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ABSTRACT
Deep neural networks have made significant progress to-
wards making tasks normally impossible for a computer pos-
sible through deep learning. These frameworks are impor-
tant enough to warrant protecting them from thieves. How-
ever, efforts to protect DNNs from fraudulent usage have
been insufficient. Current methods for watermarking DNNs
cannot clearly associate any given framework with its author
and are too easily replicated by thieves.

Li et al [3] have developed a watermarking method known
as the IPP (Intellectual Property Protection) Blind-Watermark
Framework, which solves problems present in other water-
marking techniques. It uses exclusive logos to clearly asso-
ciate a DNN with its author, and uses generative adversarial
networks to make the watermark imperceptible to the aver-
age human. It also fulfills all of the evaluation requirements
set by the team: fidelity, effectiveness and integrity, security,
legality, and feasibility.
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1. INTRODUCTION
Intellectual property (IP) refers to creations of the mind.

This includes a wide range of work such as art, tools, com-
puter software, music, etc. These works are important enough
to have laws protecting the rights of intellectual property
owners. These rights often give people incentive to create
IP, especially when the goal is to make a profit from their
work. However, laws alone are not enough. Signals of own-
ership must be created to verify whether someone has the
right to use a specific property.

This is where watermarks becomes important. Digital wa-
termarking is the act of embedding data into digital objects
such as video, websites, etc. The watermark data becomes a
permanent part of the content and cannot be removed, mak-
ing the identity of the owner clear even after the content has
been distributed to other parties.

This paper will focus on protection of deep neual networks
(DNN). Deep learning technology has made significant leaps
forward in recent years. Deep neural networks, also referred
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to as models, can be used to process data which comput-
ers historically couldn’t process. This includes tasks such
as identifying objects in images, recognizing specific sounds
in audio files and other unstructured data which typically
requires human intelligence.

The emerging models of deep learning are facing privacy
and security issues. Some companies rely upon their deep
neural networks as their source of income. Thus, it is impor-
tant for these new deep neural networks to be watermarked
so the intellectual property of the owners is protected. With-
out technical means of ownership identification, the legal
system will have little to stand on when protecting the IP
rights of DNN owners.

This paper will outline how watermarking can be imple-
mented in deep neural networks to allow owners of these
models to protect their IP. Section 2 will provide background
details which will be necessary for understanding the mate-
rial. This will include information about deep neural net-
works, the creation of digital watermarks and generative ad-
versarial networks. Section 3 will explain what the motiva-
tion for IP theft is and how bad actors can steal models from
their owners. Section 4 will dive into the specifics of the IPP
blind-watermark framework. Section 5 will outline how the
framework was tested. Section 6 will evaluate the results of
testing the IPP framework. Finally, Section 7 will present
conclusions about the current state of the research.

2. BACKGROUND
In this section, background knowledge necessary for un-

derstanding the IPP blind-watermark framework will be given.
This includes deep neural networks and digital watermarks.

2.1 Deep Neural Networks
To understand deep neural networks (DNN), it is neces-

sary to understand artificial intelligence. Artificial intelli-
gence is the ability for machines to make decisions indepen-
dently. This intelligence is normally explicitly programmed.
Machine learning is a sub-field of artificial intelligence which
involves machines gaining intelligence without explicit pro-
gramming. An example of machine learning is a system
where a students grades are predicted based on patterns ob-
served in previous grades. [4]

Despite working well with a variety of problems, machine
learning struggles with tasks such as identifying objects in
an image or sounds in an audio file. Deep Learning is a sub
field of machine learning which attempts to mimic how the
human brain processes information to make tasks such as
this possible for a machine.



Deep neural networks use an interconnected network of
“neurons” which mimic neurons in the human brain, albeit
with a mathematical approach. Like a human, these net-
works need to be trained to perform the desired task. For
example, a DNN which is meant to recognize faces would be
fed many different images of human faces. The DNN tries
to label these images correctly and the training system will
inform it whether it is correct or incorrect. These results
will then help the DNN adjust how it handles data so its
facial recognition can become more accurate. The specific
variables which are changed in order to adjust the DNNs
performance are called weights. These are set before the
network is trained and continuously adjusted after each it-
eration of training [5]. Continuous training can improve the
performance of the DNN, ideally resulting in a near-perfect
performance.

2.2 Digital Watermarks
Traditional watermarks are a name/logo embedded into

paper. For example, an image may have the name of the
photographer printed in transparent text on it. They are
used to confirm authenticity.

Digital watermarks are the electronic counterpart to the
traditional variety. It involves embedding data into digital
content which identifies the owner. Unlike traditional water-
marking, digital watermarking can also be used to monitor
how the content is being used by others. They can also pro-
vide useful information about the owner to anyone using the
content.

