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Abstract

Neural networks are a popular tool for machine learning,.
Because of the underlying architecture of modern computer
design, neural networks are beginning to face mounting is-
sues of power consumption and performance inefficiency
due to implementation. This paper will provide background
on neuromorphic computing, an area of research aiming to
develop more efficient neural networks utilizing biological
inspiration. It explores neuromorphic computing through
background and discussion of a specific type of neural net-
work known as a spiking neural network, including difficul-
ties with training and a solution proposed by Ledinauskas
et. al. In addition, I introduce a hardware implementation of
spiking neural networks using components called memris-
tors.

Keywords: neuromorphic computing, von Neumann bot-
tleneck, artificial neural network, spiking neural network,
memristor

1 Introduction

There is a growing demand for machine-based solutions to
abstract problems such as computer vision, natural language
processing, and driving automation. Neural networks have
come to be one of the promising approaches to solving these
problems. Unfortunately, neural networks as they currently
stand are not ideal for all problems and current computer
architectures are not optimized for doing work with them.

Though traditional neural networks are able to solve many
abstract problems, they still have nowhere near the adapt-
ability or ease of learning as human beings. Neuromorphic
computing, among other things, is an attempt to bridge the
gap of technology by taking cues from what we see in biology.
Neural networks are only loosely adapted from biological
brains; this is in part because of the difficulty in implement-
ing all of the mechanisms at play within biological systems.
Spiking neural networks are a more directly biologically-
inspired spin on current neural networks. This paper will
describe some of the problems of designing these networks
as well as a novel approach to developing a more efficient,
similar performing network.

One of the solutions to the problem of hardware limiting
the effectiveness of neural networks is the discovery and de-
velopment of memristors, circuit components which change

their electrical properties based on prior input. In this paper,
I discuss the properties that describe memristors as well as
an implementation of memristors being used for spiking
neural networks.

2 Background

This section covers the important concepts behind neuro-
morphic computing.

2.1 Computer Architectures
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Figure 1. A basic Von Neumann machine [16]

A computer architecture describes the design and imple-
mentation of a computer system. This includes how memory
is managed and accessed, where instructions occur, and how
arithmetic logic is processed. [13] All computers have some
form of architecture which guided its design; most comput-
ers of today use some variant or expansion of one known as
the von Neumann architecture.

Outlined by John von Neumann in 1945, this computer
architecture has three main components: shared memory
for programs and data, input/output devices, and a central
processing unit (CPU) which is divided into a control unit and
alogic unit [16]. The control unit manages the interpretation
of instructions being received, and the logic unit performs
arithmetic and bitwise operations. An example of a basic
von Neumann setup can be seen in Figure 1 where input
and output devices interface with a central “box” housing a
central processing unit and a memory unit.
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2.2 Von Neumann Bottleneck

The von Neumann architecture is designed so that program
and data memory are part of a shared space separate from the
CPU. The CPU receives instructions from memory, performs
tasks, then writes back to memory. A problem arises when a
lot of data needs processing. Because the calling and writing
of memory takes time, the CPU in a modern computer must
idle while memory is accessed; this limit in data transfer
rate is known as the von Neumann bottleneck. This is most
apparent when there is a large amount of data which requires
a small amount of computation [16].

2.3 Neuromorphic Computing

Neuromorphic computing is an overarching term which de-
scribes biologically inspired technology which often does
not utilize the von Neumann architecture [11]. Some of the
main reasons for doing this are to develop machines which
are capable of learning and adapting similarly to humans- as
well as finding ways to do this while using less power. This
is particularly useful when attempting to create machines
which are capable of autonomous driving and processing
language.

Examples of neuromorphic computing are memristors and
spiking neural networks. Neural networks are a method of
machine learning inspired by biological neurons. A related
method which more closely resembles human neurons is
spiking neural networks, a topic which will be discussed in
section 2.7 after covering the basics of conventional neural
networks and an important variant used for categorizing
and interpreting images known as convolutional neural net-
works.

2.4 Neural Networks

Hidden

Figure 2. A simple artificial neural network [12]

Neural Networks (NN) are a broad class of algorithms
which are loosely modeled after the operating principles of
neurons. Networks are built from layers of artificial neurons
which connect with one another and are affected by a given
input as well as each other, as seen in Figure 2. Neural net-
works can have multiple hidden layers. The number of layers

a network has describes a property known as its depth. A
deep neural network refers to a NN which has many hidden
layers.

