
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Aaron M. Corpstein

Browser Fingerprinting and the Importance of Digital
Privacy

Aaron M. Corpstein
corps002@morris.umn.edu

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
Browser fingerprinting is a type of internet tracking where
the attributes of a user’s computer and browser accessing a
web page are remotely recorded and then used for profiling,
tracking, and advertising purposes. This paper focuses on
defining browser fingerprinting and enumerating ways in
which the user can combat fingerprinting. Browser finger-
printing can be thwarted by changing attributes within the
user’s browser or machine, using a browser designed to com-
bat fingerprinting, or with security and anti-fingerprinting
focused browser extensions. All of these methods are capable
of increasing the security of the user.

Keywords: Browser Fingerprinting, Cookies, Browser, Digi-
tal Privacy, Internet Tracking

1 Introduction
In modern times the internet has become an increasingly
important element of daily life, with the expansion of the
internet, the privacy of users is in increasing danger [11].
Browser fingerprinting is a relatively new method of track-
ing users across the internet and across separate sessions,
endangering user privacy, via recording and storing data
about the user remotely. The type of data collected tends
to be about the browser the user is accessing the internet
on and its specifications, the specifications of the machine
accessing internet, and various other attributes about the
machine/user. The data captured this way is not saved any-
where where the user has access to and is subject to the will
of the website or company that recorded the data. This data
is used for tracking a user’s internet activity in the inter-
est of product or political advertising. The study done by
Gómez-Boix et al [7] offers a new way of combating browser
fingerprinting in a way that is conscious of the user experi-
ence. Another study done by Alan et al [4] goes into depth
on the effectiveness of browser fingerprinting and the effect
of client diversity on fingerprinting.

2 Background
To understand the impact of browser fingerprinting on user
privacy it is necessary to define the browser, APIs, cookies,
and with a general definition of browser fingerprinting.

2.1 History of the Internet Browser
The modern Web Browser was born out of the need for ac-
cessing the growing online network. In 1991 the networking
protocol HTTP (Hypertext Transfer Protocol) was developed
to standardize communication over the network so that the
method of connection is not tied to the type of machine seek-
ing access to the network [1, 10] setting the groundwork for
modern internet protocols.
The communication system that enables users to access

the internet is the Client-Server model. The model includes
three nodes: the server, the client and a database. The client
is an interface the user uses to access a service offered by
a server. This interface is usually a browser which is also
referred to as a ‘web client’. The server is the location where
an internet service is provided, the server can also be referred
to as the ‘web server’. The server is where hosting of a ‘web
page’ takes place and is where computation can occur. The
server may also communicate with a database. The database
is where data is stored for access by the server which can
also be passed to the user through the server.

The client-server model accomplishes its goal of providing
a service to the user through the use of the ‘request-response‘
model. The communication in the request-response model
takes the form of the client requesting information from the
server and the server responding with the correct data and
instructions for loading the page.

With the implementation of the HTTP protocol, a header
was included in all request-response transmissions. The
header is referred to as the “User-Agent header”, it provides
information that allows any client to “talk” to any server over
the HTTP protocol. Whenever a user accesses a web page,
the User-Agent header is communicated in the requests sent
to the web server [3]. The User-Agent Request header con-
tains a token that indicates compatibility with Mozilla 1, the
operating system of the computer, the Gecko Version 2, and
the browser version respectively. An example of a browser
fingerprint can be observed in Figure 1.

1the token is used mainly for historical reasons; Netscape became Mozilla
and they developed one of the first ‘browsers’. Mozilla then became open
source and the platform from which most browsers are based on
2Gecko is a web driver that renders web pages, another invention of the
Mozilla foundation



Browser Fingerprinting and the Importance of Digital Privacy

Figure 1. User-Agent Header of a browser on a Linux plat-
form.

2.2 APIs
API stands for Application Programming Interface. An API
is what handles interaction between software applications
or between hardware and software. This concept extends
to internet applications in the form of Web APIs. Web APIs
handle interaction between web servers and web clients. The
APIs common to fingerprinting include; the Canvas API, the
WebGL API, and the Web Audio API.