2.3 Generative Adversarial Networks
Understanding the IPP framework requires a basic un-

derstanding of generative adversarial networks. The goal
in machine learning is for the model being trained to ac-
curately label the input being fed to it. For example, a
model which is meant to recognize images of animals would
need to be able to identify animals accurately. A genera-
tive adversarial network (GANs) is a structure where two
models, the generator and discriminator, compete with each
other. The discriminator wants to discern something about
the generator’s output while the generator wants to gener-
ate an output which can fool the discriminator. This process
can be framed as a two player game. [2] In GANs the origi-
nal input is referred to as the original/ordinary samples, and
the generator’s output is referred to as the synthesized/key
samples.

For example, the generator wants to create images with
well hidden watermarks and the discriminator wants to iden-
tify images which have been watermarked. The generator
takes images as input and outputs watermarked images,
then passes both sets to the discriminator. The discrimi-
nator identifies how likely it is each image is watermarked
and outputs this set of classifications. Depending on how
accurately the discriminator guesses which images are wa-
termarked, both models will adjust their weights. The gen-
erator adjusts itself to better hide its watermarks and the
discriminator adjusts itself to better identify watermarks.

In GANs the goal is for the generator to eventually create
key samples which are convincing enough that the discrimi-
nator can not tell which images are key samples or not. This
would result in the discriminator returning“unsure” (50 per-
cent synthesized and 50 percent real) for each sample. Each
round of the process will bring the generator closer to this

goal as its weights are adjusted.

3. MOTIVATION
The forms of attack which the watermark is meant to

protect against will be explained here. The primary forms
of attacks discussed will be evasion attack and fraudulent
claims of ownership.

3.1 Security: Evasion Attack
There are three players in this scenario: the owner of the

DNN model Alice, the thief Eve, and Bob who has purchased
the model from Alice. The two instances where an evasion
attack can occur are (1) Eve has stolen the DNN or (2) Bob
has resold to the model to Eve without Alice’s permission.

In either case, if Alice were suspicious that someone has
stolen her model she would send watermarked key samples
to the DNN to confirm that the stolen model belongs to
her. Eve would be able to avoid the verification by building
a detector which can identify possible key samples and re-
turn a random label rather than having labeling it as a key
sample. The IPP framework presented by the researchers
aims to defend against this attack by making the model key
samples themselves undetectable as key samples.

3.2 Legality: Fraudulent Claims of Ownership
In this scenario, Oscar is a counterfeiter who has tried to

claim ownership of Alice’s model and sell it as his own. As
a counterfeiter, it would be in Oscar’s best interest to make
his own set of key samples which will trigger the key sample
detection built into the DNN model he’s stolen.

Previous watermarking methods use obvious means of em-
bedding watermarks. [2] This makes it trivial for people like
Oscar to build fake samples which verify fraudulent owner-
ship. The IPP framework attempts to develop a method of
watermarking which is significantly more subtle and more
difficult to replicate.

4. IPP BLIND-WATERMARK FRAMEWORK
The following section gives an overview of how watermarks

are embedded and verified in Li et al’s IPP framework [3],
followed by the details of how the algorithm functions. The
IPP blind-watermark framework consists of three parts: the
encoder, discriminator and host DNN. See Figure 1. The
encoder and discriminator work to create the watermark be-
havior (the DNN identifying certain images as key samples)
and the host DNN is whatever DNN someone wants to have
watermarked by the framework.

4.1 Task I: Embedding
A set of ordinary samples x, essentially a set of images,

which have been chosen to be watermarked is required for
the embedding procedure. An encoder e will take sample
x and a logo l (the logo used to watermark the images)
as inputs when generating a watermarked image xkey. The
algorithm G which generates xkey appears as follows:

xkey = G(e, x, l) (1)

The goal is for the key samples to appear identical to the
ordinary samples. An embedding algorithm E is then be
used to watermark the host DNN f :

fk = E(f, xkey) (2)
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Figure 2: Work�ow of our IPP framework

�rst prepares a set of key samples {xke�
1 ,x

ke�
2 , ...} by a generation

algorithm G:

xke� = G (e,x , l ) (3)

Then the model owner will issue a prediction query to the remote
model � with these key samples, obtain resulting predictions, and
evaluate the accuracy of the resulting predictions over pre-de�ned
labels.

acc� = V (�,xke� , tke� ) (4)

If the acc� is a value close to 1, or acc� > Tacc , where Tacc is a
threshold parameter close to 1. Then the owner can verify the IP of
a suspected model and claim the ownership of the remote model.

4.3 Algorithm Pipeline
Figure 2 shows the work�ow of our IPP framework, which consists
of three parts: encoder, discriminator and host DNN.

