can

communicate through a common protocol and work together
without sacrificing independence. A common example would

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, November 2020 Morris, MN.

be email, in which different email providers can send mes-
sages between themselves on behalf of their users. A user
with a gmail address can message someone with a proton-
mail address just as easily as they could message a fellow
gmail user, and there is no need for a a supervising entity
that manages all email.

Email is one exmaple of a federated protocol, but there
are others. The World Wide Web Consortium(W3C) pub-
lished the ActivityPub standard [2] in 2018, a federated
protocol for social media. This standard is not a social net-
work, it is instead an agreed upon set of signals and ac-
tions that allow common interactions in social media, such
as following a user, liking some content, or sharing content
of one’s own. Software that implements the standard can
inter-operate with one another, and form a federated net-
work. Data from one program is intelligibly presented on
users in other programs, and connections between users on
different implementations is as simple as connecting to a
user on the same implementation. This network is collo-
quially termed the Fediverse (Federated universe), and this
paper will use the term when discussing the ActivityPub
network as whole.

2.1.2 Mastodon
Mastodon is a microblogging software built on subset of

the ActivityPub standard, and published under the Affero
General Public License 3.0 in 2016. It will be familiar to
users of Twitter, with users posting short messages, known
as Toots, and receiving Toots written by other users they
are subscribed to. With federation, users sign up for a spe-
cific server, also known as an instance. They receive a feed
of public Toots written by other users on the server, this is
known as the local timeline. Additionally, they see all pub-
lic Toots from users anyone on the server has subscribed to.
This is the federated timeline, and provides the most com-
plete vision of the fediverse as a whole for an individual user.
As there is no managing entity, there is no server which sees
every message in the fediverse, or even the subset of the
fediverse that consists only of Mastodon servers. Because
of this, there is no truly global view, each user can only
see what their instance can see. Some servers host bots,
Mastodon account controlled by software, that systemati-
cally follow as many other users as possible. As these bots
exist on the server, the content the bot has followed appears
in the federated timeline, widening the servers perspective
on the fediverse.

2.1.3 Federation Follower Example
Suppose we have a mastodon instance, running at the



URL xeno.space, with a user, Alex. Alex finds a blog-
ger they like, Babbar, has posted about his Mastodon ac-
count on yottabyte.rocks, and wants to follow him. When
Alex tells their server this, xeno.space opens a connection to
yottabyte.rocks, and requests yottabyte.rocks let xeno.space
know whenever the account babbar@yottabyte.rocks posts a
public message, and that Babbar has a new follower named
alex@xeno.space.

The next time Babbar posts something that is marked
as public, yottabyte.rocks sends a message to xeno.space,
which then notifies Alex. xeno.space also places Babbars
post in the federated timeline, for other xeno.space users to
see.

2.2 Graphs
The connections between users and those they follow, or

between intercommunicating servers form graphs, collections
of nodes with connections between them. This data is one
of the best ways available to understand the Mastodon net-
work, but we need to make sure we understand what graph
we are referring to, as there are two interconnected ones that
shape the Mastodon network’s activity.

The network graph consists of the connections made by
servers when their users interact. These are carried out
through HTTP(s) requests, and routed by the DNS servers
that underpin the internet. They are utilitarian in nature,
created by the software, and as much as possible hidden from
the user. The content of these messages has forms specified
by the ActivityPub standard, thus allowing the different
servers to parse the messages automatically.

The social graph is the relations between users: who fol-
lows who, who has liked which posts, etc. This graph is made
of the connection records in each instance’s database. They
are created as reactions to signals received through the net-
work graph, and the network graph forms and abandons con-
nections between servers based on them. These records are
available on request, to verify that babbar@yottabyte.rocks
really is being followed by alex@xeno.space for example.

The network graph is complex, but not altogether novel.
It consists of the connections between servers required to
exchange the messages required by the social graph. The
social graph is constrained by the structure of the network
graph, with users being able to discover new content only
by their instance encountering it while serving a fellow users
request, no matter how popular that content is elsewhere in
the network.

Mastodon has not implemented a recomender algorithm to
steer user connections; this community driven discovery pro-
cess is the only way users encounter each other on-platform.
Thus makes Mastodon a valuable data-source for the behav-
ior of communities online, especially decentralized ones. [7]

However, the decentralized nature of Mastodon does make
study difficult in some ways. There is no way to access
the network wholesale through negotiation with a single en-
tity. Instead, researchers carry out automated explorations
of public instance and user data, starting with as broad a
list of servers as possible, and following the connections be-
tween users to discover new instances and thus map the
network. [7]

Some of the crawls considered in this paper were carried
out over six months starting in August of 2018, and covered
479,425 users, an estimated 46% of all users in the Mastodon
network. [7] The other crawl considered was carried out be-

tween April 2017 and July 2018, and found 239 thousand
unique users and 62% of all toots in the crawled graph. The
remaining could not be accessed due to the instances con-
figuring themselves to block crawling, or the toots being
non-public.

These datasets include both snapshots of the network,
and long term data on how Mastodon grew and changed.
Although not discussed thoroughly here, the overall trend
is steady growth, with spikes occurring that likely corre-
spond to popular campaigns on other platforms, includ-
ing #DeleteFacebook, or with publication of article about
Mastodon in mass media, such as Wired Magazine. [3]

3. EFFECTS OF MASTODONS MODEL
With the rough structure of Mastodon understood, and

an introduction to the data out of the way, we can now talk
about what this means. First, the main issue that Mastodon
sets out to address, and how it does so. Second, the differ-
ences in its structure compared to Twitter, its closest pop-
ular analog. Third, some issues with Mastodons federation
model, and some proposed strategies to mitigate them.

