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Background

Videos

Video is split into frames, which are single images
Frames per Second (FPS): Video is made up of a variety of FPS but
usually 24 for films.

90 minutes film has 129,600 frames

Resolution: Low resolution (LR) is any video that is under 720p while
high resolution (HR) is equal to or greater than that.

[1]
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Background

[1]

Upscaling (VSR): Upscaling is taking a LR image or video and
generating a HR image or video.

Spatial consistency: The objects in the frames stays the same
Temporal consistency: The motion between objects stay the same
between frames.
Ground Truth (GT): Original HR image
Artifacts: Errors in the generated output that were not in the input
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Background

Machine Learning: Artificial intelligence which through the use of
data and time improves the accuracy of a computer algorithm.

Supervised learning: The algorithm learns a way to match inputs with
outputs by having training data and target data.
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Background

Neural Networks (NN)

Training: Takes inputs and
matches them to outputs
through learning a data set.
Weights: Each edge has a
weight which multiples the
input data by a specific
number.
Input data: LR frames
Target data: HR frames
Output data: Generated HR
frames
Recurrent NN: Allows for
nodes to send data back to a
previous node.

[2]
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Background

Loss Terms

Used to evaluate the networks
Wants the lowest scores
Therefore the algorithm changes the weights number to improve the
overall system

[2]
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Background

Deep Learning: More advance than machine learning, uses multiple
layers to mimic an human brain.

Generative Adversarial Network (GANs)

Uses Two NN
Zero-Sum Game
Goal of tricking the Discriminator into thinking the generated data is
the target data

[1]
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TecoGAN - Method

Short Term Consistency

a) Spatial GAN for image generation

[1]
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TecoGAN - Method

Short Term Consistency

b) Frame Recurrent Generator

[1]
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TecoGAN - Method

Short Term Consistency

c) Spatio-temporal Discriminator

[1]
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TecoGAN - Method

Long Term Consistency

Ping-Pong Loss

[1]
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TecoGAN - Method

Network Architecture for VSR75:4 • Chu, M.; Xie, Y.; Mayer, J.; Leal-Taixé, L.; Thuerey, N.
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Fig. 3. a) Result without PP loss. The VSR network is trained with a recur-
rent frame-length of 10. When inference on long sequences, frame 15 and
la�er frames of the foliage scene show the dri�ing artifacts. b) Result
trained with PP loss. These artifacts are removed successfully for the la�er.
c) When inferring a symmetric PP sequence with a forward pass (Ping)
and its backward counterpart (Pong), our PP loss constrains the output
sequence to be symmetric. It reduces the !2 distance between 6C and 60C ,
the corresponding frames in the forward and backward passes, shown via
red circles with a minus sign. The PP loss reduces dri�ing artifacts and
improves temporal coherence.

reinforcing spatial features over longer periods of time. For videos,
this especially occurs along directions of motion and these solutions
can be seen as a special form of temporal mode collapse, where
the training converges to a mostly constant temporal signal as a
sub-optimal, trivial equilibrium. We have noticed this issue in a
variety of recurrent architectures, examples are shown in Fig. 3 a)
and the Dst version in Fig. 8.

While this issue could be alleviated by training with longer se-
quences, it is computationally expensive and can fail for even longer
sequences, as shown in Appendix D. We generally want generators
to be able to work with sequences of arbitrary length for inference.
To address this inherent problem of recurrent generators, we pro-
pose a new bi-directional “Ping-Pong” loss. For natural videos, a
sequence with the forward order as well as its reversed counterpart
o�er valid information. Thus, from any input of length=, we can con-
struct a symmetric PP sequence in form of 01, ...0=�1,0=,0=�1, ...01
as shown in Fig. 3 c). When inferring this in a frame-recurrent man-
ner, the generated result should not strengthen any invalid features
from frame to frame. Rather, the result should stay close to valid
information and be symmetric, i.e., the forward result 6C = ⌧ (0C ,
6C�1) and the one generated from the reversed part, 60C = ⌧ (0C , 60C+1) ,
should be identical.

