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Abstract
This paper reviews a deep learning approach for video up-
scaling. Video upscaling is when a low resolution video is
used to generate a high resolution video. This process starts
by splitting each frame of the video into its own image. The
upscaling then either upscales each image separately or looks
at multiple surrounding images to make choices based on
earlier and later images for more consistency. The paper
discusses Chu, Mengyu and Xie, You and Mayer, Jonas and
Leal-Taix’s 2020 generative adversarial networks as an ap-
proach for upscaling with a focus on temporal and spatial
consistency.

Keywords: machine learning, deep learning, neural networks,
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1 Introduction
Video upscaling is the process of changing a low resolution
video to a high resolution one, as shown in animated Figure 1.
The upscaling can be done in different ways but the most
common is with deep learning. Deep learning is a more ad-
vanced type of machine learning and tries to mimic a human
brain with artificial neural networks. There are many differ-
ent techniques that use neural networks for upscaling. One
of them is TecoGAN, which is Chu et al’s [2] 2020 general
adversarial network, with the purpose of keeping track of the
temporal and spatial consistency in the upscaled video. Tem-
poral consistency is the when the motion of objects between
frames is correct and spatial consistency is when the shape of
the objects themselves are correct. An example of upscaling
would be upscaling low resolution video of a airplane flying
across the sky. The high resolution upscaled video’s spatial
consistency should make sure the airplane continues to have
the same shape, and the temporal consistency should make
sure the motion of the airplane flying matches the low reso-
lution video. The results of upscaling in general is fair but far
from perfect, but it is quickly improving. TecoGAN’s results
specifically are good and usually, but not always, better than
other top upscaling methods.

The paper’s road map includes background, TecoGAN,
conclusion and acknowledgements.

Figure 1. Left low resolution spider, right upscaled high
resolution spider. Click to start animation [3]

2 Background
The following section will include background information
on video, upscaling, machine learning, neural networks, loss
terms, deep learning, and generative adversarial networks.

2.1 Video
A video can be high (HR) or low resolution (LR) and have
a variety of frames rates, measured in seconds (FPS). Video
resolution is measured by width times height and is often
is often referred to by just the height. The most common
resolutions are 480p for DVDs (720 x 480), 1080p (also known
as 2K) for Blu-ray (1920 x 1080), and 2160p (or 4K) for Ul-
tra HD Blu-ray (3840 X 2160). [9] Although these are the
most common resolutions for movies, streaming services
such as YouTube can have videos that are anywhere from
144p to 4320p or 8K, but most content is still in the mid-
dle range of 480p to 1080p. Additionally, streaming services
will show videos with dynamic resolutions based on your
internet speed, meaning if you internet speed dips the video
resolution will go down until the internet picks back up. Sur-
prisingly, most commercial 4K and 8K content is an upscale
of 2K content because most CGI is rendered at 2K. This leads
to movies shot on film, usually pre-2000, looking better than
a brand new movie, something one might not find intuitive.
Movie shot on film looks better because film can be digitally
scanned up to 16K but in practice is rarely scanned over 4K.
Low resolution is any video that is under 720p while high
resolution is equal to or greater than that.

A video is made up of frames which are single images. FPS
is then multiple images being shown per second one after
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Figure 2. Fan upscaling of Star Trek Deep Space 9 4K from a
DVD source, cropped. Top 480p DVD, Bottom 4K Upscale [1]

the other. This is perhaps easiest to understand by thinking
of creating an 15 FPS stop motion film in which every 15
photos taken corresponds to 1 second of video. The standard
for film is 24 FPS while American Television is 29.97 FPS,
which means a 90 minute film would have 129,600 individual
frames and a 22 minute sitcom would have 39,560 frames [7].
A few movies have higher FPS such as 48 or 60, but are
considered controversial with most audiences disliking or
not noticing.

2.2 Upscaling
Upscaling is taking a LR image or video and generating a
HR image or video. An example, Figure 2, show the results
of fans upscaling Star Trek: Deep Space 9 to 4K, as the show
has only been released on DVD and will not be remastered
for Blu-ray. Images are always the thing being upscaled even
with Video Super Resolution (VSR), i.e. video upscaling, be-
cause the video is broken down into frames and these are
upscaled. This means that some models can handle videos by
separating them into frames while other models only work
for individual images. For the individual image models to
process videos you would manually have to split them into
frames, and after the upscaling is finished you would have
to manually put them back together.

