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Recommender Systems (RS) 
● What are RSs?

● Why are they useful?
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Recommender Systems (RS)
● Algorithms that generate personalized content for a user

Commonly used in:

● E-commerce

● Social Networking

● Music

● Video Streaming

● Ad generation
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Outline
● Background

● Hierarchical User Profiling framework

○ By: Yulong Gu, Zhuoye Ding, Shuaiqiang  Wang, Dawei Yin

● Conclusions
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Background
● Categories and items

● Neural networks

● Recurrent neural networks

● User profiling
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Categories and Items
● Categories contain items

● Items are related to 

other items
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Neural Networks 
● Neurons

● Connections 

○ Weights

● Layers

● Training

○ Iterative process

○ Information passed through

■ Weights adjusted 

according to results

○ Results in a final set of 

weights
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https://www.kdnuggets.com/2017/10/neural-network-foundations-explained-gradient-descent.html



Recurrent Neural Networks (RNN)
● Memory

● Feedback

● Training

8

https://developer.ibm.com/articles/cc-cognitive-recurrent-neural-networks/



User Profiling
● Profile vectors (p)

9



User Profiling
● Profile vectors (p)

Categories user u is interested in (decided by an RNN):

1. Comedy

2. Action

3. Romance
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User Profiling
● Profile vectors (p)

Categories user u is interested in (decided by an RNN):

1. Comedy

2. Action

3. Romance

p

categories 

= {0, 0, 0, 56, 0, 0, 32, 0, 16}
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Hierarchical User Profiling (HUP)
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Purpose
● Decipher user interests at multiple levels

○ Build a collection of profile vectors that represent multiple levels of granularity

■ Micro-level (fine-grained)

■ Item-level (medium-grained)

■ Category-levels (coarse-grained)

● HUP solves problems that other recommender systems have

○ Not building hierarchical user profile

○ Harvesting limited information
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Micro-behaviors (MB)
● A finely-granular action that the user performs

● Used as input for HUP

● Things like:

○ Searching for an item

○ Browsing an item

○ Viewing an item’s details

○ Adding to cart

○ Purchasing 

○ “Liking” an item
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Image taken from [1]
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Layered Approach
● Pyramid Recurrent Neural 

Network (PRNN)

○ A series of RNNs that are layered 

on top of each other

■ Micro-level RNN

■ Item-level RNN 

■ Category-levels RNN

● This results in a hierarchical 

user profile

○ A collection of profile vectors
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Image taken from [1]



Input and Embedding Layer

● Micro-behaviors are used as input

○ X = {x
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● Each micro-behavior is a sextuple
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○ Those vectors are concatenated into a single imbedding vector e
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Subsequent Layers
Micro-level RNN layer

● Shows most granular 

interests

● Takes e

i

 as input

● Generates p

micro
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Subsequent Layers
Item-level RNN layer

● Shows interest in items

● Uses the concatenation 

of       and the 

micro-level layer output 

as input.

● Generates p

items
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Subsequent Layers
Categories-level RNN layer

● Multiple category layers

● Kth level has finest 

granularity

● 1st level is the most 

general
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Subsequent Layers
Categories-level RNN layer

● Shows interest in 

categories at different 

levels

● Uses the concatenation 

of      and the item-level 

output as input

● Generates K profile 

vectors 
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Long Short-Term Memory Cells
What is an LSTM?

● A component of an RNN that excels at making predictions

● LSTMs deal with an RNN training problem

● LSTMs include gates

○ Forget gate

○ Input gate

○ Output gate
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Behavior-LSTM
● Designed to include micro-behavior type and dwell time

● Includes two additional components

○ Time gate

○ Behavior gate

● Time gate

○ Captures time intervals between each MB and decides how much information will be given to the 

next cell state.

● Behavior gate

○ Calculates the importance of each MB using its type and dwell time information.
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Recommendation Generation
1. HUP generates a set profile vectors

2. Candidate items are selected

3. The similarity between each candidate embedding and the item-level profile 

vector is calculated

4. Assign each candidate a ranking score

5. Select top ranked candidates for recommendation

Category recommendations are done in the same way
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Experimentation Setting
● HUP has been tested by generating recommendations at the item and categories 

levels

● Test data comes from the JD Micro Behaviors Datasets

○ Collected from a large e-commerce website 

○ Contains user MB data for Appliances and Computers

● Tested against 8 baseline methods

○ Including 3 RNN-based methods

● Two popular metrics Recall@K and MRR@K were used to compare results
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Recall@K
K = 4
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MRR@K
Mean reciprocal rank

K = 3 
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Experimentation Results
● HUP outperforms all baseline methods in both item and category 

recommendation 

● Category performance gains are smaller
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Image taken from [1]

29



Conclusions
● HUP is flexible and has a wide range of possible usages

● MB are an effective way of interpreting a user’s interests

● Hierarchical user profiles carry more information

● Granularity is important in RSs

● HUP has shown statistically significant improvements over other frameworks
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Questions
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