
Decentralized Social Networks
Pros and Cons of the Mastodon Platform

Charlot R Shaw

University Of Minnesota Morris
Computer Science Senior Seminar
shawx538@morris.umn.edu

18 04 2020

What Is Mastodon?

We see a lot of the same
problems on social networks,
trolling, spam, deplatforming,
changing terms of service...

1 61

What Is Mastodon?

Under the hood, these networks
are all very similar,
and so end up with the same
problems.

2 61

What Is Mastodon?

Is this the only way to build
social networks?

3 61

Outline

What is Mastodon?
I Decentralization
I Federation

What makes it di�erent?
I Benefits
I Di�erences
I Drawbacks
I Mitigation

What have we learned?

4 61

What Is Mastodon?

Mastodon is
A social network
Open source
Decentralized & Federated
Compatible with W3C
standards [1]

5 61

What Is Mastodon?

Here we see from
left to right

The toot editor
The toots from
those I follow
Notifications
The federated
timeline

6 61

Decentralization:
Nobodies In Charge Here

Decentralization

Let’s start with Twitter

7 61

Decentralization

Twitter Inc. runs the servers that
run Twitter

8 61

Decentralization

Users connect to those servers,
and post their tweets, read their
feeds, etc.

9 61

Decentralization

In Mastodon, things are di�erent

10 61

Decentralization

Each server independently runs
Mastodon software

11 61

Decentralization

Servers interconnect to handle
requests, and don’t need a
central authority

12 61

Federation:
More Than The Sum Of Its parts

Federation

We have three Mastodon
servers, and some are already
connected

13 61

Federation

Alice is a user on the first server.

14 61

Federation

She posts a public message.

15 61

Federation

As a local, public message,
everyone on her server sees it.

16 61

Federation

Bob is a user on a di�erent
server than Alice.

17 61

Federation

As Bob is a follower of Alice,
Alice’s server sends his server a
copy of her public message.

18 61

Federation

All the other users in Bob’s
server see a copy of Alice’s
public message in their
federated timelines.

19 61

Federation

Bob publicly posts a reply to
Alice’s message.

20 61

Federation

Bob’s public response goes out
to all his followers.

21 61

Federation

Charlie is a follower of Bob, so
his server gets sent a copy, and
it’s shown to him.

22 61

Federation

Charlie however, has never
heard of Alice.

23 61

Federation

Behind the scenes, Charlie’s
server opens a connection to
Alice’s.

24 61

Federation

It asks for Alice initial post by ID.

25 61

Federation

Charlie can now see Alice’s post,
direct from her server.

26 61

Federation

Charlies enjoys Alice’s post, and
becomes a follower of hers.
Their two servers work to
maintain the connection in the
future.

27 61

The takeaway:
Mastodon operates on two intertwined layers.

Federation
The network graph, directly
driven by the users social
actions.

The social graph, shaped in
subtle ways by the network
graph that underpins it.

29 61

Benefits:
Triumph Of The Commons

Benefits: A public space

Twitter isn’t a public space [2]
Run for profit
Geared towards
engagement
Monitors and controls

30 61

Benefits: A public space

Mastodon gets closer to a public
space

Open source
Network of independents
Not predicated on profit

31 61

Benefits: Diversity

Mastodon supports a diverse set
of communities

Instance are independent
No need for one-size-fits-all
moderation
Instances can specialize if
they wish

32 61

Benefits: Privacy

Mastodon encourages good
privacy

Explicit and incremental
setting for toots
No singular group in charge
of all data
Host your own server for
maximum control

33 61

Differences:
When In Rome...

Differences: Topic

Di�erent instance can declare
their topics of interest

Figure 2: Trends, localization of the instances and topics. In (a) the number of instances day-by-day, in (b) the number of users
registered in Mastodon and the number of connections among Mastodon instances during the six-month period, and in (c)
the number of post-per-day for the three main instances. In (d) and (e) we report the number of instances and the number of
users grouped by the countries where servers are sited, respectively. In (f) the word cloud of the topics assigned to Mastodon
instances.

instances are not focused on something particular, they are
generalist; b) programming and technology, and in general
science, are the most common among the specific topics; and
c) there are also instances dedicated to the arts, creativity and
gaming. Despite the above results, the information on topics
should be combined with a text analysis on the published
statuses in order to fill the missing data. This aspect will be
dealt with in further work of ours.

Mastodon Network: Structure and Evolution
The second element of our released dataset is the structure
of the social network resulting from the “follow” relation-
ships among the Mastodon users. The asymmetry of the re-
lationship turns the gathering of the network structure into
the visit of a directed graph. The visit of a graph, directed
or not, is a well-studied problem and there are many off-the-
shelf tools to retrieve information from networked data on
the Web, such spiders or crawler. Nevertheless, the develop-
ment of the tools to gather this kind of data requires some
choices which depend on the features of the platform:

1. how to access the information on the connections among
the users;

2. which users the graph visit should start from;

3. which connections to follow and which policy to imple-
ment during the graph visit.