The Canvas API is an API that houses methods that help
in drawing and manipulating graphics on the web client.
Such manipulation is done within a canvas drawing area
where users can draw, animate shapes, and render text. The
WebGL API is specifically designed to render user interac-
tive three-dimensional objects on the web client without
the need for additional JavaScript plugins. The Web Audio
API is designed to handle audio operations. Browser finger-
prints can be created from these APIs by collecting data on
the existence of the APIs on a client and data on the render-
ing/antialiasing done on the object rendered via the APIs [10].
Any API can also be queried in the JavaScript return a set of
strings that are base64 representations of images rendered
using the image APIs. These strings are long and unique to
each client.

2.3 Cookies
Cookies are bits of data stored locally on a web client to in-
crease efficiency and improve the user experience. Common
uses for cookies include storage of a user id for login or form
information that would be filled into form fields: addresses,
card numbers, names, and the like. However, another ap-
plication for cookies was found; cookies could be used for
tracking purposes by a web server or by third parties like
advertisers. Tracking cookies take the form of cookies that
record the browsing history of the user. With cookies being
useful in such a manner, they have been used in browser
fingerprinting for creating highly accurate fingerprints but
are not necessary for successful fingerprinting [6]. The accu-
racy of fingerprints can be improved by simply storing the
fingerprint on the client for reference in later sessions [9],
where “session” describes the instances in which a browser
is booted up or logged into then used for a period of time
before being shut down or logged off.

2.4 Browser Fingerprint Definition
In 2009, the computer scientist Jonathan Mayer explored
the differences inherent to individual web clients for de-
anonymization. What he found was that the differences in

browsers could be observed and recorded by a server to
uniquely identify users. In an experiment he ran he found
that by recording a list of the Navigator plugins, he could
uniquely identify web clients with about a 96.3% accuracy.
Navigator plugins are plugins that are returned by the ‘Nav-
igator interface’. The Navigator interface represents the gen-
eral state of the client, while Navigator itself is a handler for
various parts of the client i.e. plugins, language, cookies, and
the hardware. Navigator can be queried by scripts running
on the web client to return a list of plugins that are on the
web client[2]. Mayer’s experiment used about 1.3 thousand
clients with 1278 of them being uniquely identifiable. Later
in 2010 another experiment was conducted by Peter Ecker-
sley and it found that fingerprints could be created via the
User-Agent Header and the JavaScript plugins like Flash or
Java. This brought about the term “Browser Fingerprint” and
a first set of attributes that make up a browser fingerprint.

Browser fingerprints are usually formed on the client. This
is done through the use of scripts running on the web client
while the user in accessing a web page that makes use of
fingerprinting. Many of these scripts are in the scripting
language: JavaScript. These scripts run on the web client and
record various attributes about the client which then can get
sent to a server and stored in a database.
Not only can the host of the web server run tracking

scripts on the web client, but third parties can also run their
own scripts alongside anything that might be running on the
web page (this however can be mitigated through changing
certain settings within most browsers). Third party finger-
printing creates the possibility for cross-site fingerprinting
where advertising companies can run scripts on multiple
sites, identifying individuals on each site.

3 Methods of fingerprinting
Here the methodology used for browser fingerprinting and
the impact of cookies is discussed.

3.1 Methods Used for Browser Fingerprinting
Most, if not all, methods for browser fingerprinting employ
collection of data about the user’s client to form a digital
fingerprint that can be used to distinguish one browser from
another and by extension one user from another. This data
includes information about the machine the browser is run-
ning on, the specifics of the peripherals the browser has
access to, the configuration of the browser itself, and any
cookies that are present on the browser. All these digital
markers will be discussed in this section.