Encoder: Here our encoder e is essentially a lightweight au-
toencoder. The encoder accepts the part samples from the training
dataset and the exclusive logo as inputs and attempts to output the
key samples which are undistinguished from the ordinary samples.
We typically denote the parameters of encoder as �e , the exclu-
sive logo as l , and try to obtain a function �e (x , l ) = xke� where
xke� ! x by solving the optimization problem with a batch of
{x1,x2, ...,xm }:

argmin
�e

1
m

mX

i=1
(xi � �e (xi , l ))

2 (5)

The above term is the reconstruction error for the encoder e .
Due to the limited capacity of the encoder, it is impossible to

achieve the goal of perfect reconstruction. Moreover, compared
to perfect reconstruction, we hope that the distribution of key
samples generated by the encoder only needs to be as close as that of
ordinary samples, i.e., x ⇡ xke� , not x = xke� . The tiny di�erence
between the key samples and the ordinary samples is exactly what
we need — the magnitude of �uctuation achieves a comparable
trade-o� between security and e�ectiveness, the smaller preserving
better security against evasion attack and the larger providing better
e�ectiveness of watermarking DNN.

From a mathematical perspective, in order to prove whether the
objective function 5 is exact to achieve the goal, i.e., x ⇡ xke� ,
not x = xke� , we denote the distribution of original samples from
training dataset as Pdata (x ), and the distribution of key samples
produced by the encoder as Pe (xke� ;�e ). The objective function
can be formalized as follows:

argmax
�e

mY

i=1
Pe (xi ;�e ) =argmax

�e

log
mY

i=1
Pe (xi ;�e )

=argmax
�e

mX

i=1
log Pe (xi ;�e )

=argmax
�e

Ex⇠Pdata [log Pe (x ;�e )]

=argmax
�e

Z

x
Pdata (x ) log Pe (x ;�e )dx

�
Z

x
Pdata (x ) log Pdata (x )dx

=argmin
�e

KL (Pdata (x )kPe (x ;�e ))

(6)

where KL is the Kullback-Leibler divergence. The above objective
function is essential to minimize the Kullback-Leibler divergence
which is a measure of how one probability distribution diverges
from another. Further derivation:

KL(Pdata kPe ) = �H (Pdata ) + H (Pdata , Pe ) (7)

The former of equation 7 represents the information entropy of
Pdata , the latter is the cross entropy of Pdata and Pe . That is to
say, minimizing the KL divergence is equivalent to minimizing the
cross entropy. At the same time, the objective function 5 is actually
the cross entropy of the empirical distribution and the gaussian
model [7], while we cannot determine which distribution Pdata
and Pe obey. In order to solve the objective function 6, we adopt
the negative sampling approach [19]. Furthermore, the equation 5
only punishes the larger error of the corresponding pixels of the
two images, and ignores the underlying structure of the image. So
we introduce the structural similarity index (SSIM) [28], and the
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Figure 1: Workflow of IPP framework [3]

The watermarked model fk will predict labels for images
of key sample xkey, i.e. labelling a watermarked image of a
dog as a key sample rather than a dog image. This label
which denotes an image as a key sample will be known as
tkey.

4.2 Task II: Verification
In a case where the owner of a DNN model (Alice) sus-

pects someone has used their model without permission,
they can use the watermark to test their suspicion. The
model which is suspected to have been stolen will be re-
ferred to as “the remote model”. Alice can prepare a set of
key samples (x1

key, x2
key, ...) by using the generation algo-

rithm G.
The model owner can then test these key samples by hav-

ing the remote model g predict the labels for the key sam-
ples. If the results come back close to 1, i.e. the remote
model labeled the key samples as key samples, then their
suspicion will be confirmed. This will provide strong evi-
dence that the remote model was stolen.

4.3 Algorithm Pipeline
The IPP framework is essentially putting GANs into prac-

tice. There are four key pieces of the algorithm which need
to be balanced with each other.

Encoder: The purpose of the encoder is to produce the
key samples which function as the watermark. The ordi-
nary samples x and logo are taken as input and key samples
xkey which are nearly indistinguishable from the ordinary
samples are generated.

The goal of the encoder is to obtain a near-perfect recon-
struction, i.e., x ≈ xkey rather than x = xkey. The small
difference between the key and ordinary samples provides a
balance between security and effectiveness. A smaller differ-
ence provides better protection against evasion attacks and
a larger one providing more effective watermarking of the
DNN. The error in the reconstruction will be denoted as:

argmin(e’s reconstruction error) (3)

Argmin is a function which tries to minimize whatever
is being passed into it. From a mathematical perspective
Eq (3) is meant to minimize the quantitative difference be-
tween the ordinary and the key samples. Essentially, mini-

mizing the likelihood of a computer being able to detect the
difference between the two.

