User Profiling in Recommender Systems

Jacob Peterson
pet02873@morris.umn.edu
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA

Abstract

Recommender systems (RSs) are systems that look to create
specific recommendations for users based on their activity
on a certain service. Today recommender systems play a
crucial role in providing a good user experience on many
different platforms, and help users overcome the information
overload problem. They are a large part of many different
platforms like E-commerce (Amazon, eBay), social network-
ing websites such as Twitter, music services such as Spotify,
video streaming services such as Netflix, among others. One
of the most important aspects of recommender systems is
user profiling. It provides RSs with the proper information to
make an accurate recommendation for a user. In this paper I
will discuss various ways in which user profiling methods
are being improved in order to provide better recommen-
dations. The methods that I've decided to look at include a
Hierarchical User Profiling framework, and a tag-based user
profiling approach that uses game theory to find the best
trade-off between generality and detailedness. By looking
at these methods I’ll be able to analyze how effective new
approaches to user profiling can be, and how they will create
better recommendations to enhance the user experience.

1 Introduction

In today’s world there is an increasing number of platforms
with massive amounts of information for users to sift through.
This is known as the information overload problem. The
information overload problem is simply the difficulty in un-
derstanding when too much information is present. This can
be seen in many platforms. A clear example of this can be
seen in E-commerce websites. It seems that every day there
are more and more items for users to purchase. While these
services are convenient, the amount of information they con-
tain can create stress for users and decrease their experience
on these platforms. Because of this recommender systems
(RSs) have been developed to help guide users by generat-
ing personalized content for them. RSs are algorithms that
suggest relevant items to a user based upon their previous
interactions. In these systems an accurate and dynamic repre-
sentation of the user’s interests is extremely important. This
representation is known as a user profile. User profiles are
used to generate recommendations for the user. The profiling
phase is often the most important step in RSs.

This paper provides background information that is nec-
essary to understand concepts of user profiling. Then it dis-
cusses two approaches to improve user profiling. Section 3
covers a hierarchical user profiling framework that is ca-
pable of representing a user’s interests at multiple levels.
Then in Section 4 a tag-based user profiling technique is
covered that uses game theory, which looks to find the opti-
mal trade-off between the generality and detailedness in the
representation of a user is covered. Finally the paper goes
over conclusions drawn from these frameworks.

2 Background

This section of the paper provides background knowledge
necessary to understand the concepts that are covered and
is crucial for understanding user profiling methods.

2.1 Neural Networks

The concept of neural networks (NN) is very important when
trying to understand RSs and many other deep learning tech-
niques. Fundamentally NNs are comprised of neurons and
connections between them. A neuron is a function that may
take one or many inputs and generate an output. Neurons are
organized into layers such that, neurons in a given layer pro-
vide their output as input for the next layer. The connections
between neurons are also very important as they connect the
output of a neuron and send it to the next neuron as input.
Connections maintain a weight parameter. The weight of a
connection determines how important it will be to the target
neuron and is determined through a process known as train-
ing. The training process involves finding a set of weights
that give the desired results for the network. The process
is iterative, where each iteration provides a small update
to the set of weights. Through training we seek to find a
set of weights that will give accurate results for whatever
problem the network is trying to solve. One useful example
of a problem that a NN can solve is reading handwritten
characters.

2.2 Recurrent Neural Networks

In recommender systems, recurrent neural networks (RNN)
are a common approach to generate recommendations. A
RNN is very similar to the traditional NN. However, RNNs
introduce the idea of memory by including different kinds of
connections. Unlike NNs, where the output of each neuron
is fed forward through the network, RNNs sometimes feed

output from layers back into the previous layer. This is a very
effective way of modeling sequences of input and dynamic
behavior, which is particularly important in the hierarchical
user profiling framework. Even though recurrent neural net-
works are more complex due to their nature, the methods
for training RNNs are similar to that of NNs.