3.1 Benefits
To understand what benefits Mastodon provides, and what

issues it was designed to avoid, let’s compare it with its
closest analog, Twitter. Though their internal structures
are vastly different, they both are microblogging platforms,
focused on short, public messages. Mastodon improves on
Twitter in three ways we will enumerate here: public space,
privacy and diversity.

3.1.1 Public Space
Twitter is definitely a public space in one sense, with any

action occurring before a potentially vast audience. How-
ever, as Aral Balkan observes [1], Twitter is closer to a shop-
ping mall. The public is admitted to the property, and quite
often people carry out social interactions there. However,
the purpose of a mall is not to facilitate a public space, but
rather to achieve profits. Socializing at the mall serves this
motive, but if the socialization hampers the commerce of the
mall, it’s in the mall’s interests to put a stop to it. Simi-
larly, the mall focuses its amenities on those who contribute
to profits. Twitter is in the position of a mall here, main-
taining an appearance of being an open and public space,
while maintaining the same profit motive.

Mastodon at first glance has merely shuffled this problem
around, with each and every instance being a mall-like space.
However, the Mastodon network as a whole doesn’t belong
to any one instance. The public space Mastodon creates is
the network between every node, which is a open protocol.

3.1.2 Privacy
Twitter holds all its user’s data, and tracks them even

offsite. [5] Their motivation for this is profit, through selling
that data, access to that data, or insights derived from that
data. Privacy from this standpoint, is something between
users. Although options like blocking unwanted contacts,
or protected Twitter accounts offer more privacy, none of
them protect the user from Twitter itself. Consider two sce-
narios: If a hundred random people learned a different fact
about you, that would be potentially unpleasant. However,
if one person learned one hundred different facts about you,
the situation is worse. The odds of something you would



not wish known is a hundred times greater. The amount of
information that person can infer, correctly or not, is also
increased. In Twitter’s case, this same entity is also collect-
ing information on everyone else, not just you. Twitter may
claim that no humans read this data, or that it works with-
out exposing user information. The author of this paper
does not find comfort in the reassurance that our surveil-
lance is automated and industrialized.

Being decentralized, Mastodon already has a vast advan-
tage in terms of truer privacy. Again, issues arise with the
administrators of an instance having access to the data of
the instance users, but there is no central entity that sees all
information. Furthermore, each instance has less users than
Twitter, and so less data to offer if they wished to monetize
it. If an instance did monetize its user’s data, Mastodon has
tools to allow easy switching of instances, so users would
have little reason to stay on an instance that did not respect
their privacy.

This creates an environment where instance owners have
strong incentives to protect users information, and users are
not locked into any particular host.

3.1.3 Diversity
Twitter, as singular platform, is placed in the unenviable

position of trying to please everyone. With all users existing
in more or less the same virtual space, there is bound to be
conflict between user’s different styles of communication, ex-
pectations of behavior, etc. assuming that all parties on the
platform are acting in good faith. Twitters terms of service,
and various moderation systems are necessarily generic, and
whether they are fair guidelines or well applied is beyond
the scope of this paper. It is sufficient to note that they
exist, and must necessarily take a one-size-fits-all approach.

Mastodon, by its decentralized model, does not have ev-
ery one on the same platform. Each instance can create and
enforce its own code of conduct, with users being able to opt
out by switching instances or hosting their own instance if
they find themselves in an uncomfortable position. Instance
moderators also have effective tools to filter content coming
from other servers, so content coming in through the feder-
ation can be rejected if it doesn’t fit the code of conduct.

This raises an issue of siloization, of users only encoun-
tering those who have compatible viewpoints, and creating
a fractured perception of reality. This issue is wider than
Mastodon, and occurs on most social networks, including
centralized ones. The author acknowledges this, but did not
focus their research on this issue specifically, and so cannot
state whether or not Mastodon handles this issue better or
worse than other platforms.

3.2 Differences
Not all of Mastodon’s features are clearly beneficial or

detrimental. The instance structure provides explicit groups
whose interrelations are of interest. Additionally, instances
have individual traits, some explicit and others implicit that
are visible in the social graph.

3.2.1 Instance Topics
Starting with instances, Zignani et al. collected the top-

ics that instances chose to self-describe with. A very large
group of these describe themselves as “General”, or do not
state any topics at all. Unsurprisingly, for an open source
network growing by word of mouth, the specific topics“Tech-

nology” and “Programming” were the most common topics,
with various forms of science cumulatively taking second
place. Instances dedicated to various forms of art, including
“writing” and “anime” were also well represented. [7]

Aside from the amount of servers dedicated to a topic,
there is also interesting patterns in how users interact with
topics. For example, instances dedicated to “Journalism” or
“General”, are more common than average, but have lower
user counts per-instance. [3] From this, one could suppose
that servers with less to differentiate themselves from others
on a common topic tend not to attract users as readily as a
server that is unique in its topic.

The inverse of this patterns exists, with topics served by
few instances with a disproportionate number of users. This
has it’s clearest examples in instances covering erotic or sex-
ual subjects. Though few in number, these instances host
a larger number of users than servers not focused on erotic
content.