Figure 2 represents a simple neural network. Each circle
in the diagram represents one neuron. Neurons are divided
into three categories, an input layer, a hidden layer, and
an output layer. The input layer takes in data, which may
come in any form such as images, audio, or text. The input
layer then influences the behavior of the hidden layers. The
hidden layers finally influence the output layer to deliver
a classification. Layers are generally arranged in a manner
known as feedforward, where input comes in from the left
side and propagates to the right where an output might acti-
vate. Often, all neurons in one layer are connected to every
other neuron in the following layer; each connection being
assigned a weight. These weights correspond to a function
which regulates whether or not a neuron will contribute
toward the activation of another neuron, called the activa-
tion function. Often in NN implementations the activation
function is continuous, meaning that exact values can be
found by taking smaller and smaller approximations. If a
neuron is receiving a strong enough cumulative signal from
all neurons it is connected to, it will activate and send a signal
forward to the following layer. A method by which weights
are adjusted to fit a desired model is known as backpropaga-
tion and the overall process is known as training. To train a
NN, data which has already been classified is fed as input,
output classification from the training data is then used in
conjunction with the known correct classifications to direct
how weights are adjusted. Real NNs may have many neurons
in each category and may have multiple hidden layers [9].

2.5 Comparing Neural Networks
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Figure 3. Figure showing digits represented within the
MNIST dataset [15]

Neural networks are not all built for the same purposes.
Part of training NNs is developing them to perform classifi-
cation faster and more effectively. Before this can be done,
there needs to exist a set of standards by which one trained
NN can be compared to another. The generally accepted
method by which NNs are compared is through the use of



“benchmark” datasets. These datasets are large and deliber-
ately well formatted for a specific purpose. Scoring of these
datasets usually is in the form of error rates generated from
a test set.

One of the most popular datasets for pattern recognition
is the MNIST database [5]. MNIST is a collection of hand-
written digits, preformatted for the purposes of machine
learning. Figure 3 shows a sampling of examples for human
handwriting. Each digit is formatted to be black and white,
and stay within the center of a 28x28 pixel box [5]. The aim
of this dataset is to train NN to classify handwritten digits.

Another popular dataset, used for image classification,
is the CIFAR-10 dataset. This dataset is made up of 60,000
images of size 32x32 pixels. This images are in color and each
image belongs to one of ten possible classes. The classes for
the dataset are airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. Each category contains 6,000 images.

2.6 Convolutional Neural Networks
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Figure 4. A visualization of a convolutional neural network
being used to classify images from the MNIST dataset [10]

Convolutional neural networks (CNN) are a variation of
deep neural network which have been found to work partic-
ularly well with images and image classification. This is an
involved process which does multiple passes across an image
using a kernel to retrieve important features from a given
image. Features are image properties which are generated by
a CNN. Figure 4 is a visualization of how a CNN interprets
an image, in this case a number from the MNIST dataset.
Starting from the input, there are alternating convolution
and pooling layers which get progressively smaller before
finishing at a fully connected NN for classification.

Convolution is a name for a process by which functions
multiply to create a new, third function. This forms the un-
derpinning of convolutional neural networks. For an image
to be processed, an image is broken down into a numeri-
cal representation of itself. In the case of Figure 4, the digit
shown would be represented by having each pixel assigned
a value based on whether or not it has color.

A square mask or “kernel” describes a feature of an im-
age; this could be something like vertical or horizontal lines.
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When a kernel is “on” a portion of an image, it compares how
similar that region is to the feature the kernel describes. It
then travels across an image in discrete steps, generally from
left to right, up to down, generating a new “image” known as
a feature map. Often because a single kernel cannot capture
all of the relevant information held within an image, multi-
ple kernels sometimes referred to as “channels” will work
through an image to capture multiple details. Feature maps
are represented by the blue squares in Figure 4.

After convolution, a process known as pooling begins. This
process is similar to how a kernel generates a feature map,
a smaller kernel travels across a feature map, but here the
CNN designer decides how the pooling kernel will probe
the feature map. Figure 4 shows examples of max pooling.
Max pooling would refer to the pooling kernel selecting the
highest value in a given step. For example, say we have a 2
pixel by 2 pixel square pooling kernel. Max pooling would
dictate that for each step, the highest value within the mask
would be the number used for the given coordinate in the
resulting feature map.

Once convolution and pooling is complete, the final fea-
ture maps are individually connected to input nodes which
have their own layers that lead to output. This process of
convolution and pooling significantly reduces the required
training images needed. Often CNNs are comprised of mul-
tiple convolution and pooling layers before final processing
of output classification. The primary purpose for this is to
only feed the most relevent information to the NN so that
processing requirements are reduced. To illustrate this point,
take an image who’s size is 1920x1080, a standard camera
dimension. There are a total of 2,073,600 pixels contained
within that image. For image classification without convo-
lution, each pixel would need to be “plugged” into unique
input nodes of the NN which would also each need to be fully
connected to any subsequent layers, meaning there would
be a minimum of approximately 4.3 trillion connections for a
1920x1080 pixel image. A network like this would be totally
impractical for all but the most powerful computing clusters
of today.

