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Introduction

o Video Upscaling
o TecoGAN
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@ Videos
e Video is split into frames, which are single images
o Frames per Second (FPS): Video is made up of a variety of FPS but
usually 24 for films.
@ 90 minutes film has 129,600 frames
o Resolution: Low resolution (LR) is any video that is under 720p while
high resolution (HR) is equal to or greater than that.
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@ Upscaling (VSR): Upscaling is taking a LR image or video and
generating a HR image or video.
e Spatial consistency: The objects in the frames stays the same
e Temporal consistency: The motion between objects stay the same
between frames.
o Ground Truth (GT): Original HR image
o Artifacts: Errors in the generated output that were not in the input
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Background

@ Machine Learning: Artificial intelligence which through the use of
data and time improves the accuracy of a computer algorithm.
e Supervised learning: The algorithm learns a way to match inputs with
outputs by having training data and target data.
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Background

e Neural Networks (NN)

e Training: Takes inputs and
matches them to outputs
through learning a data set.

o Weights: Each edge has a
weight which multiples the
input data by a specific
number.

e Input data: LR frames

e Target data: HR frames

o Output data: Generated HR 1 i
frames iddntagrs

o Recurrent NN: Allows for 2
nodes to send data back to a
previous node.

output layer

input layer
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@ Loss Terms
o Used to evaluate the networks

e Wants the lowest scores
o Therefore the algorithm changes the weights number to improve the

overall system

input layer

hidden layers [2]
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@ Deep Learning: More advance than machine learning, uses multiple
layers to mimic an human brain.
o Generative Adversarial Network (GANs)

o Uses Two NN

e Zero-Sum Game
e Goal of tricking the Discriminator into thinking the generated data is

the target data

= R -y
‘bt —
a)

1

April 2021

Taylor Carrington (UMM) Machine Learning Video Upscaling



TecoGAN - Method

Short Term Consistency

@ a) Spatial GAN for image generation

by
a)

1
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TecoGAN - Method

Short Term Consistency

@ b) Frame Recurrent Generator

b)

Frame-

Motion Recurrent
Compensation e 2T
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TecoGAN - Method

Short Term Consistency

@ c) Spatio-temporal Discriminator
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TecoGAN - Method

Long Term Consistency
o Ping-Pong Loss
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TecoGAN - Method

Network Architecture for VSR

Frame-
Recurrent
Generator
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TecoGAN - Method

VSR Loss Term
° £G,F = )\Wﬁwarp + )\aﬁadv + )\¢£¢ + >\c£content + )\pEPP
o Lyarp is the warping loss which measures the difference between the
input frame and the previous input frame.
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TecoGAN - Method

VSR Loss Term
° £G,F = )\Wﬁwarp + )\aﬁadv + )\¢£¢ + >\c£content + )\pEPP
o L,4, is the adversarial loss which measures how well the discriminator
at judging the generated data.
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TecoGAN - Method

VSR Loss Term
° £G,F = )\Wﬁwarp + )\aﬁadv + )\¢£¢ + >\c£content + )\pEPP
o L, is the perceptual loss which measures if the specific objects from
the target triplets show up in the generated triplets.
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TecoGAN - Method

VSR Loss Term
° £G,F = )\Wﬁwarp + )\aﬁadv + )\¢£¢ + >\c£content + )\pEPP
o Lcontent is the content loss which measures the difference between the
generated frame and the target frame.
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TecoGAN - Method

VSR Loss Term
° »CG,F = Awﬁwarp + >\a[’adv + >\¢»C¢ + Acﬁcontent + )\p[’PP
e Lpp is the "Ping Pong" loss
o Lop =7 |lg —&ill,
o PP loss is the summation from frame (t) equals one to frame n-1 of
the L2 loss of the forward generated frame (g;) minus the reverse
generated frame (g})
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TecoGAN - Loss Ablation Study

Loss Ablation Study

@ The study of an Al system that gets its components stripped down
before each are adding back one by one

@ With the goal of better understand how each component adds to the
overall system's.
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TecoGAN - Loss Ablation Study

Temporal profiles———————» x

o~ <

Loss Ablation Study

@ DsOnly

o DsDt ,
e DsDtPP

e TecoGAN® Tecocan®
@ TecoGAN

TecoGAN

Machine Learning Video Upscaling
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TecoGAN - Loss Ablation Study

Other Methods that TecoGAN is tested against are:

@ ENet: Upscales images only,
does not pay attention to
temporal changes

@ FRVSR: Upscales videos, does
not have adversarial loss

@ DUF: Also upscales videos, does
not have adversarial loss

All are compared to the GT
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TecoGAN - Metrics Evaluation

More Methods that TecoGAN is tested against
@ TecoGAN: 3 million weights
o RBPN: 20 million weights
o EDVR: 12 million weights
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TecoGAN - Results

@ LPIPS: Perceptional Distance to the GT
@ tOF: Pixel-wise distances of estimated motion

o tLP: Perceptional Distance of consecutive frames

Methods | LPIPS| x10 | tOF| x10 | tLP] x100
TecoGAN | 1.623 1.897 0.668
ENet 2.458 4.009 4.848
FRVSR 2.506 2.090 0.957
DUF 2.607 1.588 1.329
RBPN 2.511 1.473 0.911
EDVR 2.356 1.367 0.982
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TecoGAN - Results

@ PSNR: Pixel-Wise Accuracy
@ User Study: 50 participants who made 1000 votes

@ Processing Time: How long each low resolution frame took to be

upscaled
Methods | PSNR1T | User Study? | Processing Timel | PT for 90
(ms/frame) minutes film
(HR){
TecoGAN | 25.57 3.258 41.92 1.5
ENet 22.31 1.616 - -
FRVSR 26.91 2.600 36.95 1.33
DUF 27.38 2.933 942.21 33.92
RBPN 27.15 - 510.90 18.39
EDVR 27.34 - 299.71 10.79
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Conclusion
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Questions?
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