3.1.1 Types of data Collected for a Fingerprint. The
data collected by fingerprinting is the “data regarding the
configuration of a user’s browser and system when this user
visits a website” [7]. This data is referred to as the attributes
of the browser. The User-Agent header was one of the first
attributes used in creating fingerprints and is always present



Aaron M. Corpstein

in any transmission to a web server. Figure 2 is an example
of a fingerprint that was collected using a tool that allows
users to record a real fingerprint of their browser [5].

Figure 2. Browser Fingerprint of an Ubuntu Machine.

The tool used to create the fingerprint in Figure 2 cap-
tures a plethora of details about the user’s browser and the
machine the browser is running on. Some of the more no-
table attributes captured in the fingerprint is the Operating
System, the screen resolution, language and time zone, and
usage of certain APIs. The rest is a list of fonts used by
the browser, the hardware concurrency (number of cores
in the processor), the color depth (number of bits available
for pixels), the ‘audio’ is a hash value of how the computer
handles audio output, if and how the machine handles touch
screen capabilities, how many ‘touch points’ (the start and
end points of the touch capable area on the screen), and the
session and local storage records whether or not the browser
has access to storing memory during the session and storing
data that can be accessed over multiple sessions. All of the
attributes captured can then be stored and used to track users
across the internet. The fingerprint can be stored on a server
then sold to an advertisement company and the fingerprint
can be stored on the user’s machine in the form of a cookie.
The fingerprint will remain stable and associated with the
browser that accessed the web page as long as the browser
or machine configuration does not change.

3.1.2 How Cookies are Used in Fingerprinting. As
mentioned, cookies can be utilized in browser fingerprinting.
The fingerprint that is stored in a cookie is stored on the
user’s browser for future identification. The cookie version
is used in conjunction with a fingerprint that is stored on
the host’s server to more effectively track users that visit

web pages that employ fingerprint tracking. Cookies are use-
ful in making the identification process more accurate, but
they are not necessary. A cookie is not necessary because,
a fingerprint can still be recorded from the client and then
that fingerprint is checked against other fingerprints that the
server has stored to identify users. Simply, a cookie offers
stability in the process.

4 Countering Fingerprinting
There are two main methodologies when combating browser
fingerprinting, both stem from either changing the attributes
of the web client or obscuring the attributes from the web
page’s server. All methods vary in effectiveness of thwarting
fingerprinting and impact to the user’s experience.

4.1 Changing Attributes
Browser fingerprints can utilize a great many attributes
concerning the configuration of a user’s browser. Most fin-
gerprints look like the one captured in Figure 2, with the
most common attributes being the User-Agent header, lan-
guage, color depth (how many bits the pixels’ values have
access to), screen resolution, time zone, platform, Java plug-
ins and JavaScript, Canvas API, and enabled cookies. Of the
attributes listed, some of them are changeable by the user via
the browser’s settings and/or the settings of the operating
system. The attribute the user has the most agency in chang-
ing are the system or browser language, the color depth,
time zone, if Java or JavaScript is enabled in the browser,
whether or not cookies are enabled, and the screen resolu-
tion. So, as it turns out a significant portion of the set of
attributes in a common fingerprint can be changed. This,
however, is not as promising as it would seem due to the
usability factor after changes are made. For instance, many
web pages require the use of JavaScript to appear and run
correctly on the client. The same can be said for disabling
cookies: many sites require cookies to be enabled so the user
can remain logged in. Also changes made to attributes like
the screen resolution and language can negatively affect the
user’s ability to interface with the browser. The user experi-
ence post direct attribute manipulation is then the reason for
why the researchers involved with the study conducted [7]
attempted to create a browser that did not impact the overall
user experience.

4.2 Browser Based Measures: Extensions
Browser extensions have and are currently being used to
defend the user against various vectors of internet tracking.
The extensions mentioned here combat browser fingerprint-
ing in multiple fashions, all with varying success. These
browser extensions can be found on many of the popular
browsers and can help in protecting user privacy.