Although Eq (3) accounts for the reconstruction error of
e, it ignores how the underlying structure of the image is af-
fected. The reconstruction can lead to loss in image quality,
making the presence of a watermarking technique more vi-
sually apparent. The following equation represents the algo-
rithm’s attempt to minimize the image quality degradation
during the process:

argmin(e’s image quality degradation) (4)

Essentially, this equation is attempting to minimize the
qualitative difference between the ordinary and key samples.
This would make it harder for a human to visually detect
the difference.

Discriminator: The goal of the discriminator is to deter-
mine whether samples fed to it are synthesized or part of
the ordinary samples. Its purpose is the same as its role in
general adversarial networks. It essentially detects whether
input data was generated by the encoder. Like the encoder,
the discriminator accepts x (ordinary samples) and xkey (key
samples) as input, and labels each sample with a probability
of whether its a key sample. This set of probabilities is used
in an argmin argument to minimize the probability of the
discriminator making a mistake, the output of the argmin is
denoted as d. Once this is obtained, it will be used to train
the encoder to maximize the likelihood of the discriminator
making a mistake. The objective function of encoder e will
be denoted as:

argmin(d does not make a mistake) (5)

Host DNN: The purpose of this framework is for any DNN
in need of protected to be able to be watermarked by the
IPP Framework. The host DNN represents the DNN being
watermarked. Since the key samples from the encoder will
only be close to the original samples, the host DNN will use
the small difference between the two to identify xkey.

The following equation makes a summary of the test re-
sults (how the discriminator makes its guesses). The final
layer of neural networks makes the discriminator’s score val-
ues usable by turning all values into probabilities between
0 and 1 [6]. This probability vector will then be used to



Figure 2: Examples of key samples of existing watermark
methods and the IPP framework [3]

update e and d to better perform their tasks. The objective
function for the host model h will be denoted as:

argmin(h’s parameters for updating encoder e) (6)

Equations 3, 4, 5, and 6 can be added together to produce
the objective function Oe for encoder e:

argmin{
a(e’s reconstruction error)+

b(e’s image quality degradation)+

c(d does not make a mistake)+

d(h’s parameters for updating encoder e)

}

(7)

a, b, c, d > 0 are weights which trade-off between the four
parts to achieve the best balance between them [3]. This
process should result in the difference between the ordinary
and key samples being minimized while also still being de-
tectable by the host DNN. This will allow the host DNN to
identify key samples, confirming the ownership of the author
while not making the watermarks obvious to outsiders.

5. IMPLEMENTATION
This section will go over the tools Li et al used to im-

plement the IPP framework and evaluate how it performed
under various tests.

5.1 Datasets and DNNs
The IPP framework was tested on two data sets: MNIST

and CIFAR-10. MNIST consists of 28 x 28 pixel images
which are handwritten samples of single digits 0 to 9. It has
60,000 training samples and 10,000 test samples. CIFAR-10
is a data-set with 80 million tiny color images. There are
50,000 training images and 10,000 test images. All images
were normalized and centered in 32 x 32 pixel fixed images.
See Figure 2 for examples of two CIFAR-10 images.

Figure 4: Accuracy of di�erent models on regular test set

5.2 Results
The training of our IPP framework has been successfully imple-
mented, and we compare the key samples generated by our frame-
work with the existing methods. Figure 3 shows examples of key
samples created from CIFAR-10 dataset. Figure 3 (a) are two exam-
ples of original images; Figure 3 (b)-(h) are key samples generated
by methods proposed in [1, 10, 23, 31]. Figure 3 (j) are two key
samples generated by our blind-watermark based IPP framework.
As we can see, the examples of ours are so similar to the original
samples that the di�erences between them are too tiny to be seen
by humans. In contrast, the examples of other existing methods are
visible and striking, which indicates the distribution of the features
of them is distant from the feature distribution of the training sam-
ples. In next section, we conduct extensive empirical validations to
show that our IPP framework satis�es multiple requirements.

6 EVALUATION
We analyze the performance of our IPP framework by measuring
the following criteria: �delity, the side e�ect made to the primary
classi�cation task; e�ectiveness and integrity, whether it can
successfully verify the ownership of the host DNN; security, the
ability of defending against evasion attack; legality, the ability of
anti-counterfeiting; feasibility, The ability to resist model modi-
�cations and whether it explicitly associates the model with the
identity of the actual creator.