2.3 User Profiling

Many RNN based recommendation systems generate a user’s
profile vectors to create recommendations. A profile vector
is a vector that hierarchically contains things that the user
is interested in, and are meant to "formally represent users’
interests by deeply understanding their historical interac-
tions" [4]. For example, if user u is interested in three cate-
gories of movies, action, comedy, and romance in that order
(where the category they are most interested in is action, then
comedy, and then romance), then their profile vector may
look something like pcaregories, = {54, 0,0,36,0,14,0}. This
vector represents the user’s interest in all categories. What
that means is that categories that the user is not interested in
will be represented with a zero in the vector, and categories
that the user is most interested in will be represented by
numbers that correspond to their level of interest. From the
example, the user is most interested in action movies. In the
profile vector, pearegories,» this is represented with a 54. In
recommender systems this is used for candidate generation,
where a candidate is a possible recommendation. So, if our
RS generated pcasegories,» then we would almost certainly
recommend things that are similar to action movies to u.
One limitation of this technique in many systems is the fact
that they lack the ability to represent a users’ interests at
various levels. This means that these RSs will only generate
one profile vector instead of multiple. The Hierarchical User
Profiling framework seeks to solve this problem by gener-
ating a set of profile vectors to represent user interests at
varying levels of granularity.

2.4 Generality and Specificity

Another important aspect of recommender systems is the
idea of generality and specificity. This is important for creat-
ing satisfactory recommendations. A user profile needs to be
both general enough to adequately model a user, and specific
enough to pinpoint topics that will be interesting or niche
to them [3]. This requirement is addressed in Section 4.3 by
using a two-player zero-sum game.

2.5 Two Player Zero-Sum Games

This game is represented by a payoff matrix and is played
by each player simultaneously. A simple example of a payoff
matrix can be seen in Table 1. There are two players that play
the game, a row player and a column player. The row player
picks a row and the column player picks a column at the
same time. Each round the result is found in the payoff matrix
which represents each player’s loss or gain; one player’s

Jacob Peterson

Even Odd

Even | 1/-1 | -1/1

Odd | -1/1 | 1/-1

Table 1. The payoff matrix for a simple game where each
player chooses an odd or even integer. If the sum of the two
numbers is even then the row player gains a point, if the
sum is odd then the column player gains a point. This is a
zero-sum game as the result of each round nets zero utility.

loss is the others gain. How the player plays the game is
represented by a normalized probability distribution, where
each choice a player can make is given a probability. For
example, if the row player has a .25 probability of choosing
row X, then they will choose that row approximately 25% of
the time.

3 Hierarchical User Profiling

Hierarchical User Profiling (HUP) is a user profiling frame-
work that looks to decipher a user’s real-time interests. It
does this by categorizing these interests into levels of granu-
larity. To do this it creates a collection of profile vectors for
multiple levels, which are the micro-level, item-level, and
category-levels. Doing this creates a more informative model
of the user. HUP is meant to solve some of the problems that
other modern recommender systems have. These limitations
are, that they don’t build hierarchical user profiles that can
show granularity in user interests, they don’t harvest as
much data from users that is easily available, and that they
don’t cope well with the fact that user interests are fluid and
constantly changing.

3.1 Layered Approach

HUP overcomes these limitations by using a Pyramid Re-
current Neural Network (PRNN) to generate a user’s profile
vectors. A PRNN consists of a series of RNNs that are lay-
ered on top of each other. Most traditional recommendation
methods use a single RNN to generate recommendations.
HUP’s PRNN uses a layered approach to achieve granular
classification of user interests. Each layer in the PRNN is
an RNN that focuses on generating a profile vector for that
layer. These layers are the micro-level RNN layer, the item-
level RNN layer, and several category-level layers. Each layer
transforms a user’s context vectors, discussed in Section 3.5,
into a hierarchical user profile, which is simply the collection
of a users profile vectors. [4]

3.2 Input and Embedding

The first layer of the PRNN is the input and embedding layer.
Embedding is essentially the process of mapping variables
to a vector with lower-dimensionality. The input and embed-
ding layer considers a user u and their set of micro-behaviors
(MBs). A micro-behavior is a finely-granular action that the