3.2.2 Instance Behavior Patterns
Topics might reveal patterns of behavior across instances,

but within an instance, unique patterns also emerge. Look-
ing at the social graph, one finds that users in an instance
behave like other users in the same instance, specifically in
terms of their interactions and connections.

One could assume that intraconnections between users on
the same server would be more common, as they have imme-
diate access to each other and would share common interests.
Some instances, following this pattern, have few connections
to other instances. However, this is not the common case,
with Zignani et al. finding that 35-40% of all users have
significant inter-instance connection. [8] Is the opposite true
then? Are users using their home instance simply as a ser-
vice to access the wider fediverse? Again, Zignani finds this
to somewhat untrue, with some instances being very outgo-
ing, and others very insular. (Ignoring the extreme case of
the user on a single user instance, who has only outgoing
connections.) Mastodon allows a wide variety of instance
behavior, and Zignani et al. find that the instances match
this diversity.

In general we confirm that the architecture based
on independent instances has a stronger impact
on the how users’ ego-networks cluster; some-
times instances act as a bound on how the neigh-
borhood of their members clusters, other times
instances promote an external clustering.

The culture of an instance has a measurable effect on its
users behavior. This also is expressed in how likely users
are to form mutual connections, or only one-sided ones (Fol-
lower/Followee). This is not correlated with instance sizes;
it is not the case that users in smaller instances are seeking
connections with larger servers. Nor are large servers seek-
ing small servers in any significantly differing way. Instead,
users are still following the unique style of their own server.

A crucial thing to note though, is all the effects of instance
style are of lesser import than the effects of instance location.
Users have a very strong tendency not to interact with users
outside their country; fewer than 10% of users have 50% or
more of their connections going to users in instances in other
countries. [8]

3.3 Drawbacks



Challenges in the Decentralised Web IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

(a) (b) (c)

Figure 2: Dissecting Instances with open and closed (invite-only) registrations. (a) Distribution of number of toots and users
per-instance (b) Number of instances, toots and users for open and closed registrations; (c) Distribution of active users (max
percentage of users logged-in in a week per instance) across all instances.

Figure 3: Distribution of number of instances, toots and
users across various categories.

Figure 4: Distribution of instances and users across instances
w.r.t. prohibited and allowed categories.

Mastodon UI also has a “content warning” (CW) checkbox for
the posters to give advance notice that there are spoilers in the
content. Interestingly, while 35% instances prohibit posting spoilers
without a content warning, the remaining 65% explicitly allow this.

Figure 5: Distribution of instances, users, and toots across
the top-5 countries (top) and ASes (bottom).

4.3 Instance Hosting
Unlike a centrally administered deployment, where presence can be
intelligently selected, Mastodon’s infrastructure follows a bottom-
up approach, where administrators independently decide where
they place their instance. Figure 5 presents a breakdown of the pres-
ence of instances, toots, and users across countries and Autonomous
Systems (ASes).
Countries. Japan dominates in terms of the number of instances,
users and toots. In total, it hosts 25.5% of all instances, closely fol-
lowed by the US which hosts 21.4%. Closer inspection reveals that
the ratio between the number of instances and number of users dif-
fer across countries though. For example, Japan hosts a just quarter
of instances, yet gains 41% of all users; in contrast, France hosts 16%
of instances, yet accumulates only 9.2% of users. It is also worth
noting that these countries are heavily interconnected, as instances
must federate together, i.e., users on one instance may follow users
on another instance (thereby creating federated subscription links
between them, see Section 2).

To capture their interdependency, Figure 6 presents a Sankey
diagram; along the left axis are the top countries hosting instances,
and the graph depicts the fraction of their federated subscriptions to
instances hosted in other countries (right axis). Unsurprisingly, the
instances exhibit homophily: users of an instance follow other users
on instances in the same country, e.g., 32% of federated links are with

221

Figure 1: Distribution of instances, users, and
toots(messages) across top 5 countries and hosting
providers.

Mastodon is decentralized, a fully functional network of
independent servers. However, there are a number of pres-
sures that can cause hidden interdependencies between servers.
These drives towards re-centralization are present in the
Mastodon network, and we will explore how they can mani-
fest, and the consequences for the network if left unchecked.

3.3.1 Massive Servers
Most users coming from a centralized service want to join

the biggest server, or don’t understand that mastodon.social
is not the only option. mastodon.social itself as the largest
server, headed by the primary developer, has tried various
tactics to balance between people joining the network at all,
and people joining mastodon.social specifically. [4]

This is bigger than mastodon.social, as there are other
servers of enormous size out there. In fact, 52% of all users
on Mastodon are hosted in only 10% of all servers. [3] This is
a threat to the diversity of the network, as moderators and
admins on those 10% of all servers hold far greater sway
over the network than a more even distribution would grant
them. Though problematic in and of itself, these massive
servers will be shown to have other effects later on.

3.3.2 Social Graph Failure Example
Supposing we have three users, on three different servers.

alex@xeno.space who follows babbar@yottabyte.rocks, who
in turn follows angela@tea-and-coookies.com. Angela can
see Babbar’s posts, and Babbar can see Alex’s. If Babbar
replies to Alex, Angela would see that reply, and might even
reply herself, which would mean anyone who followed her
would then see that post. This is how messages can spread
beyond the single hop to the followers of the poster and their
federated timelines.