Different LR videos can propose different challenges to up-
scaling. All LR videos are not the same with some differences
being live-action vs animated, fine details vs few details, a lot
of motion between frames vs little motion between frames,
or the types of objects in the frame. A drastic example is if
you train a model on video of buildings using it to upscale a
video of a face will not work very well. Videos can have a
wide variety of these differences between frames or inside a
single frame, therefore good upscaling models needs to be
able to handle the variety.

2.3 Machine Learning
Machine learning is the study of a type of artificial intelli-
gence which improves the accuracy of a computer algorithm
through the use of data and time. Machine learning algo-
rithms take in training data, which can be any type of data,
and use it to learn how to classify or make choices based
on that data without having to be manually programmed.

Figure 3. Recurrent Neural Network, circles are the nodes,
arrows are the edges [4].

The applications for machine learning are numerous includ-
ing internet credit-card fraud detection, marketing, theorem
proving, robot locomotion, adaptive websites, and medical
diagnosis. [10] A specific example of this is VSR which takes
in training data of LR frames and target HR frames, and
learns how to generate HR frames from the LR frames.

The upscaling models are trained, which will be explained
more later, with HR images that are down-sampled to LR,
which leaves the generated image to be compared with the
original HR image at the end. Examples include Figure 1 and
Figure 6. TecoGAN down-sampling images with Gaussian
blur, a specific mathematical function that creates LR images
that are worse quality then real life LR images. LR images
being artificially created allows for the original HR image to
be the target data. TecoGAN only uses the target data when
deciding how well the upscale did, not for the upscaling
itself. The original HR image is also known as the ground
truth (GT) in VSR, because the upscaling target is to be as
close to the GT as possible. TecoGAN is trained on harder
down-sampled images because real life use cases will not
have GT.

2.4 Neural Networks
Neural Networks (NN) uses input data, output data, target
data, training, and weights. Input data can be any type of data
and is used to start the process; for VSR it is LR frames. Out-
put data is the result at the end of the process; for VSR, output
data is the generated HR frames. The way NNs are able to
take input data and get accurate output data is through the
use of target data and training. Target data is examples of
what the output data should be; for VSR this is HR frames.
Training is the taking of inputs and matching them to out-
puts through the target data, to then be able to generate its
own data that is similar to the target data.

As shown in Figure 3 NNs are made up of nodes which
are the circles and edges which are the arrows. The input
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data starts at the input layer and makes its way through
the hidden layers, node to node using the edges, that uses
weights to alter the data, to end up as the output data in the
output layer. Most of the time this process goes from one
node to the next with no ability to go to a previous node.

Recurrent Neural Network (RNN), are the exception that
allows for edges to send data back to a previous node. RNNs
are needed for TecoGAN as they allow the generated HR
output to be used with the input of the next frame. This is
useful so that the LR input knows more about what it should
look like when HR and for temporal consistency.

2.5 Loss Terms
Loss terms are used to evaluate the overall performance of a
network. For VSR the loss terms should be as low as possible.
Therefore to improve the performance of a NN, the algorithm
makes changes to the weights with the goal of reducing the
loss. Perceptual loss terms are loss terms for comparing two
images.

2.6 Deep Learning
Deep learning is a more advanced type of machine learning
“that uses multiple layers to progressively extract higher-
level features from the raw input. For example, in image
processing, lower layers may identify edges, while higher
layers may identify the concepts relevant to a human such
as digits or letters or faces.” [6] The multiple layers used
in deep learning are themselves artificial neural networks.
Deep learning can use Convolutional Neural Network (CNN),
is a NN that uses in at least one layer the mathematical
operation of convolution which is when a third function
results from the operation of two functions. A basic example
is multiplying function 𝑓 and 𝑔 to get 𝑓 ∗ 𝑔. [5]

2.7 Generative Adversarial Networks
Generative Adversarial Networks (GANs) were invented by
Ian Goodfellow and his colleagues [8] and is a type of ma-
chine learning which uses two NNs, the generator and dis-
criminator, that go against each other in a zero-sum game.
The generator is fed training data with the goal being to
figure out how to create new data that is practically the same
as the training data while fooling the discriminator in be-
lieving that the new generated data is classified the same
as the training data. The two NNs work against each other
by having the generator trained on the training data to pro-
duce the generated data while the discriminator trains to
better decide on whether the data is the “real” training data
or “fake” generated data. This is the adversarial zero-sum
game where both the generated data and discriminator tries
to outsmart the other all with the goal of creating “better”
generated data.