User Profiling in Recommender Systems

151 Lavwal] n _ 3
. viow Man's fashion Electronics
Kth Lavel Shoes Mabile Phone - Earphons
i
. Googla r
Hem view Nika Shoa +| iPhone & Pl 2 = Fhone X = Air Pods |
g e——— ARSI S I—— RS S —
i 1 r 1
! H B i T
\\cmbﬂ'mnr:é R | | i ¥ o s B \‘v/ L | F. }
' [] soarch :p-:c.ln:abur=| |p|':|rr||:\hnr| | sarch commants cart order oo spacilications
dwell time time intenval

Figure 1. A Hierarchical view of micro-behaviors showing user interests with increasing granularity [4].

user performs. Things like searching, browsing, viewing an
item’s specific details, adding an item to the cart, and purchas-
ing an item are all examples of micro-behaviors that are con-
sidered. The users MBs are the input for the recommendation
model. The set of a user’s MBs is X = {x, x3..., x, }. Formally,
a micro-behavior is a sextuple, x; = (t;,v;, ¢;, b;, d;, g;), con-
taining pertinent information for an action. It holds the time
the action took place (t;) and the item the action took place
on (v;). The categories the item is in, ¢;. Which is a set of cat-
egories that an item belongs to, listed as {ci(l), cfz), . ci(k) h
cl.(l) is the most granular, meaning that it represents the most
generalized user interests in categories, on the other hand
cl.(k) has the finest granularity, meaning that it represents
to most specific level of category interests. For example, in
Figure 1 the Google Pixel 2 is in the Mobile Phone category
and the Electronics category. The Mobile Phone category is
more specific than the Electronics category, meaning it has
finer granularity. Also included is the type of MB (b;); this
could be things like searching for an item, or adding an item
to a cart. The dwell time (how long an action took place, d;),
and the time interval from this MB and the next (g;) are also
included. Each MB, x;, is transformed into an embedding
vector e;, which is a low-dimensional dense vector.

3.3 Subsequent Layers

Figure 1 shows an example of how a user’s interests have
been arranged hierarchically. At the bottom are the micro-
behaviors; here you can see things like searching for an item
or adding an item to the cart, along with the MBs dwell
time. Above this is the item layer. This shows the specific
items a user is interested in. An example of this from the
figure can be seen where user has searched for, and looked
at specifications for an iPhone 8; because of this it is inferred
that the user is interested in the iPhone 8. Further above this
are the category layers. The iPhone 8 is in the Mobile Phone

category and the Electronics category. This shows decreasing
granularity, the item view being the finest-granularity and
the 1st Level Category view being the most coarse grained.
The PRNN models this structure in the following layers.

The second layer of the PRNN is the micro-level RNN
layer. This layer is meant to show a user’s most fine grained
interests based on the very specific actions, micro-behaviors,
they have performed. The input for this layer at time i is
e; and comes from the embedding layer. The hidden state
of the micro-level RNN is updated after taking each MB as
input. The output of this layer is given to the next layer up,
the item-level layer.

This layer shows a users interests in specific items at a
specific time. The input taken by the RNN of this layer is the
concatenation of the item embedding (e,,) and the output
of the micro-level layer. The state of the item-level RNN is
updated when the user switches their focus from one item
to another. This can be seen in the item view row of Figure 1.
The user is initially focused on Nike Shoe, then switches their
focus to iPhone 8. The output of this layer is given to the
category-level layer.

The category-level RNN layers model a users category
level interests. These are the most granular of all of the lay-
ers, and work to extract the users most generalized interests.
Figure 1 gives a few examples of categories. Items are or-
ganized into a hierarchy of categories; in Figure 1 the item
iPhone 8 is in the Mobile Phone category and the Electron-
ics category. Electronics is in a higher level category that
includes Mobile Phones. This layer needs to be run on each of
the category layers that are being considered at time i, so the
category-level RNN is ran K times, once for each category
layer. The input for the Kth category at time i is the con-

catenation of the category embedding (eéiK)) and the output

of the item-level layer. For higher-level category layers the

(k)

input is x ', the combination of the category embedding

(egC)) and the output of the (k-1)th level category layer. For
each category-level the hidden state is updated when the
user shifts their focus from one category to another. A simple
example from Figure 1 can be seen in the 1st Level Category
view where the user shifts their focus from Men’s fashion to
Electronics.