2.7 Spiking Neural Networks

Spiking neural networks (SNN) are a newer class of NNs
which more closely mimic biological neurons. Neurons op-
erate on a similar principle to traditional NNs, though they
have some key differences. In a traditional NN, the activation
function being used utilizes a continuous gradient. In an SNN,
the activation function is a stream of binary pulses called a
spike train. This chain of pulses accumulates within a given
receiving neuron it and builds a charge; this is analogous
to how biological neurons accumulate and release electrical
potential through neurotransmitters and ions. Once a charge
has reached a level called the membrane threshold, the neuron
fires a spike pulse and the previously accumulated charge
falls back to its baseline. These pulses are not persistent and
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if a neuron does not receive pulses regularly, it will begin to
decay and charge will be lost until a baseline level has been
reached [8].

Depending on the specific ruleset under which an SNN
operates, when neurons fire, the strength of the connection
between the sending and receiving neuron strengthens. One
of the problems involved in developing SNNs that will be
discussed in later sections is training. Because the activation
function of SNNs involves spike trains instead of continuous
values, spike trains are called nondifferentiable, since pulses
are discrete “actions”. To account for this, when developing
an SNN, inputs must be encoded using a different method
such as pulse rate or amplitude as opposed to a unique value.

2.8 Memristors

2.8.1 Circuit Elements. In electrical theory, there are gen-
erally four main variables used to describe a circuit, voltage
(denoted by V), current (denoted by I), charge (denoted by
q), and magnetic flux (denoted by ®). These all have relation-
ships to one another made apparent by different series of
equations. An important equation to understand memristors
is known as Ohm’s Law: V = I = R. We can see that voltage
V is equal to the current I multiplied by the resistance R. We
can then divide both sides by I to determine the resistance,
R = %. This method of determining resistance is key to mem-
ristors as they have varying resistance depending on voltage
applied.

2.8.2 Operation. The memristor was first conceived by
Leon Chuain 1971. At its most fundamental level, memristors
are passive circuit elements which change and "remember"
resistance based on the amount of applied voltage. Compo-
nents which have variable resistance depending on external
conditions are not unique to memristors.

An extreme example of a component which shares this
property is a fuse. A fuse operates by allowing current at a
certain resistance up until a certain voltage, at which point
the fuse pops and its resistance becomes infinite. It stays at
this new state, "remembering" the current that was passed
through before. Another example of this is a variable resistor
that is attached to a microcontroller. The microcontroller
adjusts the resistance based on the current applied. What
makes a memristor unique from components like a fuse or
a variable resistor attached to a microcontroller is that the
change in resistance is not confined to one direction as in
the case of a fuse and requires no active change as in the
case of the variable resistor.

2.8.3 Pinched Hysteresis. Hysteresis describes how the
state of some systems is dependent on its history. Traditional
resistors do not have the property of hysteresis; every volt-
age value has exactly one corresponding current. The line
described by the bottom of Figure 6 shows that regardless
of how the current changes, there will only be one state
which corresponds to it. The top of Figure 6 demonstrates
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Figure 5. An idealized memristor IV plot (top) alongside a
resistor IV plot (bottom) [7](edited)

resistance, and thereby hysteresis, as seen in memristors.
The colored “on" and “off" arrows indicate changing voltage
in a sinusoidal pattern. As voltage shifts from one value to
another, the resulting resistance does not stay the same; it
changes based on where it was before [7]. Another important
aspect of memristors is that each reachable state along the
curve is stable, meaning that if current is not applied, the
memristor will not reset its position; any changes that occur
will be relative to its state when it was turned off.

2.8.4 Relationship to Neuromorphic Computing. Mem-
ristors are a promising avenue for the development of more
efficient neuromorphic systems. By linking resistance to ac-
tivation threshold and current to weight, a hardware-based
artificial neuron can be created. This is particularly well
suited to the “neurons” used in SNNs. A review paper by
Camunas-Mesa et al. describes how memristor behavior is
uniquely similar to the underlying mechanics of SNNs [2].



This similarity facilitates the elimination of processing over-
head associated with software implementations in von Neu-
mann machines and overcoming the previously mentioned
von Neumann bottleneck [2].

3 Implementations

One of the prominent issues involved with spiking neural
networks is how an SNN gets trained; this occurs because
spike trains are binary pulses. Normally for training NNs,
input is converted into continuous values, for example in the
MNIST database, digits are input in the form of greyscale
pixels of varying smooth levels. Outside of very simple mod-
els, this poses a challenge for SNNs in the form of converting
given input data into spike trains. One method for solving
this has been to develop a deep neural network which solves
the given problem and then manually converting it into an
SNN. This is not ideal because doing so does not take advan-
tage of the full potential of SNNs [3].