A complication of “better” data is that the generator only
tries to trick the discriminator, leading to a possible situa-
tion where the discriminator keeps incentivising the wrong
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the other hand, vid2vid focuses on paired video translations and
proposes a video discriminator based on a conditional motion input
that is estimated from the paired ground-truth sequences. We focus
on more di�cult unpaired translation tasks instead and demonstrate
the gains in the quality of our approach in the evaluation section.
Bashkirova et al. [2018] solve UVT tasks as a 3D extension of the
2D image translation. In DeepFovea [Kaplanyan et al. 2019], a 3D
discriminator is used to supervise video in-painting results with 32
frames as a single 3D input. Since temporal evolution di�ers from a
spatial distribution, we show how a separate handling of the tem-
poral dimension can reduce computational costs, remove training
restrictions, and most importantly improve inference quality.

For tracking and optical �ow estimation, !2-based time-cycle
losses [Wang et al. 2019b] were proposed to constrain motions and
tracked correspondences using symmetric video inputs. By opti-
mizing indirectly via motion compensation or tracking, this loss
improves the accuracy of the results. For video generation, we pro-
pose a PP loss that also makes use of symmetric sequences. However,
we directly constrain the PP loss via the generated video content,
which successfully improves the long-term temporal consistency in
the video results. The PP loss is e�ective by o�ering valid informa-
tion in forward as well as backward passes of image sequences. This
concept is also used in robotic control algorithms, where reversed
trajectories starting from goal positions have been used as training
data [Nair et al. 2018].

3 LEARNING TEMPORALLY COHERENT CONDITIONAL
VIDEO GENERATION

We �rst propose the concepts of temporal self-supervision for GAN-
based video generation (Sec. 3.1 and Sec. 3.2), before introducing
solutions for VSR and UVT tasks (Sec. 3.3 and Sec. 3.4) as example
applications.

3.1 Spatio-Temporal Adversarial Learning
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Fig. 2. a) A spatial GAN for image generation. b) A frame recurrent
Generator. c) A spatio-temporal Discriminator. In these figures, le�er 0,
1, and 6, stand for the input domain, the output domain and the generated
results respectively. ⌧ and ⇡ stand for the generator and the discriminator.

While GANs are popular and widely used in image generation tasks
to improve perceptual quality, their spatial adversarial learning
inherently introduces temporal problems for tasks such as video

generation. Thus, we propose an algorithm for spatio-temporal
adversarial learning that is easy to integrate into existing GAN-
based image generation approaches. Starting from a standard GAN
for images, as shown in Fig. 2 a), we propose to use a frame-recurrent
generator (b) together with a spatio-temporal discriminator (c).

As shown in Fig. 2 b), our generator produces an output6C from an
input frame 0C and recursively uses the previously generated output
6C�1. Following previous work [Sajjadi et al. 2018], we warp this
frame-recurrent input to align it with the current frame. This allows
the network to more easily re-use previously generated details. The
high-level structure of the generator can be summarized as:

EC = F(0C�1,0C ), 6C = G(0C ,, (6C�1, EC )). (1)

Here, the network � is trained to estimate the motion EC from frame
0C�1 to 0C and, denotes warping.

The central building block of our approach is a novel spatio-
temporal discriminator ⇡B,C that receives triplets of frames, shown
in Fig. 2 c). This contrasts with typically used spatial discrimina-
tors that supervise only a single image. By concatenating multiple
adjacent frames along the channel dimension, the frame triplets
form an important building block for learning as they can provide
networks with gradient information regarding the realism of spatial
structures as well as short-term temporal information, such as �rst-
and second-order time derivatives.

We propose a ⇡B,C architecture that primarily receives two types
of triplets: three adjacent frames and the corresponding warped
ones. We warp later frames backward and previous ones forward.
The network � is likewise used to estimate the corresponding mo-
tions. While original frames contain the full spatio-temporal in-
formation, warped frames more easily yield temporal information
with their aligned content. For the input variants we use the fol-
lowing notations: I6 = {6C�1,6C ,6C+1}, I1 = {1C�1,1C ,1C+1}; IF6 =
{, (6C�1, EC ),6C ,, (6C+1, E 0C )}, IF1 = {, (1C�1, EC ),1C ,, (1C+1, E 0C )}.
A subscript 0 denotes the input domain, while the 1 subscript de-
notes the target domain. The quotation mark in E 0 indicates that
quantities are estimated from the backward direction.