3.4 Behavior-LSTM

A long short-term memory cell (LSTM) is a component of
an RNN that excels at making predictions from sequences of
data. LSTMs were created to deal with the vanishing gradient
problem, which is a problem that can be seen when training
RNNs. Essentially during the training process connection
weights are updated proportional to a partial derivative of
an error function, known as a gradient. The problem comes
from the fact that sometimes this gradient approaches zero
or infinity, so when the connection weights are updated they
will be either vanish (they approach zero) or explode (they
approach infinity). This means that the RNN will effectively
stop training properly [8][7]. Additionally, LSTMs are a so-
lution to the short-term memory problem that RNNs tend
to have. This problem comes up when RNNs deal with long
sequences of data. When this happens RNNs have a hard
time considering earlier information as well as current in-
formation. To overcome this, LSTMs include mechanisms
called gates. Gates are able to learn which data is important
and should be kept, or which data is unimportant and should
be thrown out. Typically an LSTM contains at least three
gates, a forget gate, input gate, and output gate. Each gate
serves an important purpose. The forget gate decides which
information should be kept or discarded, the input cell works
to update the cell by deciding which values will be updated,
and the output gate decides what next hidden state of the
LSTM will be. [6]

Due to the fact that users’ interests are constantly chang-
ing Behavior-LSTM has been created to track a users "real-
time interests" more accurately. Time-LSTM is a similar
LSTM that tracks a user’s sequential behaviors by tracking
the time between user purchases. However, it cannot track
micro-behavoir type and dwell time information. [4] These
two things are crucial to HUP so the creation of Behavior-
LSTM was a necessity. There are two key components that
have been implemented. First, the time gate, 7, approxi-
mates how much information should be maintained and
given to the next cell state by capturing the time intervals
between each MB. Secondly, the behavior gate, A, calculates
the importance of the current behavior using its type and
dwell time information. There is one exception to this; in
the micro-level layer only the behavior type is considered
as many MBs are instantaneous events that do not have any
dwell time associated with them. However, each MB’s type is
very important for modeling a user’s interests. Furthermore,
the behavior gate is extremely important in the item and

Jacob Peterson

category layer as dwell time can be a very good way of deter-
mining a user’s interest in a category or item. For example
Figure 1 shows the dwell time for various items. The dwell
time for iPhone X is much longer that that of the iPhone 8,
so, it can be surmised that the user is more interested in the
iPhone X. The input for Behavior-LSTM is a tuple, (e, a;, At).
e; is the embedding vector of the input, a, is the embedding
vector of the behavior type (or dwell time in the case of MBs),
and At is the embedding vector that contains information
about the time between this behavior and the next.

3.5 Attention Layers

In a given RNN an attention mechanism can be implemented
to allow the network to focus on more specific parts of the
given input. This can increase the accuracy of predictions
that the RNN will make, thus improving performance [1].
Additionally, through using attention, one is able to minimize
long-term dependency issues, and provide better interpreta-
tions of data [4]. An attention mechanism generates a series
of context vectors. Context vectors are what allow the net-
work to focus on certain parts of the input.

HUP uses multiple attention layers which are a part of
their corresponding RNN layer. For example, the item-level
attention layer is a part of the item-level RNN. The layers
are referred to as the micro, item, and category-level atten-
tion layers. The context vectors that the attention layers
generate are named s, (micro-level), s; (item-level), and a
set of category context vectors s = {S¢,, ..., S¢x }- Using the
attention mechanism allows for fully connected layers in
the neural network. Each layer of the RNN transforms the
user’s context vectors from its attention layer into hierar-
chical user profiles in corresponding levels with increasing
granularity. [4]

3.6 HUP Experimentation and Results

HUP has been tested by generating recommendations at the
item and category level. The system is given a user u and
their sequence of micro-behaviors. It then creates a set of
hierarchical profile vectors for u. These represent their inter-
ests in items and categories by understanding their historical
interactions. [4]

Item level recommendations are generated by first select-
ing a set of candidate items that are similar to those that the
user has previously browsed. Then the cosine similarity is
calculated for each candidate item embedding, e,, and the
user’s item level profile vector p; as a ranking score. Cosine
similarity is simply calculated by finding the cosine of the
angle between two vectors. A smaller cosine means that the
two vectors are more similar. The top scored items are then
selected to be recommendations. A similar process is then
done for the category layer. However, here the category em-
bedding, eéiK) , and the Kth category profile vector pgf) are
used.