4.2.1 Script Blocking. Script blocking is a method used
to hinder tracking scripts and browser fingerprinting. Script



Browser Fingerprinting and the Importance of Digital Privacy

blocking is a method used among the following popular
browser extensions: Ad-Block Plus3, Disconnect4, Ghostery5,
NoScript6, Privacy Badger7, and uBlock8. All these exten-
sions disallow certain scripts originating from the web pages
to be ran on the browser accessing said web pages. More
specifically, Ghostery and Privacy Badger block scripts via a
blacklist that gets updated periodically. Additionally, Privacy
Badger can also use analysis of heuristics to block third-party
scripts hidden within web pages. NoScript can block scripts
similar to Ghostery and Privacy Badger but can also allow
user specified scripts to be ran in the browser, giving the
user even more control over what is running in the browser.
Script blocking is a good security measure. However, script
blocking can be seen by the party that placed the scripts in
the web page and this can even be included as an attribute
to a fingerprint [6].

4.2.2 Attribute Blocking. Attribute blocking is a method
employed by some extensions to narrow the number of at-
tributes given off by a web client to shroud the client from
the web server and third parties. Attribute blocking is ac-
complished by simply blocking the web server’s access to
certain attributes. In doing so, the fingerprint emitted by
the web client is less unique and therefore less traceable
and less identifiable. Browser extensions that employ this
style of counter are CanvasBlocker9 and Canvas Defender10.
Both extensions work by blocking access to the Canvas API
and to HTML5. However, there is a flaw in this approach,
it is detectable. The FP-Scanner test suite can detect when
the Canvas Element is being altered and therefore can de-
tect usage of these types of extensions that block certain
attributes since these extensions block the Canvas API [7].
This is important because if this countermeasure is detected,
the behavior can then be recorded and included as part of
the fingerprint.

4.2.3 Attribute Switching. Attribute switching employs
randomization of two sets of attributes to ‘lie’ to the web
server. What gets randomized is the list of plugins that gets
seen by the web server to prevent scanning by JavaScript.
The other attribute that is altered is the User-Agent Header.
Attribute switching is accomplished by User-Agent Spoofing
extensions, User Agent Switcher11 is such an extension. The
values that can be change are a token that indicates compat-
ibility with Mozilla, the Platform (the Operating System) the
web client is running on, the Gecko Version, and the browser

3https://adblockplus.org/
4https://disconnect.me/
5https://www.ghostery.com/
6https://noscript.net/
7https://privacybadger.org/
8https://ublock.org/
9https://github.com/kkapsner/CanvasBlocker
10https://multilogin.com/canvas-defender/
11http://useragentswitcher.org/

version. In addition to switching values in the User-Agent
header, the User Agent Switcher extension can also automat-
ically switch User-Agents based on URLs at the discretion
of the user. The attributes changed in this way are changed
randomly. The Random Agent Spoofer extension offers the
user the functionality to make Browser configuration Pro-
files that can be swapped to automatically based on user
specified URLs similar to the User Agent Switcher extension.
The Random Agent Spoofer extension’s browser configura-
tion profiles include all common attributes as described in
3.1.1. The extension also blocks other fingerprinting methods
that leverage the Canvas, WebGL, and other similar APIs.
Overall Attribute Switching can be a quite powerful method
to protect against browser fingerprinting [7].

4.2.4 Attribute Blurring. Attribute blurring is an off-
shoot of Attribute Switching. Attribute Blurring like its coun-
terpart aims to change the attribute values to produce a fin-
gerprint differing from the actual fingerprint the web client
would emit. Attribute blurring accomplishes its goal by intro-
ducing noise (changing parts at random) in attributes where
noise can be injected. An attribute where noise can be added
are the Canvas and Audio elements. In both the Audio and
Canvas elements there is an id associated to the element,
within the id, noise can be added to change the emitted fin-
gerprint. The browser extension FPGuard12 utilizes Attribute
Blurring to create random or preset fingerprint emitted by
the web client [7].