Now consider yottabyte.rocks fails, perhaps due to a soft-
ware bug. Alex’s posts might now have no way to reach
Angela, and Alex can’t see Babbar or his posts. Until yot-
tabyte.rocks comes back online, Babbar can neither post,
nor can anyone see his posts. If yottabyte.rocks is unrecov-
erable, Babbar has ceased to exist.

In a centralized service, the network status tends to be
more binary. Either the service is up and running, or it is
down. Some grey areas exist in case a regional server goes
down, and so traffic must be routed to a distant server at a

Challenges in the Decentralised Web IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Figure 8: Distribution of per-day downtime (measured every
�ve minutes) of Mastodon instances (binned by number of
toots), and Twitter (Feb–Dec 2007).

(a)

(b)

Figure 9: (a) Footprint of certi�cate authorities among the
instances. (b) Unavailability of instances (on a per-day ba-
sis).

toots) clearly have the most downtime (median 12%), those with
over 1M toots actually have worse availability than instances with
between 100K and 1M (2.1% vs. 0.34% median downtime). In fact,
the correlation between the number of toots on an instance and its
downtime is -0.04, i.e., instance popularity is not a good predictor of
availability. The �gure also includes Twitter’s downtime in 2007 for
comparison (see Section 3). Although we see a number of outliers,
even Twitter, which was famous for its poor availability (the “Fail
Whale” [28]), had better availability compared to Mastodon: its
average downtime was just 1.25% vs. 10.95% for Mastodon instances.
Certi�cate Dependencies. Another possible reason for failures
is third party dependencies, e.g., TLS certi�cate problems (Mastodon
uses HTTPS by default). To test if this may have caused issues, we
take the certi�cate registration data from crt.sh [11], and check
which certi�cate authorities (CAs) are used by instances, presented
in Figure 9(a). Let’s Encrypt has been chosen as CA for more than
85% of the instances, likely because this service o�ers good au-
tomation and is free of cost [31]. This, again, con�rms a central
dependency in the DW. We also observe that certi�cate expiry is
a noticeable issue (perhaps due to non-committed administrators).
Figure 9(b) presents the number of instances that have outages
caused by the expiry of their certi�cates. In the worst case we �nd

ASN Instances Failures IPs Users Toots Org. RankPeers

AS9370 97 1 95 33.4K 3.89M Sakura 2.0K 10
AS20473 22 4 21 5.7K 936K Choopa 143 150
AS8075 12 7 12 1.7K 35.4K Microsoft 2.1K 257
AS12322 9 15 9 123 4.4K Free SAS 3.2K 63
AS2516 9 4 8 559 102K KDDI 70 123
AS9371 8 14 8 165 4.7K Sakura 2.4K 3

Table 1: AS failures per number of hosted instances. Rank
refers to CAIDA AS Rank, and Peers is the number of net-
works the AS peers [8].

Figure 10: CDF of continuous outage (in days) of instances
not accessible for at least one day (Y1-axis) and number of
toots and users a�ected due to the outage (Y2-axis).

105 instances to be down on one day (23 July 2018), removing nearly
200K toots from the system. Closer inspection reveals that this was
caused by the Let’s Encrypt CA short expiry policy (90 days), which
simultaneously expired certi�cates for all 105 instances. In total,
these certi�cate expirations were responsible for 6.3% of the outages
observed in our dataset.
AS Dependencies. Another potential explanation for some in-
stance unavailability is that AS-wide network outages might occur.
Due to the co-location of instances within the same AS, this could
obviously have a widespread impact. To test this, we correlate the
above instance unavailability to identify cases where all instances
in a given AS simultaneously fail — this may indicate an AS out-
age. Table 1 presents a summary of the most frequent failures (we
consider it to be an AS failure if all instances hosted in the same
AS became unavailable simultaneously). We only include ASes that
host at least 8 instances (to avoid mistaking a small number of
failures as an entire AS failure). We observe a small but notable
set of outages. In total, 6 ASes su�er an outage. The largest is by
AS9370 (Sakura, a Japanese hosting company), which lost 97 in-
stances simultaneously, rendering 3.89M toots unavailable. The AS
with most outages (15) is AS12322 (Free SAS), which removed 9
instances. These outages are responsible for less than 1% of the
failures observed, however, their impact is still signi�cant. In total,
these AS outages resulted in the (temporary) removal of 4.98M
toots from the system, as well as 41.5K user accounts. Although this
centralisation can result in such vulnerabilities, the decentralised
management of Mastodon makes it di�cult for administrators to
coordinate placement to avoid these “hot spots”.
Outage durations. Finally, for each outage, we brie�y compute
its duration and plot the CDF in Figure 10 (blue line, Y1-axis). While

223

Figure 2: Distribution of downtime over number of
toots on an instance, with the average totals and a
comparable snapshot of Twitter.

slower rate.
In Mastodon and other decentralized networks, the net-

work often fails by degrees, which is a significant feature,
but also means that the network is practically never going
to be in a perfect state.

3.3.3 Centralization Through Hosting Providers
As most instance are hosted by volunteers and often funded

by themselves or through donations, there is an emphasis on
cost-efficiency in hosting providers. This means that only
three hosting services support for more than 62% of all users.
Amazon alone hosts 6% of all instances, but due to the size
of those instances, those account for 30% of all users in the
Mastodon network. Cloudflare is the second most common
hosting service, and it hosts 5.4% of all servers, and 31.7%
of all messages. [3] Though a massive failure in Amazon or
Cloudflare would be a nightmare scenario for much of the in-
ternet, smaller changes in policy, price or technology could
negatively effect large portions of the Mastodon network.
Consider Figure 1, which shows how top heavy this distri-
bution is. Something not shown in the graph is the long tail
of diverse hosting providers, with the average host holding
only 10 instances.