User Profiling in Recommender Systems

The same dataset that was used in study [10] and has been
used to test RIB (another micro-behavoir based recommena-
tion framework) has also been used to test HUP. It uses the
"JD Micro Behaviors Datasets", a collection of user’s micro-
behaviors in two categories, appliances and computers.

The results of HUP were compared with those of several
baseline methods and three state-of-the-art RNN-based rec-
ommendation frameworks. To measure the effectiveness of
each system two common metrics, Recall@K and MRR@XK,
were used to compare HUP to the other models. The ex-
perimental results have shown that HUP outperforms all
other methods by a significant amount, especially in the item
recommendation category. More specifically, “HUP outper-
forms state-of-the-art method by 3.4%, 6.1% in Recall@20 and
6.7%, 9.1% in MRR@20 for the ’Appliances’ and ’Computers’
datasets respectively" [4]. Recall@20 and MRR@20 simply
refer to the two metrics calculating how well 20 recommen-
dations were generated for a user. For category recommen-
dation performance gains are smaller, but still notable.

4 Tag-Based user profiling using game
theory

The most important aspect of a recommender system is the
user’s experience. Creating personalized content for a user
is an effective way to increase their satisfaction. To achieve
a good experience an RS must be able to ascertain a user’s
particular tastes and preferences. A common way of doing
this is to create a user-profile using item tags and looking
at how often users associate with certain tags. Item tags can
be used to explain an item, as we can see this in the Internet
Movie Database (IMDDb). For example, The Avengers (2012) has
many tags associated with it, including things like superhero,
alien invasion, and marvel cinematic universe. While tag-
based strategies are commonplace, it can be argued that
many of the frequentist approaches oftentimes don’t obtain
a proper level of specificity in the users preferences [3]. A
frequentist approach simply generates a user profile based on
the amount of time a user associated with a tag. To address
this a game theoretic approach can be employed to find
a more suitable trade-off between the generality and the
detailedness of the user profile. In this section I will cover a
user-modeling approach that uses tag-clustering to create
topics and game theory to learn a users preferences to create
a more satisfying user experience.

4.1 Background on Tag-Based user profiling

To analyze this method tag-based user profiling must be
understood. Firstly, there is a user (1) and a set of users (U)
such that u € U. Now, an item i is in the set of all items
I, i € I. Each item can be described by a subset of tags, T;,
from the set of all tags T. So, V;¢;3T; € T. If you look at a
specific user (u), then the set of items they have interacted
with would be I, [3]. When a tag is used more by u it will

Cluster Name | Cluster Tags
british army, british empire,
British Empire | colonialism, dublin, independence,
ireland
teen comedy, teen drama, teen movie,
Teenager teenage romance, teenage sexuality,
teenager
Dog dog, lassie, pet, talking dog

Table 2. This chart from [3] shows examples of tag clustering.
The left column shows the name of a topic. The right column
shows the various tags that are included in the topic.

have a higher intensity, meaning that the user has more
interest in that tag. Tags are often ranked hierarchically by
their intensity and selected for the user-profile based upon
that information. This is effectively how a recommender
system learns a user’s profile. This is similar to what is done
in Section 3, where HUP creates hierarchical profile vectores.
However, it has been proposed that additional information
should included, like the co-occurrence of tags (what tags
are being used together). Including the co-occurrence of tags
allows for a user-profile to carry even more information than
what can be achieved by a typical frequentist approach.[5]
For example the user may have a preference for sci-fi action
movies, that may lead to the action and sci-fi tag occurring
often together. Including this information, that the two tags
together has meaning to the user, recommender systems will
be able to generate more accurate recommendations that
will further satisfy the user.