4.3 Non-Unique Fingerprints
In the study done by Gómez-Boix et al [7], the researchers de-
vised a clever solution to fingerprinting. The solution would
employ aspects of attribute switching but not at the cost
of the user experience. The approach taken by Gómez-Boix
et al [7] was to create a browser fingerprint that does not
obscure or just randomly change the fingerprint given off
by the web client but rather to assign each browser a finger-
print that is non-unique to be seen by fingerprinting. These
non-unique fingerprints would be shared by multiple users
in a pool so that the privacy of the individual is maintained.
The study that creates the concept of non-unique finger-

prints was introduced by an earlier study by a similar group.
In the earlier study done by Gómez-Boix et al [8], research
was conducted on how many unique fingerprints can be
discovered in larger sets of fingerprints to strengthen non-
unique fingerprints so that the fingerprints do not become
unique if attributes are changed or added. What was found
was that in a large sample of fingerprints (about 2 million)
that were collected from 15 French websites, only about
33.6% of the fingerprints were able to be uniquely identifi-
able, as opposed to previous studies where the accuracy was
much higher with smaller sample sizes [8].
12FPGuard is not available for download. FPGuard was created as a solution
by FaizKhademi, et al.

https://adblockplus.org/
https://disconnect.me/
https://www.ghostery.com/
https://noscript.net/
https://privacybadger.org/
https://ublock.org/
https://github.com/kkapsner/CanvasBlocker
https://multilogin.com/canvas-defender/
http://useragentswitcher.org/


Aaron M. Corpstein

In the experiment conducted by Gómez-Boix et al [7], the
researchers used clustering algorithms that group together
sets of similar fingerprints to produce final sets of finger-
prints. The fingerprints used in the clustering process were
acquired from a data set that was produced in the earlier
study by Gómez-Boix et al [8] and would be partitioned into
partitions based on the operating system and browser. This
resulted in four partitions; Linux/Firefox, Linux/Chrome,
MAC OS X/Firefox, and MAC OS X/Chrome. The Clustering
algorithms utilized were K-Means, Density Based Clustering
and Agglomerative Hierarchical algorithms. All of which are
common but outside the scope of this paper. The team also
did a second round of clustering where aggregation was ap-
plied to produce more clusters. From the clusters generated,
the centroid 13 and the fingerprint with the lowest entropy 14

value were extracted as the non-unique fingerprint that in
practice would be applied to a user’s browser.
The distance function used to produce the clusters mea-

sures the similarity between fingerprints. In order to com-
pare fingerprint, the attributes were given weight values
based on importance where the sum of the weights per fin-
gerprint equal one. F stands for fingerprints, d stands for
distance, weight values denoted as𝑤𝑖 , and a stands for the
attributes 3.1.1 of the fingerprints.

𝐷 (𝐹1, 𝐹2) =
𝑛∑︁
𝑖=1

𝑤𝑖 ∗ 𝑑 (𝐹1𝑎𝑖 , 𝐹2𝑎𝑖 )

To measure the effectiveness of the non-unique finger-
prints, two measures were devised that would then be used
for a series of graphs to judge the fingerprints on. The first of
the two is the Identifiability metric 𝐼 . K stands for the num-
ber of partitions or clusters. 𝑢 (𝑐𝑘 ) is the number of devices
within the cluster k [7]. I is then bounded on the interval
[𝐾2/𝑈 ,𝑈 ] where U is the total number of devices in the
cluster. I then reaches its minimum value when all the clus-
ters ideally reach a maximum number of devices defined by:
𝑢 (𝑐) = 𝑈 /𝐾 . Identifiability is a score given to a cluster of
fingerprints as it is derived from the function.

𝐼 =

𝐾∑︁
𝑘=1

1
𝑢 (𝑐𝑘 )

The third function finds the Disruption within the non-
unique fingerprints. The disruption is the distance between
the non-unique fingerprint extracted from the cluster and a
fingerprint extracted from a target/user’s client. The function
takes into account the number of attributes altered between
the two fingerprints and then the number of fingerprints re-
quired to generate the non-unique fingerprint where 𝑢 (𝐹𝑃𝑖 )
is the number of fingerprints that share the fingerprint 𝑖 .
Better clusters have lower disruption.