Given these warnings, what is the actual uptime of the
Mastodon network? Following the data from Raman et al in
Figure 2, we can see that for the average user, Mastodon has
an order of magnitude worse availability than Twitter did
when it was of a similar size in 2007, 1.25% versus 10.75%. [3]
Surprisingly, although less active instances have more down-
time, the toot counts of an instance is not a good predictor
of it’s uptime.[3]

3.3.4 User Abandonment and the Social Graph
We can now see the downtime of individual servers, which

affect the the users on them, but how is the network af-
fected when connections are severed? This is measured by
the Largest Connected Component(LCC), which measure
how far a post could spread by sharing alone. Not all users
are connected to each other, so there will be separate islands
in the social graph, where a post has spread as far as it the-
oretically could, and there are no more connections to the
remaining parts of the graph.



IMC ’19, October 21–23, 2019, Amsterdam, Netherlands A. Raman et al.

Figure 11: CDF of the out-degree distribution of the so-
cial follower graph, federation graph, and Twitter follower
graph.

almost all instances (98%) go down at least once, a quarter of them
are unavailable for at least one day before coming back online,
ranging from 1 day (21%) to over a month (7%). Figure 10 also reports
the number of toots and users a�ected by the outages: 14% of users
cannot access their instances for a whole day at least once. Naturally,
these measures are closely correlated to toot unavailability (i.e.,
toots become unavailable when their host instance goes o�ine).
In the worst case, we �nd one day (April 15, 2017) where 6% of all
(global) toots were unavailable for the whole day. These �ndings
suggest a need for more reslient approaches to DW management.

5 EXPLORING FEDERATION
The previous section has explored the central role of independent
instances within the Mastodon ecosystem. The other major innova-
tion introduced by the DW is federation. Here we inspect federation
through two lenses: (i) the federated subscription graph that inter-
connects instances (Section 5.1); and (ii) the distributed placement
and sharing of content (toots) via this graph (Section 5.2). This
section studies the resilience properties of DW federation in light
of the frequent failures observed earlier.

5.1 Breaking the User Federation
Federation allows users to create global follower links with users
on other instances. This means that instance outages (Section 4.4)
can create a transitive ripple e�ect, e.g., if three users on di�erent
instances follow each other, U1 ! U2 ! U3, then the failure of the
instance hosting U2 would also disconnect U1 and U3 (assuming
that no other paths exist). To highlight the risk, Figure 11 presents
the degree distribution of these graphs, alongside a snapshot of
the Twitter follower graph (see Section 3). We observe traditional
power law distributions across all three graphs. Although natural,
this creates clear points of centralisation, as outages within highly
connected nodes will have a disproportionate impact on the overall
graph structure [3].

To add context to these highly connected instances, Table 2
summarises the graph properties of the top 10 instances (ranked
by the number of toots generated on their timeline). As well as
having very high degree within the graphs, we also note that these
popular instances are operated by a mix of organisations, including
companies (e.g., Pixiv and Dwango), individuals, and crowd-funding.

Figure 12: Impact of removing user accounts from G
�
V , E

�
.

Each iteration (X axis) represents the removal of the remain-
ing 1% of the highest degree nodes.

Ideally, important instances should have stable and predictable
funding. Curiously, we �nd less conventional business models, e.g.,
vocalodon.net, an instance dedicated to music that funds itself by
creating compilation albums from user contributions.
Impact of Removing Users. The above �ndings motivate us to
explore the impact of removing nodes from these graphs. Although
we are primarily interested in infrastructure outages, we start by
evaluating the impact of removing individual users from the social
graph,G

�
V , E

�
. This would happen by users deleting their accounts.

Such a failure is not unique to the DW, and many past social net-
works have failed simply by users abandoning them [46]. Here, we
repeat past methodologies to test the resilience of the social graph
by removing the top users and computing two metrics: (i) the size
of the Largest Connected Component (LCC), which represents the
maximum potential number of users that toots can be propagated
to (via shares); and (ii) the number of disconnected components,
which relates to the number of isolated communities retaining in-
ternal connectivity for propagating toots. These metrics have been
used to characterise the attack and error tolerance of social and
other graphs [3, 23, 51].

We proceed in rounds, removing the top 1% of remaining nodes in
each iteration, and computing the size of the LCC in the remaining
graph, as well as the number of new components created by the
removal of crucial connecting nodes. Figure 12 presents the results
as a sensitivity graph. The results con�rm that the user follower
graph is extremely sensitive to removing the highly connected
users. Although Mastodon appears to be a strong social graph, with
99.95% of users in the LCC, removing just the top 1% of accounts
decreases the LCC to 26.38% of all users.

As a comparison, we use the Twitter social graph from 2011
when Twitter was a similar age as Mastodon is now (and beset
with frequent “fail whale” appearances [28]). Without any node
removals, Twitter’s LCC contained 95% of users [10]; removing the
top 10% still leaves 80% of users within the LCC. This con�rms that
Mastodon’s social graph, by comparison, is far more sensitive to
user removals. Although we expect that the top users on any plat-
form will be more engaged, and therefore less likely to abandon the
platform, the availability of top users to every other user cannot be
guaranteed since there is no central provider and instance outages

224

Figure 3: Mastodon’s proportion of connected
users(solid green), and number of strongly con-
nected components(solid red). A snapshot of Twit-
ter(dashed lines) from 2011 provided for compari-
son. X axis is percentage of total nodes removed.