6.1 Fidelity
Fidelity requires our IPP framework to watermark a host model
without signi�cant side e�ects on the primary task. Ideally, a well-
watermarked model should be as accurate as an unwatermarked
model. To measure the side e�ects on the primary task, we im-
plemented a comparative evaluation of the accuracy between the
clean model and watermarked model. As depicted in Figure 4, all
the evaluated models are trained on the test set in two di�erent
settings: unwatermarked setting and watermarked setting. We �rst
train a model without watermark embedding and evaluate it on
the test set that it has not seen before. Then we implement our

framework to watermark the same model and evaluate it on the
test set.

The results expressly demonstrate that all the watermarked mod-
els still have the same level of accuracy as the unwatermarked
model. The accuracy drops by up to 0.66% on average. In the best
case, we achieve a drop of only 0.14%. That is to say, the side e�ects
caused by our IPP framework are entirely within the acceptable
performance variation of the model and has no signi�cant impact
on the primary task. Thus our framework meets the �delity require-
ment.

6.2 E�ectiveness and Integrity
The purpose of e�ectiveness is to measure whether we can suc-
cessfully verify the copyright of the target DNN model under
the protection of our IPP framework. Ideally, a well-watermarked
model should identify key samples and predict them to the pre-
de�ned labels with high accuracy. The integrity requires that our
IPP framework shall not falsely claim the authorship of unwater-
marked models. To measure the e�ectiveness and integrity, we im-
plement another comparative evaluation of the accuracy between
the unwatermarked model and the watermarked model. We typi-
cally denote the forward inference function of the unwatermarked
model by �uw and that of the watermarked model by �w . Only if
�uw (xke� ) , tke� and �w (xke� ) == tke� , we con�rm that our IPP
framework can successfully verify the ownership. We issue predic-
tion queries of key samples and tests whether the model returns
correct labels speci�ed by key samples.

Figure 5 shows the accuracy of the di�erent models implemented
in our evaluation. We use 1% of dataset to test the accuracy. The
"unwatermarked" shows the accuracy of key samples that are not
induced into the unwatermarked model. All the unwatermarked
models achieve an accuracy of 9%—13%, a totally random guess. In
contrast, the "watermarked" encouragingly shows the accuracy of
key samples exceeds over 90%. In the best case, the watermarked
model even achieve an accuracy of 100% on the key samples. The
results show that our framework can successfully verify the own-
ership without falsely claiming the authorship of unwatermarked
models. Thus the e�ectiveness and the integrity requirements are
met.
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Figure 3: Accuracy of different models on regular test set
(subset of data) [3]

5.2 Results
The IPP framework was successfully trained and the key

samples it generated were compared to existing models. Fig-
ure 2 shows some samples generated from the CIFAR-10
dataset. Figure 2 (a) shows the original, (d) shows the key
sample generated by the IPP framework, and (b)/(c) show
examples of more obvious watermarking techniques used by
other methods. The difference between the original and the
IPP key samples are too subtle to be perceived by most hu-
mans. In contrast, the watermarks on the other are obvious
and can be easily detected visual by humans.

6. EVALUATION
The performance of the IPP framework was analyzed us-

ing the following criteria:

• fidelity - is the primary classification task affected by
side effects of the watermark?

• effectiveness and integrity - how successfully can the
watermark be used to verify the host DNN?

• security - can it defend against evasion attacks?

• legality - can it defend against anti-counterfeiting?

• feasibility - can it resist model modification and asso-
ciate the model with its real creator?

6.1 Fidelity
To determine whether the blind-watermark method af-

fected the model’s ability to correctly classify images, an
evaluation was carried out on various DNNs. In Figure 3
the x-axis displays various DNNs used in testing and the
y-axis plots the accuracy of those DNNs when performing
their tasks. The blue bars denote performance before being
watermarked, while the green bars represent performance
after being watermarked. As seen in Figure 3, the DNNs
are evaluated before and after being watermarked.

The results demonstrate that both situations yielded prac-
tically the same accuracy. Decreases in accuracy averaged



Figure 5: Accuracy of di�erent models on our key samples

6.3 Security
Security requires that the veri�cation process is imperceptible and
undetectable, which can resist identi�cation and detection by unau-
thorized service providers. In this section, we introduce a novel
watermark invalidation method, evasion attack [14], and demon-
strate that an attacker can evade the veri�cation by the model
owners. Considering that the premise of illegal service provision
is due to the limitation of data resources or computing power, we
make an assumption that an attacker can access to 10% of total
training samples for detector build-up. Essentially, the binary classi-
�cation is supervised learning. They can generate the same amount
of key samples according to the proposed methods in [1, 10, 23, 31]
and our framework, then get the training set for detector build-up.
We typically design a simple detector based on 3 fully-connected
layers, which are composed of 512, 256 and 1 neural unit followed
by sigmoid activation. We use �d to represent the parameters of
the detector, and the objective function is denoted by:

argmin
�d

� 1
m

mX

i=1
log 1

1 + e��d (xi )
�

1
m

mX

i=1
log(1 � 1

1 + e��d (x ke�
i )