Based on this observation, we train our networks with extended
PP sequences and constrain the generated outputs from both “legs”
to be the same using the loss: L?? =

Õ=�1
C=1 k6C � 6C

0k2 . Note that
in contrast to the generator loss, the !2 norm is a correct choice
here: We are not faced with multi-modal data where an !2 norm
would lead to undesirable averaging, but rather aim to constrain the
recurrent generator to its own, unique version over time without
favoring smoothness. The PP terms provide constraints for short
term consistency via k6=�1 � 6=�10 k2, while terms such as k61 � 610 k2
prevent long-term drifts of the results. This bi-directional loss
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Fig. 4. a) The frame-recurrent VSR Generator. b) Conditional VSR ⇡B,C .

formulation also helps to constrain ambiguities due to disocclusions
that can occur in regular training scenarios.

As shown in Fig. 3 b), the PP loss successfully removes drifting
artifacts while appropriate high-frequency details are preserved. In
addition, it e�ectively extends the training data set, and as such
represents a useful form of data augmentation. A comparison is
given in Appendix D to disentangle the e�ects of the augmentation
of PP sequences and the temporal constraints. The results show that
the temporal constraint is the key to reliably suppressing the tem-
poral accumulation of artifacts, achieving consistency, and allowing
models to infer much longer sequences than seen during training.

The majority of related work for video generation focuses on
network architectures. Being orthogonal to architecture improve-
ments, our work explores temporal self-supervision. The proposed
spatio-temporal discriminator and the PP loss can be used in video
generation tasks to replace simple temporal losses, e.g. the ones
based on !2 di�erences and warping. In the following subsections,
solutions for VSR and UVT are presented as examples in paired and
unpaired data domains.

3.3 Network Architecture for VSR
For video super-resolution (VSR) tasks, the input domain contains
LR frames while the target domain contains high-resolution (HR)
videos with more complex details and motions. Since one pattern
in low-resolution can correspond to multiple structures in high-
resolution, VSR represents a multimodal problem that bene�ts from
adversarial training. In the proposed spatio-temproal adversarial
training, we use a ResNet architecture for the VSR generator G.
Similar to previous work, an encoder-decoder structure is applied
to � for motion estimation. We intentionally keep the generative
part simple and in line with previous work, in order to demonstrate
the advantages of the temporal self-supervision.

The VSR discriminator ⇡B,C should guide the generator to learn
the correlation between the conditional LR inputs and HR targets.
Therefore, three LR frames I0 = {0C�1,0C ,0C+1} from the input
domain are used as a conditional input. The input of ⇡B,C can be
summarized as I1B,C = {I1 , IF1 , I0} labelled as real and the generated
inputs I6B,C = {I6, IF6, I0} labelled as fake, as shown in Fig. 4. We
concatenate all triplets together. In this way, the conditional ⇡B,C

will penalize⌧ if I6 contains less spatial details or unrealistic artifacts
in comparison to I0, I1 . At the same time, temporal relationships

ACM Trans. Graph., Vol. 39, No. 4, Article 75. Publication date: July 2020.
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TecoGAN - Method

VSR Loss Term

LG ,F = λwLwarp + λaLadv + λφLφ + λcLcontent + λpLPP
Lwarp is the warping loss which measures the difference between the
input frame and the previous input frame.
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TecoGAN - Method

VSR Loss Term

LG ,F = λwLwarp + λaLadv + λφLφ + λcLcontent + λpLPP
Ladv is the adversarial loss which measures how well the discriminator
at judging the generated data.
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TecoGAN - Method

VSR Loss Term

LG ,F = λwLwarp + λaLadv + λφLφ + λcLcontent + λpLPP
Lφ is the perceptual loss which measures if the specific objects from
the target triplets show up in the generated triplets.
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TecoGAN - Method