As for the first point, Mastodon offers a rich API to create
third-party application, meanwhile providing an access point

to user data. As in the case of most of the current API imple-
mentation in modern social network, a user must be logged
into the system before accessing her/his data and the infor-
mation returned by the API concerns the logged user only.
That is, we are able to collect the in/out connections only if
we log into Mastodon and limit ourselves to our own user
profile. To overcome these limitations, we developed a web
spider targeted to the web pages of the platform. From each
profile page we extract the URLs which return both the fol-
lowers and the followees. Then, by scraping the web pages
linked to the above URLs we gather the in-going and out-
going relationships of a user. This is an advantage in build-
ing the network, since the crawl of a directed network using
out-going links only, as Flickr does (Mislove et al. 2008),
may not result in the entire weakly connected component.
We also highlight that the information in following/follower
web pages are also available to visitors who are not logged
on.

Once we have identified how to access the data, we have
to define the seed set, i.e. the set of users the crawler starts
to visit. To build a seed set as large as possible we exploit
both the global and the local timelines, since they report all
the statuses with public visibility (see the previous section)
in chronological order. To retrieve the list of the posts in
each instance timeline we leverage the Mastodon API and
query each instance separately. From each list we extract the
users who posted at least one status and put them into the
seed set. To respect politeness and not to excessively load
the instance servers, we stop to query API when we reach

546

[3]

34 61

Differences: Topic

Some topics have many smaller
servers focused on them

General
Journalism

Other topics have fewer
servers, but more users in them

Gaming
Anime

35 61

Differences: Topic

Breaking it down by category

Challenges in the Decentralised Web IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

(a) (b) (c)

Figure 2: Dissecting Instances with open and closed (invite-only) registrations. (a) Distribution of number of toots and users
per-instance (b) Number of instances, toots and users for open and closed registrations; (c) Distribution of active users (max
percentage of users logged-in in a week per instance) across all instances.

Figure 3: Distribution of number of instances, toots and
users across various categories.

Figure 4: Distribution of instances and users across instances
w.r.t. prohibited and allowed categories.

Mastodon UI also has a “content warning” (CW) checkbox for
the posters to give advance notice that there are spoilers in the
content. Interestingly, while 35% instances prohibit posting spoilers
without a content warning, the remaining 65% explicitly allow this.

Figure 5: Distribution of instances, users, and toots across
the top-5 countries (top) and ASes (bottom).

4.3 Instance Hosting
Unlike a centrally administered deployment, where presence can be
intelligently selected, Mastodon’s infrastructure follows a bottom-
up approach, where administrators independently decide where
they place their instance. Figure 5 presents a breakdown of the pres-
ence of instances, toots, and users across countries and Autonomous
Systems (ASes).
Countries. Japan dominates in terms of the number of instances,
users and toots. In total, it hosts 25.5% of all instances, closely fol-
lowed by the US which hosts 21.4%. Closer inspection reveals that
the ratio between the number of instances and number of users dif-
fer across countries though. For example, Japan hosts a just quarter
of instances, yet gains 41% of all users; in contrast, France hosts 16%
of instances, yet accumulates only 9.2% of users. It is also worth
noting that these countries are heavily interconnected, as instances
must federate together, i.e., users on one instance may follow users
on another instance (thereby creating federated subscription links
between them, see Section 2).

To capture their interdependency, Figure 6 presents a Sankey
diagram; along the left axis are the top countries hosting instances,
and the graph depicts the fraction of their federated subscriptions to
instances hosted in other countries (right axis). Unsurprisingly, the
instances exhibit homophily: users of an instance follow other users
on instances in the same country, e.g., 32% of federated links are with

221

[4]

36 61

Differences: Clustering

Users also show di�ering
behavior patterns in di�erent
instances

Following users on same
instance
Following users on di�erent
instances
Following someone back

37 61

Differences: Clustering

How clustered users are across
the whole network, versus on
the four biggest instances

Figure 4: In (a) the in-degree, out-degree and mutual degree distributions of the Mastodon social graph. The in-degree
(b), the out-degree (c) and the mutual degree (d) distributions for the largest Mastodon instances, i.e. pawoo.net, mstd.jp,
mastodon.social, mastodon.xyz. In (e) and (f) the average clustering coefficient as a function of the degree, in the entire net-
work and in the subnetworks of the four most common instances. In (g) the distribution of the difference between the clustering
coefficient measured on the entire network and on the instance subnetwork.

the mutual graph is shown in Figure 4a. Here, we still ob-
serve relatively large degrees, although smaller than both the
in-degrees and the out-degrees.

Figures 4b, 4c, and 4d show the degree distributions
(CCDF) for the four largest instances of Mastodon. It is
evident that they largely differ one from one another when
considering each of the degree-related metrics; instead, they
were found to be comparable in the country-based subgraphs
of Twitter. The centralized and group-unaware paradigm of
Twitter makes the users’ behavior uniform across country,
while the decentralized approach of Mastodon makes it pos-
sible to build subnetworks of people with different features.

Clustering Coefficient
The clustering coefficient in social networks measures the
fraction of users whose friends are friends among one an-
other. As in the Twitter analysis, we focus on the local clus-
tering coefficient (cc) of nodes in the Mastodon mutual net-
work. In Figure 4e we show the average local clustering co-
efficient as a function of the mutual degree. As in most social
networks, the local clustering coefficient decreases while the
degree increases. In the comparison of this metric with two
of most widespread online social networks, we find that its
lies in the middle between Facebook and Twitter. Specif-
ically, if the average clustering coefficient for the degree
equal to 5 is about 0.4 and 0.23 in Twitter and Facebook re-
spectively, in Mastodon we get 0.28. The same trend holds
for higher degrees, for a degree of about 20 in Facebook cc
is 0.3, in Twitter it is 0.19, while in Mastodon it is 0.23.
With a degree close to 100 Facebook and Twitter networks
are very similar to each other and have a coefficient around
0.14, in Mastodon, rather, the cc is higher, 0.17. In general,

the Mastodon network shows a tightly clustered structure.
This is a property which makes the released network consis-
tent with a social network.

