User Profiling in Recommender Systems

 $\bullet \bullet \bullet$

Jake Peterson Spring 2021 CSCI Senior Seminar Division of Science and Mathematics University of Minnesota Morris

Recommender Systems (RS)

- What are RSs?
- Why are they useful?

Top Picks for J

Recommender Systems (RS)

• Algorithms that generate personalized content for a user

Commonly used in:

- E-commerce
- Social Networking
- Music
- Video Streaming
- Ad generation

Outline

- Background
- Hierarchical User Profiling framework
 - By: Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, Dawei Yin
- Conclusions

Background

- Categories and items
- Neural networks
- Recurrent neural networks
- User profiling

Categories and Items

- Categories contain items
- Items are related to other items

Recommendations for you

Your Orders

Beauty & Personal Care

U

Tools & Home Improvement

Home & Kitchen

Neural Networks

- Neurons
- Connections
 - Weights
- Layers
- Training
 - Iterative process
 - \circ Information passed through
 - Weights adjusted according to results
 - Results in a final set of weights

https://www.kdnuggets.com/2017/10/neural-network-foundations-explained-gradient-descent.html

Recurrent Neural Networks (RNN)

- Memory
- Feedback
- Training

User Profiling

• Profile vectors (p)

User Profiling

• Profile vectors (p)

Categories user u is interested in (decided by an RNN):

- 1. Comedy
- 2. Action
- 3. Romance

User Profiling

• Profile vectors (p)

Categories user u is interested in (decided by an RNN):

- 1. Comedy
- 2. Action
- 3. Romance

 $p_{\text{categories}} = \{0, 0, 0, 56, 0, 0, 32, 0, 16\}$

Hierarchical User Profiling (HUP)

Purpose

- Decipher user interests at multiple levels
 - \circ Build a collection of profile vectors that represent multiple levels of granularity
 - Micro-level (fine-grained)
 - Item-level (medium-grained)
 - Category-levels (coarse-grained)
- HUP solves problems that other recommender systems have
 - Not building hierarchical user profile
 - Harvesting limited information

Micro-behaviors (MB)

- A finely-granular action that the user performs
- Used as input for HUP
- Things like:
 - Searching for an item
 - Browsing an item
 - Viewing an item's details
 - Adding to cart
 - Purchasing
 - "Liking" an item

Image taken from [1]

Layered Approach

- Pyramid Recurrent Neural Network (PRNN)
 - A series of RNNs that are layered on top of each other
 - Micro-level RNN
 - Item-level RNN
 - Category-levels RNN
- This results in a hierarchical user profile
 - A collection of profile vectors

Image taken from [1]

Input and Embedding Layer

- Micro-behaviors are used as input $\circ X = \{x_1, x_2, ..., x_n\}$
- Each micro-behavior is a sextuple
 - $x_{i} = (t_{i}, v_{i}, c_{i}, b_{i}, d_{i}, g_{i})$
 - $\bullet \quad t_i: Time MB occured$
 - \vec{v}_i : Item MB was performed on
 - c_i : Categories that v_i belongs to
 - \bullet $b_i : MB type$
 - \mathbf{I} \mathbf{d}_{i} : Dwell time
 - \mathbf{g}_{i} : Time between this MB and the next
- v_i, c_i, b_i, d_i, g_i are transformed into embedding vectors: $(e_{v_i}, e_{c_i}, e_{b_i}, e_{d_i}, e_{g_i})$
 - Those vectors are concatenated into a single imbedding vector e

Micro-level RNN layer

- Shows most granular interests
- Takes e_i as input
- Generates p_{micro}

Item-level RNN layer

- Shows interest in items
- Uses the concatenation of *e_{v_i}* and the micro-level layer output as input.
- Generates p_{items}

Categories-level RNN layer

- Multiple category layers
- Kth level has finest granularity
- 1st level is the most general

Categories-level RNN layer

- Shows interest in categories at different levels
- Uses the concatenation of e^(k)_{ci} and the item-level output as input
- Generates K profile
 vectors p^(k)_{category}

Long Short-Term Memory Cells

What is an LSTM?