3.1 Problems with Training

As was stated previously, a critical component for the cre-
ation of useful neural networks is training. A standard method
for training NN is back propagation. To train NNs, data from
a desired set is used as input for a NN, which will generate a
given output; in the case of image classification for MNIST,
hand drawn digits would serve as input and a number 0-9
would be the output’

Results from this process are then compared to the actual
results and evaluated basted on how “incorrect” the model
performed. Since these networks are really functions, we
can craft other functions which model this incorrectness.
Through the use of calculus and the knowledge of the per-
formance of the model weights, we can minimize what in
this case is known as a loss function. This process of back
propagation is repeated many times to get the loss function
to a “local minima”, a process known as gradient descent.
A visualization of gradient descent for a simple NN can be
seen in Figure 7.

These functions have a property known as continuity,
which allows gradient descent to occur. A function which
is continuous has minimum values which can be approxi-
mated by exploring smaller and smaller portions of the local
area. Functions which don’t have continuity have areas that
“jump”, which cannot be found via approximation. Spiking
neural networks are not naturally continuous because the
gradient of different possible values for input has been re-
placed with discrete spikes. Having spikes for activation
makes gradient descent a difficult method to choose.

3.2 Conversion from CNN to SNN

In 2015, Diehl et al. developed a method to convert deep
convolutional neural networks into spiking neural nets of
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Figure 6. Gradient descent in a traditional NN [1]

similar depth. Prior to this, there was difficulty in develop-
ing SNNs due to the large computational cost. It was found
that by developing a process of using a uniform activation
function for all neurons in a CNN, training the CNN, directly
mapping the weight values to an identical SNN, and then
using a novel method of normalizing weights, SNN accuracy
was nearly on equivalent to the performance of a CNN of
similar complexity while using less computational power
than prior methods. [3].

3.3 Direct Training of SNN

In 2020, Ledinauskas et al. released a preprint paper which
describes a new method for directly training SNNs without
the need to start from a trained CNN [6]. Their method
relies upon how gradient descent does not require a perfectly
accurate gradient. Because the problems of training an SNN
stem from spike trains not mapping as functions for use in
gradient descent, Ledinauskas et al. use a novel approach
which involves something known as a “surrogate gradient”
to generate very deep SNNs [6]. This surrogate gradient is
an alternative gradient which mimics the nondifferentiable
spike activation function. Once this adjustment is made, the
SNN can be trained similarly to traditional NNs with back
propagation.

Ledinauskas et al. tested their methodology on the MNIST
dataset, the CIFAR-10 dataset, and the CIFAR-100 dataset, a
variation of CIFAR-10 which has 100 classes of 600 images
each [4]. They determined that for the MNIST and CIFAR-10
datasets, that they were able to achieve similar results using
direct training of SNNs to other already existing means of
training SNNs [6]. Their results can be seen in Table 1.
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Model Method Acc

reward-modulated STDP  97.2
STDP + gradient descent  98.6
back prop (older approach) 99.59
back prop 99.40
Table 1. Table showing accuracy of different SNN ap-
proaches on MNIST dataset [6]

Mozafari et al.
Tavanaei et al.
Lee et al.
Ledinauskas et al.

Model Method Acc
Han et al. VGG16, ANN-SNN conv. 70.93
Rathi et al. VGG11, ANN-SNN conv. 70.94

Ledinauskas et al. back prop 58.5
Table 2. Table showing accuracy of SSN and different ANN-
SNN conversion approaches on CIFAR-100 dataset [6]

Performance on the CIFAR-100 dataset, however, showed
that direct training of SNNs had a nontrivial drop in perfor-
mance relative to NN-SNN conversion, as shown by Table
2. A hypothesis posed by Ledinauskas et al. for the drop
in performance is that because the gradient being used is
an approximation, inaccuracies begin to accumulate as the
network gets sufficiently deep.

Overall, they conclude that although SNNss still underper-
form in comparison to ANNs and other modern techniques
for heavy training requiring deeper layering, it appears that
shallower SNNs outperformed similar NNs, possibly demon-
strating specialized use in Internet of Things devices. [6].

4 Conclusions

Neuromorphic computing is an emerging area of focus which
aims to solve problems in computing with inspiration from
biological systems. Emerging implementaions of neuromor-
phic computation may help reduce power consumption in
use of neural networks. SNNs are an emerging neuromor-
phic NN design which operates differently from traditional
NNs. SNNs utilize spiking neurons which accumulate synap-
tic potential over time to communicate. Though they show
promise for using markedly less computational power to
train, problems arise when attempting to train them. A novel
method of training SNNs directly developed by Ledinauskas
et al. demonstrates potential for more efficient NNs. This,
in conjunction with bringing SNN principles into hardware
using memristors could bring significant power reduction
for neural networks.
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