The above properties of the clustering coefficient re-
sults from the combination of the subnetworks supported
by the difference instances. But it is also interesting to
analyze the differences in the local clustering between
the main Mastodon instances, as shown in Figure 4f. In
the figure we report the average local clustering coeffi-
cient versus the mutual degree for the instances: pawoo.net,
mstdn.jp, mastodon.social and mastodon.xyz. Instances are
very different from one another. First, mstdn.jp, the sec-
ond largest instance, has a higher average clustering coef-
ficient (0.35) compared to the other instances (pawoo.net -
0.26, mastodon.social - 0.13 and mastodon.xyz - 0.08), and
it is also higher than the clustering coefficient of the en-
tire network. The second and even more interesting fact is
that in the mstdn.jp subnetwork the clustering coefficient in-
creases up to a peak (cc = 0.46) at degree around 30, then
slows down. That indicates the presence of clustered regions
around nodes with a small-medium connectivity. The same
behavior, at a different magnitude order, has been observed
in the Twitter Japanese subgraph 9, where there are quasi-
clique subgraphs centered around high degree nodes. The
above results highlight that the clustered structure of the net-
work strongly depends on the instances, as also indicated by
Figure 4g. Here we plot the cumulative distribution function
of the increase/decrease of the clustering coefficient mea-
sured on the instance subgraph and on the whole network.
The distribution is concentrated in the interval (−0.1, 0.1)

9Note that mstdn.jp is a Japanese instance.

548

(a) (b) (c) (d)

(e) (f) (g)

Fig. 3. The local clustering coefficient as a function of the mutual degree in
the ten largest instances.

instances lie in the range [2.1 � 2.5]. Similar results hold for
the out-degree and the in-degree.

In general, by combining the previous observations on the
degree distributions and the outcomes of the fitting procedure,
we can assert that each instance has a peculiar footprint which
reflects on how its members establish “follower”/“followee”
or mutual relationships. Moreover, we suppose that the un-
derlying mechanism which drives the formation of the nodes’
neighborhood may vary among the instance, since the vari-
ability of the slope parameter (↵) is strictly related to different
network growth models.

2) Clustering coefficient footprint: In the previous section
we found that instances condition how triangles form, meaning
that also the clustering coefficient of the nodes may be a
footprint of the instance. So, we analyze the differences in
the local clustering between the main Mastodon instances,
as shown in Fig. 3. In the figure we report the average
local clustering coefficient versus the mutual degree in the
ten biggest instances. Instances are very different from one
another: i) “mstdn.jp”, the second largest instance, has a
higher average clustering coefficient (0.35) than the other
instances (e.g. “pawoo.net” - 0.26, “mastodon.social” - 0.13
and “mastodon.xyz” - 0.08), and it is also higher than the clus-
tering coefficient of the entire network; ii) in the “mstdn.jp”
subnetwork the clustering coefficient increases up to a peak
(cc = 0.46) at degree around 30, then slows down. That
indicates the presence of clustered regions around nodes with a
small-medium connectivity. The same behavior, at a different
magnitude order, has been observed in the Twitter Japanese
subgraph [13], where there are quasi-clique subgraphs centered
around high degree nodes. The above results highlight a further
footprint of the instances, i.e. the trend of the local clustering
coefficient as a function of the degree.

VI. CONCLUSION

Decentralized online social networks have recently emerged
as a novel paradigm able to better preserve the user’s privacy
and to ensure higher users’ control over the contents they
publish. The design of such a decentralized architecture has
been mainly accomplished without giving sufficient consid-
eration to the overlaid social network, despite the fact that
it played a significant role in the successful design of their
centralized counterpart, in terms of both new services and
efficiency of data management. This paper investigates the

interplay between the system design and the network of
social relationships the system supports. Our analysis relies
on a novel large dataset about the decentralized microblog-
ging platform Mastodon, and highlights to what extent an
instance/community-based infrastructure conditions the way
people connect to each other over the platform. Our findings
show that the impact instances exert on how their members
establish social relationships is instance-dependent, however
to a lesser or greater extent people cross over the instance
boundaries to search for new friendships. The underlying
factors driving this behavior are actually unknown, however
it might be different across the instances, since each of them
has a specific footprint in terms of degree distribution and
clustering coefficient.

As a future work we wonder which role instances and
privacy settings play on the diffusion of contents on the
Mastodon social network.

REFERENCES

[1] S. R. Chowdhury, A. R. Roy, M. Shaikh, and K. Daudjee, “A taxonomy
of decentralized online social networks,” Peer-to-Peer Networking and
Applications, vol. 8, no. 3, pp. 367–383, 2015.

[2] A. D. Salve, P. Mori, and L. Ricci, “A survey on privacy in decentralized
online social networks,” Computer Science Review, vol. 27, pp. 154 –
176, 2018.