4.2 Tag Clustering and Topics

Tag clustering is a process in which item tags are grouped
into topics. Topics are seen as groups of similar or related
tags. The dataset used is from The Movie Database (TMDDb).
TMDDb is a community built movie and TV database that
contains metadata for over 26,778 movies [3]. The meta-
data includes tags that have been created and assigned to
movies by users. The database includes around 17, 000 tags;
for this reason topics are used instead of tags themselves as
tags often represent aspects of an item that are too specific.
Topics are generated using the hierarchical agglomerative
clustering algorithm to build clusters. This is seen as the most
effective way of clustering in this context [3]. The algorithm
generates a set of clusters that are referred to as C. Each
topic is named after the most occurring tag in the cluster. For
example, the teenager cluster includes the tag "teenager" as
the most popular tag. There can also be many different tags
that represent the same meaning. Table 2 shows examples
of tag clustering, where you can see tags in the right col-
umn and the cluster they belong to in the left column. The

"on

teenager cluster includes things like "first love", "teen drama’,

and "teenage romance", which all convey similar meaning.
So it makes sense to group them together.

4.3 User-profiling using game theory

The proposed method for finding a satisfactory trade-off
between the generality and detailedness of recommenda-
tions using a game theoretic approach looks to understand
each facet of consumed items [3]. There are two particularly
important attributes that the method looks the maintain
for a user profile. First, the user-profile needs to be general
enough. This means that a user’s profile contains enough
general topics that are highly relevant to them. If the user is
very interested in action movies the user profile will reflect
that. Secondly, a user-profile must be highly specific. This
means that the user-profile will include topics that the user
rarely chooses but are important to them. Again, if the user
is highly interested in action movies, then similar genres will
be included that are highly specific to their interests.

These two concepts create a competitive environment
and can be transformed into a two-player zero-sum game.
The row player chooses topics that maximize the number
of items covered (this player looks to maintain generality).
Their opponent, the column player, chooses more specific
items for the user. This does not consider the user’s popular
topics, rather it chooses items that are more niche to them
(highly specific items). These two strategies force the players
to select topics that are both general and specific.

In a two-player zero-sum game the outcome of each round
can be found in the payoff matrix, M. The row player P and
the column player Q play at the same time. The row player
picks an item from all items that the user has interacted with,
while the column player picks a topic from the set of topic
clusters, C. The two players play with different strategies.
Player P aims to pick a row such that it will minimize its
losses. Player Q looks for a strategy to maximize its gains.
More formally, P picks a row according to probability dis-
tribution p, and Q picks a column according to probability
distribution q. p dictates the probability of the row Player P
choosing each row. Likewise, q dictates which column Player
Q will choose. Using linear programming it is possible to find
the exact distributions of p and q. However, due to the size
of the payoff matrix, the exact distributions of p and q are
computationally difficult to find. Because of this the fictitious
play algorithm has been implemented to approximate their
distributions. Fictitious play is a learning process in which
two players are playing a finite game repeatedly. The tech-
nique assumes that after each round of play the player will
update their strategies (p and q) in response to the outcome
of the round. [2] As play goes on the strategy distributions
of each player will converge on the Nash Equlibria, which is
defined as the solution to a non-cooperative game. The solu-
tion to a two-player zero-sum game is the final probability
distribution that each player will play by.

Jacob Peterson

4.4 Results From Ficticious Play

After ficticious play has completed the result is two prob-
ability distributions (p and q) that Player P and Player Q
will play by according to their strategies. Again, Player P
seeks to minimize its losses, and Player Q seeks to maximize
its gains. The important part of this is distribution q, which
shows the probability that a given topic will be chosen from
C. A topic that has a high probability of being chosen will
be highly relevant to the user. Conversely, topics with a low
probability have a low relevance to the user. Given this infor-
mation a user profile can be generated that includes topics
that are both general (popular with the user) and highly spe-
cific (niche to the user). Using this profile recommendation
systems are able to provide dynamic recommendations to
the user.