)

(16)

We apply stochastic gradient descent with a �xed learning rate of
0.01 for 20 epochs to solve the objective function 16. We adopt the
ROC (receiver operating characteristic), which reports the relation
between true positive rate and false negative rate over multiple
thresholds, as the evaluation metric. Figure 6 presents the trained
3-layers detector’s performance over the queried samples. The ROC
curve of our IPP framework demonstrates that the performance
of the detector is close to random guessing with an AUC (area
under the ROC curve) of 0.5. In contrast, the ROC curve of previous
methods demonstrates that the detector has a performance on AUC
of well above 0.94, which indicates that the unauthorized service
provider is enough to evade the veri�cation.

A further assumption is that the attacker tries to build a more
powerful detector based on the weights transferred from the stolen
model. In addition to the last several fully connected layers, most
of the current classi�cation models are playing the role of feature
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Figure 6: The receiver operating characteristic (ROC) curve
produced by the detector based on 3 linear layers
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Figure 7: The receiver operating characteristic (ROC) curve
produced by the detector based on ResNet-18

extractors. Therefore, we utilize the former layers of ResNet-18 as a
feature extractor, which is then followed by a fully-connected layer
with one output. We trained the detector in the same setting as the
3-layer detector and report the results in Figure 7. As we can see, the
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Figure 4: Accuracy of models watermarked with the IPP
framework when identifying key samples (subset of data) [3]

between 0.66% and 0.14%. The side effects of the water-
marking had no significant impact on the primary task of
image identification. So the IPP frameworks meets the fi-
delity requirement.

6.2 Effectiveness and Integrity
Effectiveness is concerned with whether a DNN which

has been watermarked by the IPP framework can accu-
rately identify key samples. The integrity of the framework
requires that unwatermarked models do not recognize key
samples which they should not recognize. To measure ef-
fectiveness and integrity, a set of DNNs were tested against
queries of key samples. The DNNs were tested in their orig-
inal state, followed by testing after they had been water-
marked.

Figure 4 shows the accuracy of different models when per-
forming their tasks (such as classifying images of animals,
for example) during evaluation. The unwatermarked models
achieved an accuracy of between 9% and 13% while the wa-
termarked models peaked with an accuracy of 100%, most
landing around at least 90%.

6.3 Security
The security of the IPP framework depends on whether

the verification process is undetectable by unauthorized ser-
vice providers. The developers of the IPP framework assume
the attacker can access up to 10% of the total training sam-
ples used to train the model to detect key samples. The
attacker can also generate the same number of key samples
as generated by the IPP framework and other proposed mod-
els [3]. The developers of the IPP framework built a simple
neural network based detector for testing the presence of a
watermark technique within DNNs, which utilized three 3
fully-connected layers.

ROC (receiver operating characteristic) is used to report
the results of testing DNNs against the detector. ROC
curves show how a classification model performs when clas-
sifying data. The curve plots two parameters: true pos-
itive rate and false positive rate. Having more true pos-
itives, meaning a guess “true” is correct, skews the curve
towards the upper left. Having more false positives, mean-

Figure 5: Accuracy of di�erent models on our key samples

6.3 Security
Security requires that the veri�cation process is imperceptible and
undetectable, which can resist identi�cation and detection by unau-
thorized service providers. In this section, we introduce a novel
watermark invalidation method, evasion attack [14], and demon-
strate that an attacker can evade the veri�cation by the model
owners. Considering that the premise of illegal service provision
is due to the limitation of data resources or computing power, we
make an assumption that an attacker can access to 10% of total
training samples for detector build-up. Essentially, the binary classi-
�cation is supervised learning. They can generate the same amount
of key samples according to the proposed methods in [1, 10, 23, 31]
and our framework, then get the training set for detector build-up.
We typically design a simple detector based on 3 fully-connected
layers, which are composed of 512, 256 and 1 neural unit followed
by sigmoid activation. We use �d to represent the parameters of
the detector, and the objective function is denoted by:

argmin
�d

� 1
m

mX

i=1
log 1

1 + e��d (xi )
�

1
m

mX

i=1
log(1 � 1

1 + e��d (x ke�
i )

)

(16)

We apply stochastic gradient descent with a �xed learning rate of
0.01 for 20 epochs to solve the objective function 16. We adopt the
ROC (receiver operating characteristic), which reports the relation
between true positive rate and false negative rate over multiple
thresholds, as the evaluation metric. Figure 6 presents the trained
3-layers detector’s performance over the queried samples. The ROC
curve of our IPP framework demonstrates that the performance
of the detector is close to random guessing with an AUC (area
under the ROC curve) of 0.5. In contrast, the ROC curve of previous
methods demonstrates that the detector has a performance on AUC
of well above 0.94, which indicates that the unauthorized service
provider is enough to evade the veri�cation.