[3] L. Bahri, B. Carminati, and E. Ferrari, “Decentralized privacy preserving
services for online social networks,” Online Social Networks and Media,
vol. 6, pp. 18 – 25, 2018.

[4] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in Security and Privacy Workshops (SPW),
2015 IEEE. IEEE, 2015, pp. 180–184.

[5] L. Lorincz, J. Koltai, A. F. Gyor, and K. Takacs, “Collapse of an online
social network: Burning social capital to create it?” Social Networks,
vol. 57, pp. 43 – 53, 2019.

[6] A. Patil, J. Liu, and J. Gao, “Predicting group stability in online social
networks,” in Proceedings of the 22nd International Conference on
World Wide Web, ser. WWW ’13, 2013.

[7] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual review of sociology, vol. 27,
no. 1, pp. 415–444, 2001.

[8] J. Yang and J. Leskovec, “Community-affiliation graph model for
overlapping network community detection,” in Proceedings of the IEEE
12th International Conference on Data Mining, ser. ICDM ’12. IEEE,
2012, pp. 1170–1175.

[9] J. Su, A. Sharma, and S. Goel, “The effect of recommendations on
network structure,” in Proceedings of the 25th International Conference
on World Wide Web, ser. WWW ’16, 2016.

[10] M. Zignani, S. Gaito, G. P. Rossi, X. Zhao, H. Zheng, and B. Y. Zhao,
“Link and triadic closure delay: Temporal metrics for social network
dynamics,” in Proceedings of the 8th International AAAI Conference on
Weblogs and Social Media, ser. ICWSM’14, 2014.

[11] M. Zignani, S. Gaito, and G. P. Rossi, “Follow the ”mastodon”: Structure
and evolution of a decentralized online social network,” in Proceedings
of the 12th International AAAI Conference on Weblogs and Social
Media, ser. ICWSM’18, 2018, pp. 541–551.

[12] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee, “Growth of the flickr social network,” in Proceedings of the
First Workshop on Online Social Networks, ser. WOSN ’08. ACM,
2008, pp. 25–30.

[13] S. A. Myers, A. Sharma, P. Gupta, and J. Lin, “Information network
or social network?: the structure of the twitter follow graph,” in
Proceedings of the 23rd International Conference on World Wide Web,
ser. WWW ’14. ACM, 2014, pp. 493–498.

[14] A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distributions
in empirical data,” SIAM review, vol. 51, no. 4, pp. 661–703, 2009.

�����,(((�,1)2&20�:.6+36��&$26�������&RPPXQLFDWLRQV�DQG�1HWZRUNLQJ�$VSHFWV�RI�2QOLQH�6RFLDO�1HWZRUNV

477

[3]
38 61

Differences: Nationality

Users overwhelmingly connect to users in the same country [4]

39 61

Drawbacks:
Divided We Stand...

Drawbacks

A healthy Mastodon network

40 61

Drawbacks

One node gains unbalanced
prominence

41 61

Drawbacks

If that node fails, the network is
damaged

42 61

Drawbacks

1s are strongly
interconnected
2 is isolated
3 is also isolated
4s are the largest group, but
weakly connected

43 61

Drawbacks

There are many ways towards
failure

Celebrity Users
Large Instances
Unstable Servers
Common Infrastructure

44 61

Drawbacks: User Abandonment

Users find each other, through
users

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands A. Raman et al.

Figure 11: CDF of the out-degree distribution of the so-
cial follower graph, federation graph, and Twitter follower
graph.

almost all instances (98%) go down at least once, a quarter of them
are unavailable for at least one day before coming back online,
ranging from 1 day (21%) to over a month (7%). Figure 10 also reports
the number of toots and users a�ected by the outages: 14% of users
cannot access their instances for a whole day at least once. Naturally,
these measures are closely correlated to toot unavailability (i.e.,
toots become unavailable when their host instance goes o�ine).
In the worst case, we �nd one day (April 15, 2017) where 6% of all
(global) toots were unavailable for the whole day. These �ndings
suggest a need for more reslient approaches to DW management.

5 EXPLORING FEDERATION
The previous section has explored the central role of independent
instances within the Mastodon ecosystem. The other major innova-
tion introduced by the DW is federation. Here we inspect federation
through two lenses: (i) the federated subscription graph that inter-
connects instances (Section 5.1); and (ii) the distributed placement
and sharing of content (toots) via this graph (Section 5.2). This
section studies the resilience properties of DW federation in light
of the frequent failures observed earlier.

5.1 Breaking the User Federation
Federation allows users to create global follower links with users
on other instances. This means that instance outages (Section 4.4)
can create a transitive ripple e�ect, e.g., if three users on di�erent
instances follow each other, U1 ! U2 ! U3, then the failure of the
instance hosting U2 would also disconnect U1 and U3 (assuming
that no other paths exist). To highlight the risk, Figure 11 presents
the degree distribution of these graphs, alongside a snapshot of
the Twitter follower graph (see Section 3). We observe traditional
power law distributions across all three graphs. Although natural,
this creates clear points of centralisation, as outages within highly
connected nodes will have a disproportionate impact on the overall
graph structure [3].

To add context to these highly connected instances, Table 2
summarises the graph properties of the top 10 instances (ranked
by the number of toots generated on their timeline). As well as
having very high degree within the graphs, we also note that these
popular instances are operated by a mix of organisations, including
companies (e.g., Pixiv and Dwango), individuals, and crowd-funding.