13The centroid being the center of the cluster
14Entropy determines the how well the cluster forms

𝑅 =

𝐾∑︁
𝑘=1

∑︁
𝑖∈𝑐𝑘

(𝑑 (𝐹𝑃𝑖 , 𝐹𝑃 {𝑘 }) ∗ 𝑢 (𝐹𝑃𝑖 )
𝑈

)

4.4 Results of Non-Unique Fingerprints
The research conducted by Gómez-Boix et al found that in
fact the approach did reduce the identifiability of users when
the non-unique fingerprints were applied [7]. The team first
took a measure of the identifiability of the raw data in the
data set. This can be observed in the figure 3

Figure 3. Identifiability of the raw data

In the figure it can be seen that the number of uniquely
identifiable fingerprints is quite high, reaching 88.6% for Mac
OS X 10.12 with Firefox. This resulted in an identifiability
score of 2,999.81 which is far higher than the scores after
clustering 4,5.
In the first experiment, the researchers produced the re-

sults that can be seen in figure 4. The disruption is shown
on the y-axis, the identifiability is shown on the x-axis. The
numbers along with each point represent the number of
clusters 𝑘 , the number of fingerprints in the smallest clus-
ter, and the number of devices within the smallest cluster
respectively. The first experiment produced promising but
not sufficient results so a second experiment was conducted.
The results of the second experiment can be seen in Fig-

ure 5. This time aggregation was added as another layer of
processing to the clustering scenarios. This produced better
results with the identifiability score being less than 1 now
and the disruption remaining quite low.
These findings can be supported by the research done in

a study by Alan et al where the effects of client diversity
in a population was examined [4]. What was found was
that the accuracy of a fingerprint relies on certain attributes
more than others, specifically when the browser or operat-
ing system is changed. In the study, the fingerprints used
were pre-generated fingerprints, meaning that they were not
from real machines but randomly created. In the study the
researchers had five test scenarios where the accuracy of the
fingerprints were tested. The scenarios are:

1. The client went unchanged
2. Same browser and operating system, different device
3. Same browser, different operating system
4. Different browser, same operating system
5. Both the browser and operating system changed
Of the scenarios tested, the two that had diminished the

accuracy of the fingerprints the most were when just the



Browser Fingerprinting and the Importance of Digital Privacy

Figure 4. Results from the first experiment [7]

browser changed and when both the browser and OS was
changed. The scenario that has a more realistic application is
the one where only the browser changed between sessions.
These results can be seen in figure 6, where each bar on
the graph is a fingerprinting technique. This is important
because this shows that meaningful action can be taken at
the browser level to combat fingerprinting.
To make use of the findings by Gómez-Boix et al [7], the

non-unique fingerprint could be applied with the use of what
the researchers dubbed a “fingerprint protection platform”.
This platform would collect a fingerprint from the user’s
client and then return a recommended fingerprint from the
set of fingerprints generated by the clustering analysis. The
platform could take the form of a new browser, a website or
even Docker15. With the findings in both studies, it would
appear that the usage non-unique fingerprints can be a re-
ally practical solution to protect user’s privacy while also
preserving the user experience.

5 Conclusions
Browser fingerprinting is a technique of de-anonymizing and
tracking internet users that has a large impact on the privacy
and security of the internet. What has been discussed was
the attributes that are used in fingerprinting a user’s web

15Docker is a software container program where code can be ran in isolated
OS-level virtual environments.

Figure 5. Second set of results [7]

Figure 6. Results of Client Diversity [8], where Wfin, BoG,
ect. are fingerprinting methods

client for de-anonymization, some current solutions offered
by various browser extensions, and an experimental solution
that intends on providing security at little cost to the user
experience. The usage of non-unique fingerprinting could be
the next major step in protecting the user against browser
fingerprinting. As stated, a “fingerprint protection platform”
would need to be developed to make the security offered by
non-unique fingerprints accessible. In the future, steps to
protect user privacy should be taken and the solutions found
could be used to ensure the privacy of individuals on the
internet.