Although the proposed concatenation of several frames seems
like a simple change that has been used in a variety of other con-
texts, we show that it represents an important operation that allows
discriminators to understand spatio-temporal data distributions. As
will be shown below, it can e�ectively reduce temporal problems
encountered by spatial GANs. While !2�based temporal losses are
widely used in the �eld of video generation, the spatio-temporal
adversarial loss is crucial for preventing the inference of blurred
structures in multi-modal data-sets. Compared to GANs using mul-
tiple discriminators, the single ⇡B,C network that we propose can
learn to balance the spatial and temporal aspects according to the
reference data and avoid inconsistent sharpness as well as overly
smooth results. Additionally, by extracting shared spatio-temporal
features, it allows for smaller network sizes.

3.2 Self-Supervision for Long-term Temporal Consistency
When relying on a previous output as input, i.e., for frame-recurrent
architectures, generated structures easily accumulate frame by frame.
In adversarial training, generators learn to heavily rely on previ-
ously generated frames and can easily converge towards strongly
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Figure 4. a) Short-term temporal consistency GAN. b) In
depth view of the frame-recurrent generator. c) In depth view
into what goes into the discriminator [2]

thing. The discriminator does not really know “right” from
“wrong”, and can make mistakes simply from the discrim-
inator overgeneralizing details from the training data. An
example of this overgeneralizing problem is for a small face
in scenes, because most facial feature would be too blurry to
make out so just the skin color is clear. These problematic
results can be instinctively caught by humans but missed by
machines while also being hard to correct for without com-
plete model retraining. Continuing the previous example,
a human will know it is a face and likely have knowledge
of who’s face it is based on more context (such as character
outfit, hair style, voice). One successful applications of GANs
is to have a photographic data set of faces and then being
able to generate new faces that look real while also being
significantly different to the originals, i.e. to create realistic
faces of people who do not exist.

3 TecoGAN
The following section will include TecoGAN’s method, met-
rics evaluation, and results.

3.1 Method
Upscaling using GANs have had a lot of success with indi-
vidual photos, but have struggled with videos, having se-
vere artifacts, or errors, caused by the difficulty of handling
changes between frames. Chu et al’s GAN approach [2] is
trained in a new way that supervises the spatial contents as
well as the temporal relationships. Additionally while their
GAN supervises the short-term temporal consistency, shown
in Figure 4, the long-term consistency, shown in Figure 5 is
self-supervised by the GAN using a new loss formulation
that they call “Ping-Pong” loss. TecoGAN is the combination
of short-term consistency, long-term consistency, and VSR
methods.

Chu et al’s short-term temporal consistency GAN ap-
proach [2], shown in Figure 4, is made up of a standard
spatial GAN for image generation which takes the a single
input frame (𝑎𝑡 ) of LR video and feeds it into the generator,
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Figure 5. Long-term temporal consistency GAN [2]

giving an output frame (𝑔𝑡 ). As shown in Part (a) of Figure 4,
then the output frame (𝑔𝑡 ) and the target HR frame (𝑏𝑡 ) are
fed into the discriminator (D) where both are compared to
each other. Displayed in Part (b) of Figure 4, once there is an
output then the new input is a combination of 𝑎𝑡 and 𝑔𝑡−1
that goes first through motion compensation before being fed
into the frame recurrent generator, the RNN, which makes
it recurrent. In a process called warping (𝑤 ), the motion
compensation accounts for the difference in motion between
frames 𝑔𝑡 and 𝑔𝑡−1, so that the 𝑔𝑡−1 matches the motion of
the current frame. Shown in Part (c) of Figure 4, the frame re-
current generator output becomes a generated triplet which
is the previous, current, and subsequent frames (𝑔𝑡−1, 𝑔, 𝑔𝑡+1)
that with an additional target triplet (𝑏𝑡−1, 𝑏, 𝑏𝑡+1) is fed into a
spatio-temporal (s,t) discriminator (𝐷𝑠,𝑡 ). The target triplet is
made of example HR frames and the discriminator is testing
whether the generated triplet has the correct motion and
objects in them. The warped triplets have the motion of the
previous and consecutive frame being changed to match the
current frame, which allows for the motion to be tracked
going either forwards or backward. The triplets are only
useful for short-term consistency as nothing is known of the
motion of the frames just 𝑡 − 2, 𝑡 + 2 or further away from 𝑡 .