First, Raman et al. considered the effect of users leaving
the network, to see how a mass abandonment scenario could
spiral, prompting further abandonment. Mastodon has a
strong social graph at the outset, with 99.95% of all users
in the LCC. With the top 1% of most connected users re-
moved, the LCC only covers 26.38% of all users. This is
an incredibly steep drop. For comparison, Twitter in 2011
had an LCC which covered 95% of all users, and with the
removal of the top 10%, only dropped to 80%. [3]

It is possible that Mastodons instance system contributes
to the creation of these keystone users, in that popular users
are followed from many instances, but other connections be-
tween those instances are not established. If the popular
user vanishes, all those interconnections go with them. An-
other possibility could be that these users with high amount
of connections could be explorative bots. Raman et al. do
not state whether they attempted to filter out bot users. If
this is true, the social graph could have a different shape for
human users.

3.3.5 Infrastructure failure and the Social Graph
Earlier, we noted the unintentional centralization of in-

stances and hosting providers. Raman et al. now examine
the issues such centralization can cause.

In the case of instances, the largest instances can be clas-
sified by number of messages, or by number of users.

mastodon.social holds the greatest number of users, but
mstdn.jp has more toots, despite having over 3,000 less users. [3]
Similarly, hosting providers can be ranked by number of in-
stances hosted or by number of users those instances sup-
port. Both rankings have similar effects on the size of the
LCC when used to remove hosting providers, but removal by
number of users causes catastrophic failure in the number
of components of the LCC. Removal of 5 hosting providers
by number of users breaks the graph into 272 components,
whereas removal by number of instances only results in 139
components. 3.3.5 This directly shows the effect of massive
instances, and how unintentional centralization weakens the
fediverse. Losing comparable number of number of random

Challenges in the Decentralised Web IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Toots from #Home Users Toots Instances
Domain Home Users Users OD ID OD ID OD ID Run by AS (Country)

mstdn.jp 9.87M 23.2K 22.5K 24.7K 71.4M 1.94M 1352 1241 Individual Cloud�are (US)
friends.nico 6.54M 8998 8809 23.3K 37.4M 2.57M 1273 1287 Dwango Amazon (JP)
pawoo.net 4.72M 30.3K 27.6K 15.4K 34.9M 1.4M 1162 1106 Pixiv Amazon (US)
mimumedon.com 3.29M 1671 507 7510 435K 366K 420 524 Individual Sakura (JP)
imastodon.net 2.34M 1237 772 10.8K 2.37M 1.52M 711 865 Individuals (CF) Amazon (US)
mastodon.social 1.65M 26.6K 24.8K 16.1K 30.9M 525K 1442 1083 Individual (CF) Online SAS (FR)
mastodon.cloud 1.54M 5375 5209 106 7.35M 337 1198 39 Unknown Cloud�are (US)
mstdn-workers.com 1.35M 610 576 12.5K 4.18M 1.98M 735 850 Individual (CF) Amazon (JP)
vocalodon.net 914K 672 653 8441 2.6M 853K 981 631 Bokaro bowl (A) Sakura (JP)
mstdn.osaka 803K 710 363 1.64K 2.68M 2.1M 561 862 Individual Google (US)

Table 2: Top 10 instances as per number of toots from the home timeline. (OD: Out Degree, ID: In Degree, CF: Crowd-funded,
A: maintained by selling Bokaro Bowl album).

(a) (b)

Figure 13: Impact of node removal attacks. Each sub�gure
measures, on Y1 axis, LCC and, on Y2 axis, the number
of components for GF

�
I , E

�
, by removing: (a) the top N in-

stances (each node in GF is an instance); and (b) the top N
Autonomous Systems, including all instances hosted within.

may remove these users. Indeed, individual instance failures, which
we examine next, can take out huge subsets of users from the global
social graph.
Impact of Removing Instances. As discussed earlier, instance
failures are not uncommon, and can have an impact that exceeds
their local user base due to the (federated) cross-instance intercon-
nectivity of users in the social follower graph. Therefore, we next
measure the resilience of the instance federation graph (GF ). In
Figure 13(a), we report the impact of instance failures on GF . We
iteratively remove the top N instances, ordered by their size; we
rank by both number of users (red) and number of toots (green).
When ranking via either metric, we notice a remarkably robust
linear decay in the size of the LCC, and a corresponding increase
in the number of components.

Unlike the drastic breakdown of the social graph, this elegant
degradation is caused by the more uniform degree distribution
of the federation graph (as compared against traditional social
networks [6]). We emphasise that the instance federation graph
shows the potential connectivity of instances. However, individual
instance failures would still have an enormous impact on the social
graph.

Impact of Removing ASes. As discussed earlier, many instances
are co-located in a small number of hosting ASes. We now inspect
the impact of removing entire ASes, and thus all instances hosted
within. Naturally, this is a far rarer occurrence than instance fail-
ures, yet they do occur (see Section 4.4). We do not present this
as a regular situation, but one that represents the most damaging
theoretical impact. For context, AS-wide collapse might be caused
by catastrophic failures within the AS itself [20, 29] or via their
network interconnections [17].