Figure 12: Impact of removing user accounts from G
�
V , E

�
.

Each iteration (X axis) represents the removal of the remain-
ing 1% of the highest degree nodes.

Ideally, important instances should have stable and predictable
funding. Curiously, we �nd less conventional business models, e.g.,
vocalodon.net, an instance dedicated to music that funds itself by
creating compilation albums from user contributions.
Impact of Removing Users. The above �ndings motivate us to
explore the impact of removing nodes from these graphs. Although
we are primarily interested in infrastructure outages, we start by
evaluating the impact of removing individual users from the social
graph,G

�
V , E

�
. This would happen by users deleting their accounts.

Such a failure is not unique to the DW, and many past social net-
works have failed simply by users abandoning them [46]. Here, we
repeat past methodologies to test the resilience of the social graph
by removing the top users and computing two metrics: (i) the size
of the Largest Connected Component (LCC), which represents the
maximum potential number of users that toots can be propagated
to (via shares); and (ii) the number of disconnected components,
which relates to the number of isolated communities retaining in-
ternal connectivity for propagating toots. These metrics have been
used to characterise the attack and error tolerance of social and
other graphs [3, 23, 51].

We proceed in rounds, removing the top 1% of remaining nodes in
each iteration, and computing the size of the LCC in the remaining
graph, as well as the number of new components created by the
removal of crucial connecting nodes. Figure 12 presents the results
as a sensitivity graph. The results con�rm that the user follower
graph is extremely sensitive to removing the highly connected
users. Although Mastodon appears to be a strong social graph, with
99.95% of users in the LCC, removing just the top 1% of accounts
decreases the LCC to 26.38% of all users.

As a comparison, we use the Twitter social graph from 2011
when Twitter was a similar age as Mastodon is now (and beset
with frequent “fail whale” appearances [28]). Without any node
removals, Twitter’s LCC contained 95% of users [10]; removing the
top 10% still leaves 80% of users within the LCC. This con�rms that
Mastodon’s social graph, by comparison, is far more sensitive to
user removals. Although we expect that the top users on any plat-
form will be more engaged, and therefore less likely to abandon the
platform, the availability of top users to every other user cannot be
guaranteed since there is no central provider and instance outages

224

[4]

45 61

Drawbacks: User Abandonment

Users find each other, through
users

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands A. Raman et al.

Figure 11: CDF of the out-degree distribution of the so-
cial follower graph, federation graph, and Twitter follower
graph.

almost all instances (98%) go down at least once, a quarter of them
are unavailable for at least one day before coming back online,
ranging from 1 day (21%) to over a month (7%). Figure 10 also reports
the number of toots and users a�ected by the outages: 14% of users
cannot access their instances for a whole day at least once. Naturally,
these measures are closely correlated to toot unavailability (i.e.,
toots become unavailable when their host instance goes o�ine).
In the worst case, we �nd one day (April 15, 2017) where 6% of all
(global) toots were unavailable for the whole day. These �ndings
suggest a need for more reslient approaches to DW management.

5 EXPLORING FEDERATION
The previous section has explored the central role of independent
instances within the Mastodon ecosystem. The other major innova-
tion introduced by the DW is federation. Here we inspect federation
through two lenses: (i) the federated subscription graph that inter-
connects instances (Section 5.1); and (ii) the distributed placement
and sharing of content (toots) via this graph (Section 5.2). This
section studies the resilience properties of DW federation in light
of the frequent failures observed earlier.

5.1 Breaking the User Federation
Federation allows users to create global follower links with users
on other instances. This means that instance outages (Section 4.4)
can create a transitive ripple e�ect, e.g., if three users on di�erent
instances follow each other, U1 ! U2 ! U3, then the failure of the
instance hosting U2 would also disconnect U1 and U3 (assuming
that no other paths exist). To highlight the risk, Figure 11 presents
the degree distribution of these graphs, alongside a snapshot of
the Twitter follower graph (see Section 3). We observe traditional
power law distributions across all three graphs. Although natural,
this creates clear points of centralisation, as outages within highly
connected nodes will have a disproportionate impact on the overall
graph structure [3].

To add context to these highly connected instances, Table 2
summarises the graph properties of the top 10 instances (ranked
by the number of toots generated on their timeline). As well as
having very high degree within the graphs, we also note that these
popular instances are operated by a mix of organisations, including
companies (e.g., Pixiv and Dwango), individuals, and crowd-funding.

Figure 12: Impact of removing user accounts from G
�
V , E

�
.

Each iteration (X axis) represents the removal of the remain-
ing 1% of the highest degree nodes.

Ideally, important instances should have stable and predictable
funding. Curiously, we �nd less conventional business models, e.g.,
vocalodon.net, an instance dedicated to music that funds itself by
creating compilation albums from user contributions.
Impact of Removing Users. The above �ndings motivate us to
explore the impact of removing nodes from these graphs. Although
we are primarily interested in infrastructure outages, we start by
evaluating the impact of removing individual users from the social
graph,G

�
V , E

�
. This would happen by users deleting their accounts.