Long-term temporal consistency is managed with a new
“Ping-Pong” (PP) GAN approach as shown in Figure 5. While
the short-term consistency only knows three frames, the
long-term consistency takes a sequence that can have as
many consecutive frames as you want. Given a video input of
𝑎𝑛 , the sequence first “Pings” by going 𝑎0, 𝑎1, ..., 𝑎𝑡 ..., 𝑎𝑛−1, 𝑎𝑛
and then has a reverse “Pong” that goes 𝑎𝑛−1, ..., 𝑎𝑡 , ..., 𝑎1, 𝑎0,
which allows for valid data with the motion tracked in both
directions. This PP 𝑎𝑛 sequence gets fed into the frame recur-
rent generator, an RNN, to get a video output of sequence 𝑔𝑛 .
This generates a similar, but not the same, “Ping-Ponging”

where the “Ping” is𝑔0, 𝑔1, ..., 𝑔𝑡 ..., 𝑔𝑛−1, 𝑔𝑛 but a reverse “Pong”
that 𝑔′𝑛−1, ..., 𝑔

′
𝑡 , ..., 𝑔

′
1, 𝑔

′
0. The generated “Ping” (𝑔𝑡 ) is based

on the forward motion of 𝑎𝑛 while the generated “Pong” (𝑔′𝑡 )
is based on the reverse motion of 𝑎𝑛 . This means that both
𝑔𝑛 and 𝑔′𝑛 should be exactly the same. The generated out-
put continuously compares each frame of the “Ping” to its
prime “Pong,” to make sure that 𝑔𝑛 stays close to correct
information and the motion going both forward and back-
wards is the same, if not is punished by the PP loss term.
This method helps keep high-frequency details and limits
drifting artifacts.

Chu et al’s VSR approach [2] for all upscaling is to take LR
frames to generate new HR frames. There is a need for adver-
sarial training (a GAN) for VSR as there can be a multimodal
problem where multiple structures in HR frames could come
from one structure of the LR frame. This problem means
some part of a LR frame could be upscaled in different ways
which is a problem for spatial consistency. As an example,
in LR video a small face can have small but discernible fa-
cial features, which means a human brain would know it’s
suppose to be a face, while the machine has no idea that a
face needs to be generated. Furthermore a human is great
at filling in the missing data to link a face with a specific
person which makes the machine’s job more difficult as it
needs to generate the right person’s face.

The purpose of the discriminator (𝐷𝑠,𝑡 ) for VSR is to teach
the generator the correlation among LR inputs and HR tar-
gets. The discriminator’s inputs are the LR triplet (𝐼𝑎 =
{𝑎𝑡−1, 𝑎𝑡 , 𝑎𝑡+1}), the HR target triplet (𝐼𝑏𝑠,𝑡 = {𝐼𝑏, 𝐼𝑤𝑏, 𝐼𝑎}) and
the generated upscaled HR triplet (𝐼𝑔𝑠,𝑡 = {𝐼𝑔, 𝐼𝑤𝑔, 𝐼𝑎}) all con-
catenated together. The generator is penalized by 𝐷𝑠,𝑡 if,
compared to the real inputs 𝐼𝑏 , the generated input 𝐼𝑔 has
unrealistic artifacts, less spatial-details, or less temporal de-
tails, allowing for the discriminator (𝐷𝑠,𝑡 ) to identify it as
generated frames.

L𝐺,𝐹 = 𝜆𝑤L𝑤𝑎𝑟𝑝 + 𝜆𝑐L𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝜆𝜙L𝜙 + 𝜆𝑎L𝑎𝑑𝑣 + 𝜆𝑝L𝑃𝑃

Now that this overall architecture is set up the way they test
and improve it, is with the perceptual loss function, which
is the sum of five loss terms. Where the lambda’s (𝜆) are the
specific weights, that get altered. The L𝑤𝑎𝑟𝑝 is the warping
loss which measures the difference between the input frame
and the previous input frame. L𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is the content loss
which measures the difference between the generated frame
and the GT. L𝜙 is the perceptual loss which measures if
the specific objects from the target triplets show up in the
generated triplets and uses a feature map, which keeps track
of everything in the image. Feature maps keep track of basic
things such as if there is a straight line or curly line, to
more complex things such as if it is a car or not. L𝑎𝑑𝑣 is the
adversarial loss which measures how well the discriminator
is at judging the generated data. L𝑃𝑃 is the "Ping Pong" loss.
Each part of the L𝐺,𝐹 equation breaks down further but I



Taylor Carrington

am only going to focus on PP loss as it is novel.