5 Conclusions

It is clear that recommender systems are very important and
for many people affect their day to day lives. With their in-
creasing popularity, applications of RSs can be seen in many
places. Video streaming services, like Netflix, will recom-
mend media for its users. Likewise, E-commerce websites,
like Amazon and Ebay, will recommend items for a user to
purchase. These features are very convenient for users and
heighten their experience on these platforms by generating
personalized content specific to them.

In this paper, I've investigated two techniques which aim
to create better representations of user interests in RSs, with
the goal of creating more accurate and useful recommenda-
tions for the user. The first technique, HUP, creates a hierar-
chical representation of a given user’s interests by creating
a hierarchical user profile that is capable of representing
the user’s interests at various levels. This technique takes
advantage of the user’s micro-behaviors to create recommen-
dations at the item and category level. The second technique
for modeling the user’s interests uses a tag-based approach
and game theory principals to create a user profile that is
capable of describing the users interests with both generality
and detailedness. Both of these frameworks are flexible and
can be used in many applications. Creating better representa-
tions of what is important to users is crucial to the advance-
ment of recommender systems with the goal of creating an
improved user experience. Creating better representations
of user interests, which more closely reflect their interests,
is one effective way of doing this and is an important field
of study.

User Profiling in Recommender Systems

References

(1]
(2]

(3]

N. Arbel. Attention in rnns, Mar 2019.

U. Berger. Brown’s original fictitious play. Journal of Economic Theory,
135:572-578, 02 2007.

G. Faggioli, M. Polato, and F. Aiolli. Tag-based user profiling: A game
theoretic approach. In Adjunct Publication of the 27th Conference on
User Modeling, Adaptation and Personalization, UMAP’19 Adjunct,
page 267-271, New York, NY, USA, 2019. Association for Computing
Machinery.

Y. Gu, Z. Ding, S. Wang, and D. Yin. Hierarchical user profiling
for e-commerce recommender systems. In Proceedings of the 13th
International Conference on Web Search and Data Mining, WSDM ’20,
page 223-231, New York, NY, USA, 2020. Association for Computing
Machinery.

E. Michlmayr and S. Cayzer. Learning user profiles from tagging data
and leveraging them for personal (ized) information access. 01 2007.
M. Phi. Illustrated guide to Istm’s and gru’s: A step by step explanation,
Jun 2020.

Wikipedia contributors. Long short-term memory — Wikipedia, the
free encyclopedia, 2021. [Online; accessed 1-April-2021].

Wikipedia contributors. Vanishing gradient problem — Wikipedia,
the free encyclopedia, 2021. [Online; accessed 1-April-2021].
Wikipedia contributors. Zero-sum game — Wikipedia, the free ency-
clopedia, 2021. [Online; accessed 9-March-2021].

M. Zhou, Z. Ding, J. Tang, and D. Yin. Micro behaviors: A new per-
spective in e-commerce recommender systems. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining,
WSDM ’18, page 727-735, New York, NY, USA, 2018. Association for
Computing Machinery.

Jacob Peterson

This work is licensed under the Creative Commons AttributionNonCommercial-
ShareAlike 4.0 International License. To view a copy of this li-
cense, visit creativecommons.org/licenses/by-nc-sa/4.0/. UMM
CSci Senior Seminar Conference, May 2021 Morris, MN.

	Abstract
	1 Introduction
	2 Background
	2.1 Neural Networks
	2.2 Recurrent Neural Networks
	2.3 User Profiling
	2.4 Generality and Specificity
	2.5 Two Player Zero-Sum Games

	3 Hierarchical User Profiling
	3.1 Layered Approach
	3.2 Input and Embedding
	3.3 Subsequent Layers
	3.4 Behavior-LSTM
	3.5 Attention Layers
	3.6 HUP Experimentation and Results

	4 Tag-Based user profiling using game theory
	4.1 Background on Tag-Based user profiling
	4.2 Tag Clustering and Topics
	4.3 User-profiling using game theory
	4.4 Results From Ficticious Play

	5 Conclusions
	References