- A component of an RNN that excels at making predictions
- LSTMs deal with an RNN training problem
- LSTMs include gates
 - Forget gate
 - Input gate
 - Output gate

Behavior-LSTM

- Designed to include micro-behavior type and dwell time
- Includes two additional components
 - Time gate
 - Behavior gate
- Time gate
 - Captures time intervals between each MB and decides how much information will be given to the next cell state.
- Behavior gate
 - Calculates the importance of each MB using its type and dwell time information.

Recommendation Generation

- 1. HUP generates a set profile vectors
- 2. Candidate items are selected
- 3. The similarity between each candidate embedding and the item-level profile vector is calculated
- 4. Assign each candidate a ranking score
- 5. Select top ranked candidates for recommendation

Category recommendations are done in the same way

Experimentation Setting

- HUP has been tested by generating recommendations at the item and categories levels
- Test data comes from the JD Micro Behaviors Datasets
 - Collected from a large e-commerce website
 - Contains user MB data for Appliances and Computers
- Tested against 8 baseline methods
 - Including 3 RNN-based methods
- Two popular metrics Recall@K and MRR@K were used to compare results

Recall@K

K = 4

User	Recommendations	Number of relevant	Recall@4
A	goat, ferret , ants, toad	2	2 / 4 = .5
В	newt, horse, bird, turtle	3	3 / 4 = .75

MRR@K

Mean reciprocal rank

K = 3

User	Recommendations	First Relevant	Rank	Reciprocal Rank	
A	rabbit, toad, mouse	mouse	3	1⁄3	
В	horse, spider , dog	spider	2	1/2	
С	cat , gerbil, goat	cat	1	1	

 $MRR = (\frac{1}{3} + \frac{1}{2} + 1) / 3 = .611$

Experimentation Results

- HUP outperforms all baseline methods in both item and category recommendation
- Category performance gains are smaller

	Applicances			Computers				
Model	Item Rec		Category Rec		Item Rec		Category Rec	
	Recall@20	MRR@20	Recall@5	MRR@5	Recall@20	MRR@20	Recall@5	MRR@5
POP	3.1	0.5	45.0	24.0	3.4	1.0	44.0	28.6
BPR-MF	13.1	3.1	55.4	35.0	11.3	3.0	70.1	42.9
Item-KNN	42.9	9.6	87.0	43.1	29.8	6.8	68.8	32.7
Word2vec	38.5	8.8	91.1	90.6	28.4	6.2	84.1	81.6
Word2vec-avg	38.7	13.1	86.7	80.0	24.4	7.1	81.0	71.5
RIB	47.6	14.3	92.9	91.2	28.6	7.6	88.0	83.0
Time-LSTM	49.4	18.9	93.4	91.3	32.8	10.9	88.7	83.9
S-HRNN	49.8	19.2	92.6	90.4	33.0	11.0	88.2	82.9
HUP	51.5 *	20.5 *	93.8 *	91.6 *	35.0 *	12.0 *	89.2*	84.4*

Image taken from [1]

Conclusions

- HUP is flexible and has a wide range of possible usages
- MB are an effective way of interpreting a user's interests
- Hierarchical user profiles carry more information
- Granularity is important in RSs
- HUP has shown statistically significant improvements over other frameworks

References

[1] Y. Gu, Z. Ding, S. Wang, and D. Yin. Hierarchical user profiling for e-commerce recommender systems. In Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM '20, page 223–231, New York, NY, USA, 2020. Association for Computing Machinery

[2] M. Zhou, Z. Ding, J. Tang, and D. Yin. Micro behaviors: A new perspective in e-commerce recommender systems. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM '18, page 727–735, New York, NY, USA, 2018. Association for Computing Machinery.