Figure 13(b) presents the LCC and number of components forGF ,
while iteratively removing the ASes, ranked by both the number of
instances (blue) and number of users (red). At �rst, we see that 92%
of all instances are within a single LCC. This LCC covers 96% of all
users. The graph shows that removing large ASes, measured by the
number of instances (blue), has a signi�cant impact onGF . The size
of the largest connected component decreases similarly whether
we remove the largest ASes when ranked by instances hosted (blue)
or by number of users (red). However, the number of connected
components in GF increases drastically when we remove the ASes
hosting the largest users rather than ASes ranked by number of
instances: the removal of just 5 ASes shatters the federation graph
into 272 components when sorted by users hosted, compared to just
139 when ranking by the #instances in the AS. This is explained
by the central role of a few ASes: the top 5 ASes by users cover
only 20% of instances (yet comprise 85% of users); when ranked by
number of instances, the top 5 covers 42% of instances (and 33.6%
of users).

Thus, when AS failures occur, Mastodon shows signi�cantly
worse resilience properties than previously seen for just instance
failures (Figure 13(a)). This is driven by the fact that the top �ve
ASes by number of instances hosted — OVH SAS (FR), Scaleway
(FR), Sakura Internet (JP), Hetzner Online (DE), and GMO Internet
(JP) — account for 42% of all instances. Their removal yields a 49%
reduction in the size of LCC in the federation graph, leaving behind
an LCC which only covers 45% of instances and 66% of users. This
constitutes a radical drop in the capacity of Mastodon to dissemi-
nate toots via the federated subscription links. Indeed, removing
them not only wipes out a large number of nodes, but also results in
a smaller number of components which still remain. That said, the
linear degradation of the instance federation graph discussed previ-
ously provides some limited protection against a more catastrophic
failure as observed with the Mastodon social graph. Although a

225

Figure 4: Removals sorted by users hosted (red),
toots posted (green), and instances hosted (blue).
Raman et al. use the term Autonomous System(AS)
to refer to Hosting Providers.

instances would be a linear decay, but with the top 5 hosting
providers hosting 20% of instances and 85% of all users [3],
failure on the hosting provider level leaves a massive gap in
the network.

3.4 Possible Improvements
Though all these issues are problematic, most of them

seem rooted in socioeconomic constraints. However, that
does not mean that software solutions cannot play a part.
Raman et al. studied the effectiveness of replication, of
storing toots and other data on servers other than origi-
nal instance. This adds a significant layer of complexity, as
Mastodon is structured around a users’ instance being the
sole source of truth about them. However, replication strate-
gies hold large potential. All the proposed system relied on a
global index of toot replicas being maintained, likely through
a distributed hash table.

3.4.1 Subscription Replication
One of the simplest methods of replication was having in-

stance store copies of toots they received through subscrip-
tions, with instances looking for a toot on an offline server
looking up backup replicas.

This is less effective, as it essentially spreads the central-
ization out one hop in all directions. According to simu-
lation carried out by Raman et al. under this system a
network with the top ten servers by toots removed, the net-
work would lose access to only 2.1% of all toots. Compared
to the 62.69% loss without replication, this is already a sig-
nificant improvement. This improvement largely holds true
for the removal of the top ten hosting providers by toots,
with 18.66% lost with replication, compared to 90.1% with-
out. [3]

Subscription based replication re-centralizes itself rapidly
though, as the majority of replicas would be hosted on servers
with a large amount of subscribers. These large servers
would already be among the worst ones to lose, even if they
were not a key part of a backup mechanism. The same is-
sue is also mirrored in in terms of popular users receiving
excessive amount of backup, whereas more out of the way
users receive none; 23% of all toots would have more than
10 replicas, while 9.7% would have no replicas at all. [3]



3.4.2 Randomized Replication
Avoiding the centralization inherent in following the social

graph, the other technique Raman et al. studied was random
replication, where every new toot is replicated on one or
more servers chosen at random from the whole federation.

This adds a great deal of complexity, needing a systems
to fairly distribute replication duties, and avoid the abuse
by over burdening an individual server with replication re-
quests. It also would need a way to index all instances,
without that system itself becoming a point of centraliza-
tion.

If these issues are overcome, then a single randomly placed
replica can keep 99.2% of all toots available after removing
the 25 instances by number of toots. Subscription based
replication would have 95% of toots still available after-
wards. More randomized replicas have increasingly better
persistence, as demonstrated by Figure 5.

Although complicated, randomized replication could pro-
vide a way to avoid the downsides of semi-centralized net-
works, though it does not actually address the issue of cen-
tralization in the network itself.

Challenges in the Decentralised Web IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

(a) No replication (b) No replication (c) Subscription Replication (d) Subscription Replication

Figure 15: Availability of toots based on (a) removing ASes, with ASes ranked based on #instances, #toots and #users hosted;
and (b) removing instances, ranked by #users, #toots, and #connections with other instances. In (c) and (d), we report the toot
availability when replicating across all instances that follow them.

Figure 16: Availability of toots when removing top instances
(measured by #toots) with random replication. Lines for n >
4 overlap indicating availability above 99% (97%) in case of
instance (AS) failures.

these were largely peer-to-peer, e.g., LifeSocial.KOM [18] and Peer-
SON [7], and relied on entirely decentralised protocols. Unfortu-
nately, they did not achieve widespread adoption partly due to chal-
lenges related to both performance [4] and reliability [25]. Thus, a
new wave of DW platforms has emerged that rely on a server-based
federated model, e.g., Mastodon. Before that, the most successful
platform was Diaspora, which saw growth around 2011 [19]. Di-
aspora o�ers Facebook-like functionality using a federated model
similar to Mastodon. However, unlike Mastodon, it relies on be-
spoke protocols (rather than standards), and its user population has
since stagnated.