A further assumption is that the attacker tries to build a more
powerful detector based on the weights transferred from the stolen
model. In addition to the last several fully connected layers, most
of the current classi�cation models are playing the role of feature
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Figure 6: The receiver operating characteristic (ROC) curve
produced by the detector based on 3 linear layers
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Figure 7: The receiver operating characteristic (ROC) curve
produced by the detector based on ResNet-18

extractors. Therefore, we utilize the former layers of ResNet-18 as a
feature extractor, which is then followed by a fully-connected layer
with one output. We trained the detector in the same setting as the
3-layer detector and report the results in Figure 7. As we can see, the
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Figure 5: The ROC curve produced by the detector when
tested on 3 layers (“Ours” refers to IPP framework)[3]

ing a guess “false” is incorrect, skews the curve towards the
lower right. In most instances classification models want the
curve to skew towards true positive, indicating an accurate
classification. However, the IPP framework wants to have
a straight line which doesn’t skew either direction, indicat-
ing that the detector cannot accurately distinguish ordinary
from key samples.[1].

In Figure 5 there is a clear difference between the perfor-
mance of the IPP framework and the other DNNs that were
tested. The curve for the IPP framework was nearly straight,
indicating that the detector’s performance was close to ran-
dom guessing. Meanwhile, the other models skewed heavily
towards true positives. This means the detector had no is-
sues identifying the presence of other watermark methods.

Most current classification models play the role of feature
extractors as well [3]. To test how the IPP framework per-
formed against these models, the developers tested against
a commonly used ResNet-18 feature extractor. As seen in
Figure 7, the IPP framework is only slightly more detectable
than in the 3 layer test and the other watermarking systems
are still significantly easier for the detector to notice.

6.4 Legality
Preventing an attacker from inducing the behavior of the

watermarked DNN with their own set of fake samples is
essential for protecting the rights of Alice and Bob. If an
attacker can accomplish this then Alice can no longer claim
ownership, which also infringes on Bob’s interests. The IPP
framework needs to resist two types of fraudulent claims of
ownership.

What if the original and key samples were obtained by an
attacker? The goal of the IPP framework is to make the dif-
ference between the ordinary and key samples imperceptible.
Other models studied have watermark techniques which are
obvious and can be easily replicated [3]. As can be seen in
Figure 2, the difference between the original and IPP images
cannot be recognized by the average human. The distortions
made to the images are also unique for each image, making
it nearly impossible to simply design a set of fake samples
by manually mimicking the effect the watermark has on the
ordinary samples [3].



Original Ours Di�erence⇥1 Di�erence⇥5

Figure 8: The examples of di�erence image

detection performance has indeed increased. The ROC curves of the
existing methods show that the key samples used in their methods
are more easily detected with an AUC of 0.98. Encouragingly, the
ROC curve of our framework demonstrates that the detector is only
slightly more e�ective than random guessing with an AUC of 0.65.
This result convincingly shows that our IPP framework can achieve
remarkable performances on undetectability against evasion attack.

In addition to evasion attack, we also consider another type of
attack: removing the backdoor-based watermark. For example, an
attacker can �ne-tune the stolen model to achieve the purpose of
removing the watermark. More often in practice, it is common to
�ne-tune the existing state-of-the-art models on new insu�cient
datasets to achieve higher performance or to implement new tasks.
As for an authorized user, �ne-tuning the model does not mean
that he wants to launch this type of attack. Hence, we discuss the
behavior of the �ne-tuning model in detail in section 6.5, which is
regarded as a test of the robustness of our scheme.

6.4 Legality
Here, we consider an attack scenario in which the counterfeiter
knows that the model purchased by Bob is watermarked and at-
tempts to claim ownership of the model illegally. This behavior will
not only infringe on Bob’s interests but will even infringe on Al-
ice’s bene�ts, which will directly lead to the invalidation of the IPP
technology — the model owner Alice is no longer the only one that
can claim the ownership. The counterfeiter attempts to designing
a set of fake samples, which can induce the abnormal behavior of
the licensed model. Therefore, the goal of legality is to resist the
fraudulent claims of ownership by adversaries. In this paper, we
study two di�erent types of fraudulent claims of ownership.