VSR Loss Term

LG ,F = λwLwarp + λaLadv + λφLφ + λcLcontent + λpLPP
Lcontent is the content loss which measures the difference between the
generated frame and the target frame.
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TecoGAN - Method

VSR Loss Term

LG ,F = λwLwarp + λaLadv + λφLφ + λcLcontent + λpLPP
LPP is the ”Ping Pong” loss
LPP = Σn−1

t=1 ‖gt − g ′t‖2
PP loss is the summation from frame (t) equals one to frame n-1 of
the L2 loss of the forward generated frame (gt) minus the reverse
generated frame (g ′t )

[1]
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TecoGAN - Loss Ablation Study

Loss Ablation Study

The study of an AI system that gets its components stripped down
before each are adding back one by one

With the goal of better understand how each component adds to the
overall system’s.
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TecoGAN - Loss Ablation Study

Loss Ablation Study

DsOnly

DsDt

DsDtPP

TecoGAN	

TecoGAN

[1]
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TecoGAN - Loss Ablation Study

Other Methods that TecoGAN is tested against are:

ENet: Upscales images only,
does not pay attention to
temporal changes

FRVSR: Upscales videos, does
not have adversarial loss

DUF: Also upscales videos, does
not have adversarial loss

All are compared to the GT

[1]
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TecoGAN - Metrics Evaluation

More Methods that TecoGAN is tested against

TecoGAN: 3 million weights

RBPN: 20 million weights

EDVR: 12 million weights

[1]
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TecoGAN - Results

LPIPS: Perceptional Distance to the GT

tOF: Pixel-wise distances of estimated motion

tLP: Perceptional Distance of consecutive frames

Methods LPIPS↓ ×10 tOF↓ ×10 tLP↓ ×100
TecoGAN 1.623 1.897 0.668
ENet 2.458 4.009 4.848
FRVSR 2.506 2.090 0.957
DUF 2.607 1.588 1.329
RBPN 2.511 1.473 0.911
EDVR 2.356 1.367 0.982
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TecoGAN - Results

PSNR: Pixel-Wise Accuracy

User Study: 50 participants who made 1000 votes

Processing Time: How long each low resolution frame took to be
upscaled

Methods PSNR↑ User Study↑ Processing Time↓ PT for 90
(ms/frame) minutes film

(HR)↓
TecoGAN 25.57 3.258 41.92 1.5
ENet 22.31 1.616 - -
FRVSR 26.91 2.600 36.95 1.33
DUF 27.38 2.933 942.21 33.92
RBPN 27.15 - 510.90 18.39
EDVR 27.34 - 299.71 10.79
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Conclusion

[1]
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Taylor Carrington (UMM) Machine Learning Video Upscaling April 2021 24 / 25



Bibliography

Mengyu Chu et al. “Learning Temporal Coherence via
Self-Supervision for GAN-Based Video Generation”. In: ACM Trans.
Graph. 39.4 (July 2020). issn: 0730-0301. doi:
10.1145/3386569.3392457. url:
https://doi.org/10.1145/3386569.3392457.

Debarko. RNN or Recurrent Neural Network for Noobs. [Online;
accessed 9-April-2021]. 2018. url: https://hackernoon.com/rnn-
or-recurrent-neural-network-for-noobs-a9afbb00e860.

Taylor Carrington (UMM) Machine Learning Video Upscaling April 2021 25 / 25

https://doi.org/10.1145/3386569.3392457
https://doi.org/10.1145/3386569.3392457
https://hackernoon.com/rnn-or-recurrent-neural-network-for-noobs-a9afbb00e860
https://hackernoon.com/rnn-or-recurrent-neural-network-for-noobs-a9afbb00e860

	Background
	References

	anm3: 
	3.25: 
	3.24: 
	3.23: 
	3.22: 
	3.21: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


