Machine Learning Video Upscaling

Taylor Carrington

Computer Science Senior Seminar Division of Science and Mathematics University of Minnesota, Morris

April 2021

- Video Upscaling
- TecoGAN

[1]

<ロ> <四> <四> <四> <四</td>

- Background
- TecoGAN
 - Methods
 - Loss Ablation Study
 - Metrics Evaluation
 - Results
- Conclusion
- Acknowledgements
- Questions

[1]

Videos

- Video is split into frames, which are single images
- Frames per Second (FPS): Video is made up of a variety of FPS but usually 24 for films.
 - 90 minutes film has 129,600 frames
- Resolution: Low resolution (LR) is any video that is under 720p while high resolution (HR) is equal to or greater than that.

- Upscaling (VSR): Upscaling is taking a LR image or video and generating a HR image or video.
 - Spatial consistency: The objects in the frames stays the same
 - Temporal consistency: The motion between objects stay the same between frames.
 - Ground Truth (GT): Original HR image
 - Artifacts: Errors in the generated output that were not in the input

- Machine Learning: Artificial intelligence which through the use of data and time improves the accuracy of a computer algorithm.
 - Supervised learning: The algorithm learns a way to match inputs with outputs by having training data and target data.

- Neural Networks (NN)
 - Training: Takes inputs and matches them to outputs through learning a data set.
 - Weights: Each edge has a weight which multiples the input data by a specific number.
 - Input data: LR frames
 - Target data: HR frames
 - Output data: Generated HR frames
 - Recurrent NN: Allows for nodes to send data back to a previous node.

Loss Terms

- Used to evaluate the networks
- Wants the lowest scores
- Therefore the algorithm changes the weights number to improve the overall system

- Deep Learning: More advance than machine learning, uses multiple layers to mimic an human brain.
- Generative Adversarial Network (GANs)
 - Uses Two NN
 - Zero-Sum Game
 - Goal of tricking the Discriminator into thinking the generated data is the target data

Short Term Consistency

• a) Spatial GAN for image generation

Short Term Consistency

• b) Frame Recurrent Generator

Short Term Consistency

• c) Spatio-temporal Discriminator

∃ ⊳.

Long Term Consistency

Ping-Pong Loss

Network Architecture for VSR

[1]

- $\mathcal{L}_{G,F} = \lambda_w \mathcal{L}_{warp} + \lambda_a \mathcal{L}_{adv} + \lambda_\phi \mathcal{L}_\phi + \lambda_c \mathcal{L}_{content} + \lambda_p \mathcal{L}_{PP}$
 - \mathcal{L}_{warp} is the warping loss which measures the difference between the input frame and the previous input frame.

< ∃ > <

- $\mathcal{L}_{G,F} = \lambda_w \mathcal{L}_{warp} + \lambda_a \mathcal{L}_{adv} + \lambda_\phi \mathcal{L}_\phi + \lambda_c \mathcal{L}_{content} + \lambda_p \mathcal{L}_{PP}$
 - \mathcal{L}_{adv} is the adversarial loss which measures how well the discriminator at judging the generated data.

•
$$\mathcal{L}_{G,F} = \lambda_w \mathcal{L}_{warp} + \lambda_a \mathcal{L}_{adv} + \lambda_\phi \mathcal{L}_\phi + \lambda_c \mathcal{L}_{content} + \lambda_p \mathcal{L}_{PP}$$

• \mathcal{L}_{ϕ} is the perceptual loss which measures if the specific objects from the target triplets show up in the generated triplets.

- $\mathcal{L}_{G,F} = \lambda_w \mathcal{L}_{warp} + \lambda_a \mathcal{L}_{adv} + \lambda_\phi \mathcal{L}_\phi + \lambda_c \mathcal{L}_{content} + \lambda_p \mathcal{L}_{PP}$
 - $\mathcal{L}_{content}$ is the content loss which measures the difference between the generated frame and the target frame.

VSR Loss Term

•
$$\mathcal{L}_{G,F} = \lambda_w \mathcal{L}_{warp} + \lambda_a \mathcal{L}_{adv} + \lambda_\phi \mathcal{L}_\phi + \lambda_c \mathcal{L}_{content} + \lambda_p \mathcal{L}_{PP}$$

• \mathcal{L}_{PP} is the "Ping Pong" loss

•
$$\mathcal{L}_{PP} = \sum_{t=1}^{n-1} \|g_t - g'_t\|_2$$

 PP loss is the summation from frame (t) equals one to frame n-1 of the L2 loss of the forward generated frame (g_t) minus the reverse generated frame (g'_t)

Loss Ablation Study

- The study of an AI system that gets its components stripped down before each are adding back one by one
- With the goal of better understand how each component adds to the overall system's.

TecoGAN - Loss Ablation Study

Loss Ablation Study

- DsOnly
- DsDt
- DsDtPP
- TecoGAN[⊖]
- TecoGAN

< □ > < 凸

TecoGAN - Loss Ablation Study

Other Methods that TecoGAN is tested against are:

- ENet: Upscales images only, does not pay attention to temporal changes
- FRVSR: Upscales videos, does not have adversarial loss
- DUF: Also upscales videos, does not have adversarial loss

All are compared to the GT

More Methods that TecoGAN is tested against

- TecoGAN: 3 million weights
- RBPN: 20 million weights
- EDVR: 12 million weights

[1]

- LPIPS: Perceptional Distance to the GT
- tOF: Pixel-wise distances of estimated motion
- tLP: Perceptional Distance of consecutive frames

Methods	LPIPS $\downarrow \times 10$	tOF↓ ×10	$tLP\!\!\downarrow imes 100$
TecoGAN	1.623	1.897	0.668
ENet	2.458	4.009	4.848
FRVSR	2.506	2.090	0.957
DUF	2.607	1.588	1.329
RBPN	2.511	1.473	0.911
EDVR	2.356	1.367	0.982

- PSNR: Pixel-Wise Accuracy
- User Study: 50 participants who made 1000 votes
- Processing Time: How long each low resolution frame took to be upscaled

Methods	PSNR ↑	User Study↑	Processing Time↓	PT for 90
			(ms/frame)	minutes film
				(HR)↓
TecoGAN	25.57	3.258	41.92	1.5
ENet	22.31	1.616	-	-
FRVSR	26.91	2.600	36.95	1.33
DUF	27.38	2.933	942.21	33.92
RBPN	27.15	-	510.90	18.39
EDVR	27.34	-	299.71	10.79

Conclusion

э

イロト イヨト イヨト イ

- Senior Seminar Advisor: Nic McPhee
- Senior Seminar Professor: Elena Machkasova
- External Reviewer: Paul Friederichsen

Questions?

• • • • • • • • • • • •

Mengyu Chu et al. "Learning Temporal Coherence via Self-Supervision for GAN-Based Video Generation". In: ACM Trans. Graph. 39.4 (July 2020). ISSN: 0730-0301. DOI: 10.1145/3386569.3392457. URL: https://doi.org/10.1145/3386569.3392457. Debarko. RNN or Recurrent Neural Network for Noobs. [Online;

accessed 9-April-2021]. 2018. URL: https://hackernoon.com/rnnor-recurrent-neural-network-for-noobs-a9afbb00e860.