Aaron M. Corpstein

Acknowledgments
I would like to thank my family for providing support, Elena
Machkasova for advising me through the entire writing pro-
cess, and Adam Casey for his early advice.

References
[1] Mozilla Foundation . Evolution of HTTP. Mozilla Foundation. Accessed:

2021-04-12.
[2] Mozilla Foundation . Navigator interface. Mozilla Foundation. Ac-

cessed: 2021-03-31.
[3] Wikipedia . User Agent. Wikipedia. Accessed: 2021-03-28.
[4] Hasan Faik Alan and Jasleen Kaur. 2019. Client Diversity Factor in

HTTPS Webpage Fingerprinting. In Proceedings of the Ninth ACM
Conference on Data and Application Security and Privacy (Richard-
son, Texas, USA) (CODASPY ’19). Association for Computing Machin-
ery, New York, NY, USA, 279–290. https://doi.org/10.1145/3292006.
3300045

[5] Rob Braxman. . Browser Fingerprint Generation Tool. Brax.me. Ac-
cessed: 2021-04-1.

[6] Rob Braxman. . What Browser to Use? About Browser Isolation. Youtube.
Accessed: 2021-04-1.

[7] Alejandro Gómez-Boix, Davide Frey, Yérom-David Bromberg, and
Benoit Baudry. 2019. A Collaborative Strategy for Mitigating Tracking
through Browser Fingerprinting. In Proceedings of the 6th ACM Work-
shop on Moving Target Defense (London, United Kingdom) (MTD’19).
Association for Computing Machinery, New York, NY, USA, 67–78.
https://doi.org/10.1145/3338468.3356828

[8] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018.
Hiding in the Crowd: An Analysis of the Effectiveness of Browser Finger-
printing at Large Scale. International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, CHE, 309–318.
https://doi-org.ezproxy.morris.umn.edu/10.1145/3178876.3186097

[9] Andrew J. Kaizer and Minaxi Gupta. 2016. Towards Automatic Iden-
tification of JavaScript-Oriented Machine-Based Tracking. In Pro-
ceedings of the 2016 ACM on International Workshop on Security And
Privacy Analytics (New Orleans, Louisiana, USA) (IWSPA ’16). As-
sociation for Computing Machinery, New York, NY, USA, 33–40.
https://doi.org/10.1145/2875475.2875479

[10] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine.
2020. Browser Fingerprinting: A Survey. ACM Trans. Web 14, 2, Article
8 (April 2020), 33 pages. https://doi.org/10.1145/3386040

[11] Wade L. Robison. 2018. Digital Privacy: Leibniz 2.0. SIGCAS Com-
put. Soc. 47, 4 (July 2018), 134–144. https://doi.org/10.1145/3243141.
3243155

https://doi.org/10.1145/3292006.3300045
https://doi.org/10.1145/3292006.3300045
https://doi.org/10.1145/3338468.3356828
https://doi-org.ezproxy.morris.umn.edu/10.1145/3178876.3186097
https://doi.org/10.1145/2875475.2875479
https://doi.org/10.1145/3386040
https://doi.org/10.1145/3243141.3243155
https://doi.org/10.1145/3243141.3243155

	Abstract
	1 Introduction
	2 Background
	2.1 History of the Internet Browser
	2.2 APIs
	2.3 Cookies
	2.4 Browser Fingerprint Definition

	3 Methods of fingerprinting
	3.1 Methods Used for Browser Fingerprinting

	4 Countering Fingerprinting
	4.1 Changing Attributes
	4.2 Browser Based Measures: Extensions
	4.3 Non-Unique Fingerprints
	4.4 Results of Non-Unique Fingerprints

	5 Conclusions
	Acknowledgments
	References