Such a failure is not unique to the DW, and many past social net-
works have failed simply by users abandoning them [46]. Here, we
repeat past methodologies to test the resilience of the social graph
by removing the top users and computing two metrics: (i) the size
of the Largest Connected Component (LCC), which represents the
maximum potential number of users that toots can be propagated
to (via shares); and (ii) the number of disconnected components,
which relates to the number of isolated communities retaining in-
ternal connectivity for propagating toots. These metrics have been
used to characterise the attack and error tolerance of social and
other graphs [3, 23, 51].

We proceed in rounds, removing the top 1% of remaining nodes in
each iteration, and computing the size of the LCC in the remaining
graph, as well as the number of new components created by the
removal of crucial connecting nodes. Figure 12 presents the results
as a sensitivity graph. The results con�rm that the user follower
graph is extremely sensitive to removing the highly connected
users. Although Mastodon appears to be a strong social graph, with
99.95% of users in the LCC, removing just the top 1% of accounts
decreases the LCC to 26.38% of all users.

As a comparison, we use the Twitter social graph from 2011
when Twitter was a similar age as Mastodon is now (and beset
with frequent “fail whale” appearances [28]). Without any node
removals, Twitter’s LCC contained 95% of users [10]; removing the
top 10% still leaves 80% of users within the LCC. This con�rms that
Mastodon’s social graph, by comparison, is far more sensitive to
user removals. Although we expect that the top users on any plat-
form will be more engaged, and therefore less likely to abandon the
platform, the availability of top users to every other user cannot be
guaranteed since there is no central provider and instance outages

224

[4]

45 61

Drawbacks: Large Instances

Massive servers have undue
influence

10% of servers host 52% of all
users[4]

46 61

Drawbacks: Unreliable Servers

A robust network tends to be
imperfect

Challenges in the Decentralised Web IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Figure 8: Distribution of per-day downtime (measured every
�ve minutes) of Mastodon instances (binned by number of
toots), and Twitter (Feb–Dec 2007).

(a)

(b)

Figure 9: (a) Footprint of certi�cate authorities among the
instances. (b) Unavailability of instances (on a per-day ba-
sis).

toots) clearly have the most downtime (median 12%), those with
over 1M toots actually have worse availability than instances with
between 100K and 1M (2.1% vs. 0.34% median downtime). In fact,
the correlation between the number of toots on an instance and its
downtime is -0.04, i.e., instance popularity is not a good predictor of
availability. The �gure also includes Twitter’s downtime in 2007 for
comparison (see Section 3). Although we see a number of outliers,
even Twitter, which was famous for its poor availability (the “Fail
Whale” [28]), had better availability compared to Mastodon: its
average downtime was just 1.25% vs. 10.95% for Mastodon instances.
Certi�cate Dependencies. Another possible reason for failures
is third party dependencies, e.g., TLS certi�cate problems (Mastodon
uses HTTPS by default). To test if this may have caused issues, we
take the certi�cate registration data from crt.sh [11], and check
which certi�cate authorities (CAs) are used by instances, presented
in Figure 9(a). Let’s Encrypt has been chosen as CA for more than
85% of the instances, likely because this service o�ers good au-
tomation and is free of cost [31]. This, again, con�rms a central
dependency in the DW. We also observe that certi�cate expiry is
a noticeable issue (perhaps due to non-committed administrators).
Figure 9(b) presents the number of instances that have outages
caused by the expiry of their certi�cates. In the worst case we �nd

ASN Instances Failures IPs Users Toots Org. RankPeers

AS9370 97 1 95 33.4K 3.89M Sakura 2.0K 10
AS20473 22 4 21 5.7K 936K Choopa 143 150
AS8075 12 7 12 1.7K 35.4K Microsoft 2.1K 257
AS12322 9 15 9 123 4.4K Free SAS 3.2K 63
AS2516 9 4 8 559 102K KDDI 70 123
AS9371 8 14 8 165 4.7K Sakura 2.4K 3

Table 1: AS failures per number of hosted instances. Rank
refers to CAIDA AS Rank, and Peers is the number of net-
works the AS peers [8].

Figure 10: CDF of continuous outage (in days) of instances
not accessible for at least one day (Y1-axis) and number of
toots and users a�ected due to the outage (Y2-axis).

105 instances to be down on one day (23 July 2018), removing nearly
200K toots from the system. Closer inspection reveals that this was
caused by the Let’s Encrypt CA short expiry policy (90 days), which
simultaneously expired certi�cates for all 105 instances. In total,
these certi�cate expirations were responsible for 6.3% of the outages
observed in our dataset.
AS Dependencies. Another potential explanation for some in-
stance unavailability is that AS-wide network outages might occur.
Due to the co-location of instances within the same AS, this could
obviously have a widespread impact. To test this, we correlate the
above instance unavailability to identify cases where all instances
in a given AS simultaneously fail — this may indicate an AS out-
age. Table 1 presents a summary of the most frequent failures (we
consider it to be an AS failure if all instances hosted in the same
AS became unavailable simultaneously). We only include ASes that
host at least 8 instances (to avoid mistaking a small number of
failures as an entire AS failure). We observe a small but notable
set of outages. In total, 6 ASes su�er an outage. The largest is by
AS9370 (Sakura, a Japanese hosting company), which lost 97 in-
stances simultaneously, rendering 3.89M toots unavailable. The AS
with most outages (15) is AS12322 (Free SAS), which removed 9
instances. These outages are responsible for less than 1% of the
failures observed, however, their impact is still signi�cant. In total,
these AS outages resulted in the (temporary) removal of 4.98M
toots from the system, as well as 41.5K user accounts. Although this
centralisation can result in such vulnerabilities, the decentralised
management of Mastodon makes it di�cult for administrators to
coordinate placement to avoid these “hot spots”.
Outage durations. Finally, for each outage, we brie�y compute
its duration and plot the CDF in Figure 10 (blue line, Y1-axis). While