Since Diaspora’s creation, several (semi-)standard federation pro-
tocols have been proposed allowing instances to exchange data [41].
These include OStatus [37], which allows real-time interaction be-
tween instances; WebFinger [24] for discovering information about
entities on other instances; and ActivityPub [1] for publishing in-
formation about social activities. Attempts have also been made
to standardise the format of these data structures, e.g., ActivityS-
treams [2]. This standardisation e�orts have had a dramatic impact

on the DW. For example, both Mastodon and PeerTube use Ac-
tivityStreams and ActivityPub; thus, they can exchange data. An
overview of these various protocol can be found in [21].

Researchers have also looked at security and privacy in the
DW [40, 44], mostly around securing data management. For ex-
ample, various projects have attempted to decentralise data, e.g.,
DataBox [38], SOLID [32], and SocialGate [26]. These operate local
datastores for individual users, e.g., running on a physical home
appliance. Applications wishing to access user data must be granted
permission, potentially through a prior negotiation mechanisms.
Social Network Measurements. A number of measurement
studies have analysed “centralised” social networks like Face-
book [39, 49] and Twitter [10, 15, 27]. These have revealed a range
of properties, including attributes of the social graph and content
generation. Bielenberg et al. performed the �rst study of a DW
application, Diaspora [5]. When inspecting its growth, they found
a network far smaller than the one we observe on Mastodon. There
has been a small set of recent works that focus on Mastodon. Zig-
nani et al. collected and released Mastodon datasets, as well as
exploring several features, e.g., the social graph, placement of in-
stances and content warnings [54, 55]. Also, studies have focused
on friend recommendations [47] and sentiment analysis [9]. We
complement these works with a focus on availability, covering the
key aspects of federation. We also inspect the nature and deploy-
ment of instances, as well as their topical interests. To the best of
our knowledge, this paper constitutes the largest study to date of
Mastodon.

7 CONCLUSION
This paper presented a large-scale measurement study of the Decen-
tralised Web (DW) through the lens of Mastodon. We focused on
exploring challenges arising from two key innovations introduced
by the DW: (i) the decomposition of a global service into many
independent instances; and (ii) the process of federation, whereby
these instances collaborate and interact.

We found that Mastodon’s design decision of giving everyone
the ability to establish an independent instance of their own has
led to an active ecosystem, with instances covering a wide variety

227

Figure 5: Availability percentage of all toots with
the top ten hosting providers and instances re-
moved. Raman et al. use the term Autonomous
System(AS) to refer to Hosting Providers.

4. CONCLUSIONS
Mastodon as a platform has its shares of downsides, in-

cluding the drive towards centralization and the impact of
unreliable servers. Some of these problems Mastodon can
engineer solutions towards such as replication [3]. Others,
such as the growth of megaservers are still a subject of de-
bate, and likely will need to be resolved through community
action over software features. [4]

Some of these changes are simply differences to what has
come before in the history of social networks. Though not
decentralized, one could point towards the micro-communities
of reddit as an example of a similar arrangement of users and
interests on a significant platform. It is not a stretch to say
that the limitations imposed by Mastodon’s structure are
within the constraints other social networks have imposed,
and still been successful.

Mastodon also shows a way out of the non-public gather-
ing places issue that most other social networks represent.
This is a significant benefit, besides the emphasis on user
control and strong moderation tools that it provides. Ac-
cess to the source code is also highly beneficial.

The most important detail however, is that Mastodon isn’t
a theoretical idea. It is a network, growing in the wild,
and built to uphold a common standard published by the
W3C. [2] Though analysis of how it grows and the issues it
faces is important, it also is not waiting for to be theoreti-
cally sound. With frequent updates from over eight hundred
authors [6], Mastodon is present and active.

Acknowledgments
The author would like to thank their academic advisor, as-
sociate professor Elena Machkasova, their seminar advisor,
professor Nic McPhee, and seminar teacher, professor KK
Lamberty.

5. REFERENCES
[1] A. Balkan. Encouraging individual sovereignty and a

healthy commons, 2017.

[2] E. S. A. G. Christopher Lemmer Webber,
Jessica Tallon and E. Prodromou. Activitypub.
Technical report, World Wide Web Consortium, 2018.

[3] A. Raman, S. Joglekar, E. D. Cristofaro, N. Sastry, and
G. Tyson. Challenges in the decentralised web: The
mastodon case. In Proceedings of the Internet
Measurement Conference, IMC ’19, page 217–229, New
York, NY, USA, 2019. Association for Computing
Machinery.

[4] E. Rochko. The role of mastodon.social in the
mastodon ecosystem, 2019.

[5] M. Stockley. More relevant ads with tailored audiences,
2013.

[6] TootSuite. Authors.md, 2020.

[7] M. Zignani, S. Gaito, and G. P. Rossi. Follow the
“mastodon”: Structure and evolution of a decentralized
online social network. In Twelfth International AAAI
Conference on Web and Social Media, 2018.

[8] M. Zignani, C. Quadri, S. Gaito, H. Cherifi, and G. P.
Rossi. The footprints of a “mastodon”: How a
decentralized architecture influences online social
relationships. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 472–477. IEEE, 2019.


