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Introduction - The Problem of Demand

● Machine solutions for abstract problems have increased in popularity
● Power demand for algorithms grows with complexity of network

○ GPT-3 has approximately 175 billion parameters
● New focus on less demanding networks

○ Neuromorphic computing
○ Spiking neural networks
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Background - Neuromorphic Computing

Neuromorphic computing

● biologically inspired technology
○ Architectures of the biological neurons

● Biology functional and proven
● Aims

○ Match/exceed human ability
○ Reduce power consumption



Background - MNIST Dataset

● MNIST - Modified National Institute of 
Standards and Technology

● Developed by Y. LeCun, C. Cortes,        
C. Burges in 1998

● Specifications
○ 60,000 hand drawn digits ranging from 0-9
○ Values are black and white, with grey values 

from interpolation
○ Digits are 28x28 centered boxes

● Used extensively for image 
classification



Background - CIFAR datasets

● CIFAR - Canadian Institute for Advanced 
Research

● Developed by A. Krizhevsky, V. Nair, G. Hinton 
in 2009

● Specifications, CIFAR-10
○ 60,000 32x32 images from 10 classes
○ Each class has 6,000 images

● Specifications, CIFAR-100
○ 60,000 32x32 images from 100 classes
○ Each class has 600 images



Background - Neural Nets

● Artificial neurons and weights
● Neural nets approximate functions
● Simplest neural networks

○ Divided into layers
■ Input
■ Hidden layer(s)
■ Output



Background - Neural Nets Ct’d

● Activation functions
○ Determine output by given neuron
○ Different functions exist for different applications

● The role of weights
○ Weights summed together
○ Training - process of making a neural network 

nonfunctional to functional



Background - Neural Nets Ct’d

● Weight balancing through backpropagation
○ Weights randomly assigned
○ Inputs ‘fed’ into the network,  output recorded
○ Outputs compared to ‘ground truth’
○ Loss/cost function is generated
○ Calculus is used to guide loss downward

● Process of training and backprop is called 
gradient descent

● Each loop of the gradient descent cycle is an 
epoch



Basic Gradient Descent Cycle

1. A network is made and weights are 
assigned at random

2. Known Input is fed into network using input 
layer and output is recorded

3. Predicted output is compared to ground 
truth output, generating a cost function

4. Cost function is used to ‘nudge’ weights to 
minimize cost function

5. Repeat from 2 until predicted output 
matches actual output.



Pitfalls of gradient descent training

● Gradient descent is not perfect
○ Model trapped in local minima
○ Adjustment of hyperparameters may resolve 

this
● Vanishing/exploding gradient problem

○ Vanishing - slope is too low, no ‘distance’ is 
travelled

○ Exploding - slope is too high, model 
‘overshoots’



Background - Comparing Neural Networks

● Neural networks organized by purpose
○ Examples

■ Natural language processing (NLP)
■ Image classification
■ Speech synthesis

● Common, well-defined datasets
○ MNIST
○ CIFAR-10
○ CIFAR-100
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Convolutional Neural Networks

● Useful in image processing and classification
● Loosely mimics the human visual system

○ Neural circuits ‘look’ for features in vision
● Images goes through processes of convolution and pooling before being fed 

into a connected neural network
○ Convolution and pooling extract key information from images to minimize processing time



Convolution & Pooling

● Convolution is a process of 
comparing an image to a ‘mask’

● Convolution process:
○ An input image is transformed into a 

numerical representation
○ A square mask or kernel, moves 

through the image left to right, up to 
down

○ Each step the kernel convolutes itself 
with the image to build a feature map

● Multiple kernels define multiple 
features



Convolution & Pooling

● Often there are multiple convolution 
and pooling steps

● MNIST convolution
○ Input is given
○ Multiple 5x5 kernels pass through input 

generating multiple 24x24 feature maps
○ A 2x2 max pool kernel passes through the 

feature map, generating a 12x12 feature 
map

○ Convolution/pooling step happens again, 
generating final 4x4 feature maps

○ Feature maps are passed into neural 
network



Convolution & Pooling - Advantages

● For a 1920x1080 image
○ 2,073,600 pixels = 2,073,600 inputs
○ Layers are often fully connected
○ 1 layer in → 4.3 trillion connections

● Rule of thumb for neural nets: more weights require more training data
○ 4.3 trillion connections needs a LOT of training data.
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Spiking Neural Networks

● Spiking neural networks (SNNs) are a newer type of NN
● SNNs are more closely related to biological neurons 
● Utilize a series of pulses, known as  spikes

○ Spikes are binary
○ Pulses happen over time

● Pulses contribute to synaptic potential
○ Once a synaptic threshold is reached neuron fires a spike and 

potential returns to baseline
● Efficiency is derived from fewer training  and inference 

steps



Neurons and Spiking Neurons

● Traditional neurons
○ Don’t really rely on time 
○ Images are mapped to intensities
○ Strength of inputs determines given output

● Spiking neurons
○ Learning happens over time
○ Neurons with no input lose synaptic potential
○ Training becomes a problem since time affects output



Spiking Neural Networks - Visualization

● Superscripts denote layer, 
subscripts denote time

● W is a matrix of weights 
leading into each layer

● Each layer has 3 parts
○ I - Currents (intensity)
○ U - Synaptic potentials
○ S - Spikes

● For outputs time is 
averaged and max value 
is taken at each timestep
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Training SNNs

● In 2015, P.U. Diehl et al. found that convolutional neural networks (CNN) were 
able to be relatively easily translated to SNNs
○ Creation and training of CNN with uniform activation function
○ Mapping weights of trained CNN to equivalent SNN
○ Method works, but benefits of SNN diminish from higher training time as well as high inference 

time
● Other alternative is direct training using a surrogate gradient, developed by Lee 

et al. in 2016



Training SNNs - Surrogate Gradients

● Backpropagation relies upon differentiable functions
○ Total accuracy is not required for use of backprop
○ This allows for the use of a surrogate gradient which allows for direct training of SNNs

● Surrogate gradient acts as an approximation of a gradient, allowing for SNN 
simulated gradient descent

● A problem with this method is that for deeper SNNs, gradients tend to explode 
or vanish.
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Approach by Ledinauskas et al.

● Ledinauskas et al. described in a 2020 preprint that the problem of 
vanishing/exploding could be mitigated by modifications to the surrogate 
gradient

● By tuning hyperparameters, 𝜸 and 𝜷, where 𝜸 is the width of the surrogate 
gradient and 𝜷 is the height of the gradient, gradient problems diminish

● They also do this via implementation of batch normalization for SNNs
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Results of tuned surrogate gradients

● Top table: performance in 
comparison to other NNs for MNIST

● Middle table: performance of SNNs 
for CIFAR-10

● Bottom table: performance of SNNs 
for CIFAR-100

● Result: similar performance while 
using significantly less inference 
time



Conclusions

● Neuromorphic computing is the direction of research relating to developing 
computing methods more closely resembling biology

● Neural networks work to deliver machine-based solutions to abstract 
problems

● Spiking neural networks are a novel approach being studied to make 
low-power neural networks which perform similarly to modern methods



Suggested Topics for Further Study

● Von Neumann architecture/bottleneck
● Beyond CMOS
● Memristors
● Optical computing
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