223

[4]

47 61

Drawbacks: Common Infrastructure

Mastodon servers are often run
as cheaply as possible

Challenges in the Decentralised Web IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

(a) (b) (c)

Figure 2: Dissecting Instances with open and closed (invite-only) registrations. (a) Distribution of number of toots and users
per-instance (b) Number of instances, toots and users for open and closed registrations; (c) Distribution of active users (max
percentage of users logged-in in a week per instance) across all instances.

Figure 3: Distribution of number of instances, toots and
users across various categories.

Figure 4: Distribution of instances and users across instances
w.r.t. prohibited and allowed categories.

Mastodon UI also has a “content warning” (CW) checkbox for
the posters to give advance notice that there are spoilers in the
content. Interestingly, while 35% instances prohibit posting spoilers
without a content warning, the remaining 65% explicitly allow this.

Figure 5: Distribution of instances, users, and toots across
the top-5 countries (top) and ASes (bottom).

4.3 Instance Hosting
Unlike a centrally administered deployment, where presence can be
intelligently selected, Mastodon’s infrastructure follows a bottom-
up approach, where administrators independently decide where
they place their instance. Figure 5 presents a breakdown of the pres-
ence of instances, toots, and users across countries and Autonomous
Systems (ASes).
Countries. Japan dominates in terms of the number of instances,
users and toots. In total, it hosts 25.5% of all instances, closely fol-
lowed by the US which hosts 21.4%. Closer inspection reveals that
the ratio between the number of instances and number of users dif-
fer across countries though. For example, Japan hosts a just quarter
of instances, yet gains 41% of all users; in contrast, France hosts 16%
of instances, yet accumulates only 9.2% of users. It is also worth
noting that these countries are heavily interconnected, as instances
must federate together, i.e., users on one instance may follow users
on another instance (thereby creating federated subscription links
between them, see Section 2).

To capture their interdependency, Figure 6 presents a Sankey
diagram; along the left axis are the top countries hosting instances,
and the graph depicts the fraction of their federated subscriptions to
instances hosted in other countries (right axis). Unsurprisingly, the
instances exhibit homophily: users of an instance follow other users
on instances in the same country, e.g., 32% of federated links are with

221

[4]

48 61

Drawbacks: Common Infrastructure

Anything that e�ects many,
many servers is concerning

Challenges in the Decentralised Web IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Toots from #Home Users Toots Instances
Domain Home Users Users OD ID OD ID OD ID Run by AS (Country)

mstdn.jp 9.87M 23.2K 22.5K 24.7K 71.4M 1.94M 1352 1241 Individual Cloud�are (US)
friends.nico 6.54M 8998 8809 23.3K 37.4M 2.57M 1273 1287 Dwango Amazon (JP)
pawoo.net 4.72M 30.3K 27.6K 15.4K 34.9M 1.4M 1162 1106 Pixiv Amazon (US)
mimumedon.com 3.29M 1671 507 7510 435K 366K 420 524 Individual Sakura (JP)
imastodon.net 2.34M 1237 772 10.8K 2.37M 1.52M 711 865 Individuals (CF) Amazon (US)
mastodon.social 1.65M 26.6K 24.8K 16.1K 30.9M 525K 1442 1083 Individual (CF) Online SAS (FR)
mastodon.cloud 1.54M 5375 5209 106 7.35M 337 1198 39 Unknown Cloud�are (US)
mstdn-workers.com 1.35M 610 576 12.5K 4.18M 1.98M 735 850 Individual (CF) Amazon (JP)
vocalodon.net 914K 672 653 8441 2.6M 853K 981 631 Bokaro bowl (A) Sakura (JP)
mstdn.osaka 803K 710 363 1.64K 2.68M 2.1M 561 862 Individual Google (US)

Table 2: Top 10 instances as per number of toots from the home timeline. (OD: Out Degree, ID: In Degree, CF: Crowd-funded,
A: maintained by selling Bokaro Bowl album).

(a) (b)

Figure 13: Impact of node removal attacks. Each sub�gure
measures, on Y1 axis, LCC and, on Y2 axis, the number
of components for GF

�
I , E

�
, by removing: (a) the top N in-

stances (each node in GF is an instance); and (b) the top N
Autonomous Systems, including all instances hosted within.

may remove these users. Indeed, individual instance failures, which
we examine next, can take out huge subsets of users from the global
social graph.
Impact of Removing Instances. As discussed earlier, instance
failures are not uncommon, and can have an impact that exceeds
their local user base due to the (federated) cross-instance intercon-
nectivity of users in the social follower graph. Therefore, we next
measure the resilience of the instance federation graph (GF). In
Figure 13(a), we report the impact of instance failures on GF . We
iteratively remove the top N instances, ordered by their size; we
rank by both number of users (red) and number of toots (green).
When ranking via either metric, we notice a remarkably robust
linear decay in the size of the LCC, and a corresponding increase
in the number of components.