L𝑃𝑃 = Σ𝑛−1
𝑡=1 ∥𝑔𝑡 − 𝑔′𝑡 ∥2

This loss term is shown in the bottom generated part of
Figure 5. PP loss is the summation from frame (𝑡 ) equals
one to frame 𝑛 − 1 of the L2 norm of the forward generated
frame (𝑔𝑡 ) minus the reverse generated frame (𝑔′𝑡 ). The L2
norm ∥𝑥 ∥2 of a vector 𝑥 = (𝑥0, 𝑥1, 𝑥2, ...) is the sum of the
square roots of the squared vector components, i.e,

√
|𝑥2
𝑖 |.

This is done to make sure generated frames motion matches
when going either forward or backwards and helps with the
long-term temporal consistency.

3.2 Metrics Evaluation
To evaluate the effectiveness of TecoGAN, Chu et al used
TecoGAN and other methods to upscale videos from the
common Vid4 data set (Figure 7), and busy scenes from the
2011 short film Tears of Steel. The other methods TecoGAN
is compared to are DUF, FRVSR, EnhanceNet (ENet), EDVR,
and RBPN. DUF and FSVSR are top-end models that use up-
scaling methods for videos and does not have adversarial
losses (no GANs), while ENet is a top-end model only for
images and therefore does not pay attention to temporal
changes. While TecoGAN is trained with 3 million weights,
EDVR has 20 million weights and RBPN has 12 million. The
number of weights matter because more weights cause the
methods to take longer to process the upscale, explained
more later with the Processing Time column in Table 1. Teco-
GAN was trained with HR images down-sampled to LR with
Gaussian blur. In these tests TecoGAN could generate realis-
tic results with improved details because of the adversarial
learning. Chu et al evaluated TecoGAN using a combination
of qualitatively user studies, and quantitative measurements.
Their quantitative measurements are common spatial met-
rics and two new temporal metrics that quantify temporal
coherence [2].

A traditional spatial consistency metric is PSNR, which
measures how accurate the result is pixel-wise and shows
the result’s perceptual quality compared to the amount of
it vector norm distortion. Better PSNR results have higher
numbers. A earlier metric for temporal consistency, LPIPS,
measures the perceptual quality, i.e. visually, how close the
image is to the GT. These results when lower are better. Chu
et al [2] introduced two novel temporal coherence metrics
tOF and tLP. Their first new metric, tOF, measures pixel-
wise closeness to the estimated motion and their second
new metric tLP measures the perceptual distance between
adjoining frames.

𝑡𝑂𝐹 = ∥𝑂𝐹 (𝑏𝑡−1, 𝑏𝑡 ) −𝑂𝐹 (𝑔𝑡−1, 𝑔𝑡 )∥1

𝑡𝐿𝑃 = ∥𝐿𝑃 (𝑏𝑡−1, 𝑏𝑡 ) − 𝐿𝑃 (𝑔𝑡−1, 𝑔𝑡 )∥1

The L1 norm ∥𝑥 ∥1 of a vector 𝑥 = (𝑥0, 𝑥1, 𝑥2, ...) is the sum of
the absolute value of the vector components, i.e,

∑ |𝑥𝑖 |. The

equation for tOF measures the L1 norm (∥∥1) of optical flow
estimation (OF), i.e. the amount of motion in a frame, on the
target frame (𝑏𝑡 ) and previous target frame (𝑏𝑡−1) subtracted
by the OF of the generated frame (𝑔𝑡 ) and previous generated
frame (𝑔𝑡−1). Similarly, tLP equation measures the same but
with perceptual LPIPS metric (LP), i.e. how close the motion
in the 𝑔𝑡 is to the GT, instead of OF. Like the other temporal
consistency metric these results are better when the number
is lower.