Unlike the drastic breakdown of the social graph, this elegant
degradation is caused by the more uniform degree distribution
of the federation graph (as compared against traditional social
networks [6]). We emphasise that the instance federation graph
shows the potential connectivity of instances. However, individual
instance failures would still have an enormous impact on the social
graph.

Impact of Removing ASes. As discussed earlier, many instances
are co-located in a small number of hosting ASes. We now inspect
the impact of removing entire ASes, and thus all instances hosted
within. Naturally, this is a far rarer occurrence than instance fail-
ures, yet they do occur (see Section 4.4). We do not present this
as a regular situation, but one that represents the most damaging
theoretical impact. For context, AS-wide collapse might be caused
by catastrophic failures within the AS itself [20, 29] or via their
network interconnections [17].

Figure 13(b) presents the LCC and number of components forGF ,
while iteratively removing the ASes, ranked by both the number of
instances (blue) and number of users (red). At �rst, we see that 92%
of all instances are within a single LCC. This LCC covers 96% of all
users. The graph shows that removing large ASes, measured by the
number of instances (blue), has a signi�cant impact onGF . The size
of the largest connected component decreases similarly whether
we remove the largest ASes when ranked by instances hosted (blue)
or by number of users (red). However, the number of connected
components in GF increases drastically when we remove the ASes
hosting the largest users rather than ASes ranked by number of
instances: the removal of just 5 ASes shatters the federation graph
into 272 components when sorted by users hosted, compared to just
139 when ranking by the #instances in the AS. This is explained
by the central role of a few ASes: the top 5 ASes by users cover
only 20% of instances (yet comprise 85% of users); when ranked by
number of instances, the top 5 covers 42% of instances (and 33.6%
of users).

Thus, when AS failures occur, Mastodon shows signi�cantly
worse resilience properties than previously seen for just instance
failures (Figure 13(a)). This is driven by the fact that the top �ve
ASes by number of instances hosted — OVH SAS (FR), Scaleway
(FR), Sakura Internet (JP), Hetzner Online (DE), and GMO Internet
(JP) — account for 42% of all instances. Their removal yields a 49%
reduction in the size of LCC in the federation graph, leaving behind
an LCC which only covers 45% of instances and 66% of users. This
constitutes a radical drop in the capacity of Mastodon to dissemi-
nate toots via the federated subscription links. Indeed, removing
them not only wipes out a large number of nodes, but also results in
a smaller number of components which still remain. That said, the
linear degradation of the instance federation graph discussed previ-
ously provides some limited protection against a more catastrophic
failure as observed with the Mastodon social graph. Although a

225

[4]

49 61

Mitigation:
As Long As One Still Stands...

Mitigation: Replication

Replication has copies of every message that get saved to other
servers

50 61

Mitigation: Replication

Subscription based replication stores copies of subscribed
messages on subscribers servers

51 61

Mitigation: Replication

Removing the top ten servers by
toots loses 62.69% of all toots

The same scenario with
subscription replication loses
only 2.1%

52 61

Mitigation: Replication

There are downsides
23% of toots have 10+ replicas
9.7% of toots have none

53 61

Mitigation: Replication

Randomized replication places the copies on random servers, to
avoid clustering

54 61

Mitigation: Replication

Removing the top 25 servers by
number of toots loses 5% of all
toots

The same scenario with a single
random replication loses only
0.8%

55 61

Mitigation: Replication

Still have downsides
Need a common index of all instances
Potential for abuse
Hosting random data on behalf of others

56 61

Conclusions:
Theory Meets Practice

Conclusions

Mastodon o�ers a public space, with a diverse set of
communities, and mechanisms to protect that diversity.

57 61

Conclusions

Although these are serious scenarios, they are hypothetical at
present.
Mastodon is growing steadily, with over a million users, and eight
hundred contributors. [5]

58 61

Conclusions

Questions?

59 61

References

Christopher Lemmer Webber, Jessica Tallon, Erin Shepherd, Amy
Guy, and Evan Prodromou.
Activitypub.
Technical report, World Wide Web Consortium, 2018.

Laura Kalbag.
What is mastodon and why should i use it?, 2018.

Matteo Zignani, Sabrina Gaito, and Gian Paolo Rossi.
Follow the “mastodon”: Structure and evolution of a
decentralized online social network.
In Twelfth International AAAI Conference on Web and Social Media,
2018.
Aravindh Raman, Sagar Joglekar, Emiliano De Cristofaro,
Nishanth Sastry, and Gareth Tyson.
Challenges in the decentralised web: The mastodon case.
In Proceedings of the Internet Measurement Conference, IMC ’19,
page 217–229, New York, NY, USA, 2019. Association for Computing
Machinery.

TootSuite.
Authors.md, 2020.

60 61

About The Author

Charlot Shaw (They/Them)
Charlot is interested in making
technology that is
fundamentally equitable, and
belongs to the users. This
includes open source, indie and
distributed web technology.
shawx538@morris.umn.edu
(email)
unwary@wandering.shop
(Mastodon)

Computer Science Major
Spanish Minor
Honors Student
McNair Scholar

61 / 61

	Decentralization: Nobodies In Charge Here
	Federation: More Than The Sum Of Its parts
	Benefits: Triumph Of The Commons
	Differences: When In Rome...
	Drawbacks: Divided We Stand...
	Mitigation: As Long As One Still Stands...
	Conclusions: Theory Meets Practice