Chu et al ran multiple user studies on the Vid4 data set to
compare the different models. Each user saw two methods at
a time plus the GT. Until the choice of which one was better
was made, each of the two methods were shown on loop and
the user did not have play back options so that they could
not focus on a particular frame. The methods positions, i.e.
they showed up on the left or right side, was randomized.
The studies encompassed 50 participants who made a total
of a 1000 votes. Better results for the User Study are higher.

The last metric is the processing time required for a 90
minute LR film (129,600 frames) took to be upscaled. It is
measured in hours, with the lower the time being better.
The models which use more weights take longer to run than
those with less weights. Recall that ENet only upscales single
images, so it was left out in the processing time as one would
have to manually start each frame.

Table 1 shows that TecoGAN is the best or pretty good
in all metrics. Recall that TecoGAN is specifically meant to
improve on temporal consistency and does in fact come in
first in all three temporal consistency metrics. TecoGAN’s
spatial consistency is respectable, although not the best, but
because of the temporal improvements it comes in first in
the User Study. Just as important, TecoGAN is significantly
faster than any competitive method, signifying the trade-off
between great results and fast results does not apply to it.

3.3 Results
Table 1 shows the results for each of the metrics on each
model. The results show for the spatial consistency Teco-
GAN is below average in PSNR but for temporal consistency
TecoGAN is the best in LPIPS. The temporal consistency
results shows that with the more accurate temporal consis-
tency metrics TecoGAN is above average with tOF and the
best with tLP. Next the results for the user study shows that
out of the four models tested TecoGAN was the most popular.
Also TecoGAN had the second fastest processing time while
being significantly faster than the three models behind it.

4 Conclusion
TecoGAN’s VSR is good but has room for improvement. In
Figure 7, the lamp example show that EDVR from 2019 was
better while both had problems on the building but in dif-
ferent ways. EDVR’s lamp is a lot rounder than TecoGAN’s
but the the scene to the left of the lamp is more blurry. For
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Methods PSNR↑ LPIPS↓ ×10 tOF↓ ×10 tLP↓ ×100 User Study↑ Processing Time (HR)↓
TecoGAN 25.57 1.623 1.897 0.668 3.258 1.5
ENet 22.31 2.458 4.009 4.848 1.616 -
FRVSR 26.91 2.506 2.090 0.957 2.600 1.33
DUF 27.38 2.607 1.588 1.329 2.933 33.92
RBPN 27.15 2.511 1.473 0.911 - 18.39
EDVR 27.34 2.356 1.367 0.982 - 10.79

Table 1. VSR of the Vid4 data set on TecoGAN and a handful of previous models. The ↑ means the result numbers show be
larger, while the ↓ means the result numbers should be lower. The embolden numbers in applicable columns in the best result
out of all the tests.

Figure 6. Left LR armor, right upscaled HR armor. Notice
unnatural artifacts in HR half. Click to start animation [3]

the building TecoGAN is missing alot of detail and overly
sharp while EDVR is overly rounding the buildings, most
noticeably in the left corner. These two results highlight
the difficulty in upscaling as the rounding was good for one
result but not the other, showing that upscaling is not one
size fits all. The user study should have included RBPN and
EDVR as they were closest in terms of upscaled results and
sometimes better than TecoGAN, although they take sig-
nificantly longer to run. Chu et al themselves mentioned
that while they were good at temporal consistency, some-
times they lacked face and text details which is less than
ideal. Their paper only included static images, which is not
the best way to qualitatively judge the results of VSR, es-
pecially for temporal consistency. But their supplemental
materials [3] include some animated GIFs which look better
than any of their static results because artifacts in specific
frames can not be focused on. Figure 6, highlights this by the
spatial imperfection are harder to notice than in a individual
static image, although there is some temporal artifacts that
could be improved. Recall, I showed one of their animated
results at the start of the paper, Figure 1, which in my opin-
ion is their best result, as it generates impressive amount
of detail from the LR down-sampled input and has no no-
ticeable artifacts. Lastly, all their examples seem to be from
videos with natural movements and I would be curious to
see results from unnatural movements like cutting between
cameras or fading to black, as I have seen interpolation have
problems with this before.

Figure 7. VSR of parts of Vid4 data set by EDVR and Teco-
GAN with the GT for reference. Shows cases where TecoGAN
is not better [2].
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