What if the ordinary samples and the key samples became
accessible? Although the ROC curve of our framework demon-
strates that the detector based on ResNet-18 is only slightly more
e�ective than random guessing with an AUC of 0.65, the counter-
feiter can actually detect a small number of key samples. Therefore,
we assume that what if the original and key samples became acces-
sible by intercepting the communication channel? What could then
be ascertained about the intercepted samples? In Figure 3 (b)—(d),
the features of superposed images are so prominent and striking
that the counterfeiter can easily generate a set of fake samples by

adding them to other original samples. Therefore, we apply the
same logo "TEST" to other samples to generate a set of new key
samples, and then issue prediction queries of the new key samples
to the watermarked model, obtained an average accuracy higher
than 91%. In contrast, as depicted in Figure 8, the features of the
di�erence images from our framework are too subtle for the human
to observe distortion, and we magnify all di�erence images by �ve
times. It can be found that the distortion mode made upon each
original sample is unique, and the distribution of distortions is re-
lated to the properties (e.g., complexity and texture) of the original
samples. This result indicates that it is impossible to design a set
of fake samples by superposing the di�erence images to other new
original samples.

Figure 9: The performance (accuracy) of our key samples
transferring attack

What if the encoder was leaked? In most cases, it can safely
be assumed that access to the learned encoder directly is impossible
for an attacker. However, what if the attacker trained a "same" en-
coder by using the same architecture, dataset, and hyper-parameters?
To test this attack, we implement our IPP framework to watermark
MobileNetV2 for �ve times with di�erent seeds, then we get �ve
identical pairs of encoder and MobileNetV2 (MNV2), which are
numbered 1�, 2�, 3�, 4� and 5�. Figure 9 depicts the key samples
transferring attack’s performance. The x-axis represents the host
model being attacked, and the y-axis represents the key samples
generated by the trained encoder. Concretely, we issue queries to
each MobileNetV2 with the key samples generated by each encoder
to evaluate the accuracy of predicting the pre-de�ned labels. As
we can see, the high accuracy of the attack results is listed at the
diagonal of Figure 9, which shows that the key samples can only
induce their corresponding model to pre-de�ned labels. The reason
why it can’t transfer is that the initialization of the neural network
is an important part of the training process, which will have an
important impact on the performance, convergence, and conver-
gence speed of the model. Random initialization and stochastic
gradient descent can cause the objective function to �nd a new
local minimum (sometimes adjacent local minimum, resulting in
slightly higher transferring attack performance, e.g., 68%), which
means that the resultant model is di�erent each time. This result
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Figure 6: Performance (accuracy) of key samples under trans-
ferring attack [3]

Figure 5: Accuracy of di�erent models on our key samples

6.3 Security
Security requires that the veri�cation process is imperceptible and
undetectable, which can resist identi�cation and detection by unau-
thorized service providers. In this section, we introduce a novel
watermark invalidation method, evasion attack [14], and demon-
strate that an attacker can evade the veri�cation by the model
owners. Considering that the premise of illegal service provision
is due to the limitation of data resources or computing power, we
make an assumption that an attacker can access to 10% of total
training samples for detector build-up. Essentially, the binary classi-
�cation is supervised learning. They can generate the same amount
of key samples according to the proposed methods in [1, 10, 23, 31]
and our framework, then get the training set for detector build-up.
We typically design a simple detector based on 3 fully-connected
layers, which are composed of 512, 256 and 1 neural unit followed
by sigmoid activation. We use �d to represent the parameters of
the detector, and the objective function is denoted by:

argmin
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i=1
log 1
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i=1
log(1 � 1
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(16)

We apply stochastic gradient descent with a �xed learning rate of
0.01 for 20 epochs to solve the objective function 16. We adopt the
ROC (receiver operating characteristic), which reports the relation
between true positive rate and false negative rate over multiple
thresholds, as the evaluation metric. Figure 6 presents the trained
3-layers detector’s performance over the queried samples. The ROC
curve of our IPP framework demonstrates that the performance
of the detector is close to random guessing with an AUC (area
under the ROC curve) of 0.5. In contrast, the ROC curve of previous
methods demonstrates that the detector has a performance on AUC
of well above 0.94, which indicates that the unauthorized service
provider is enough to evade the veri�cation.

A further assumption is that the attacker tries to build a more
powerful detector based on the weights transferred from the stolen
model. In addition to the last several fully connected layers, most
of the current classi�cation models are playing the role of feature
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Figure 6: The receiver operating characteristic (ROC) curve
produced by the detector based on 3 linear layers
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Figure 7: The receiver operating characteristic (ROC) curve
produced by the detector based on ResNet-18

extractors. Therefore, we utilize the former layers of ResNet-18 as a
feature extractor, which is then followed by a fully-connected layer
with one output. We trained the detector in the same setting as the
3-layer detector and report the results in Figure 7. As we can see, the

133

Figure 7: The ROC curve produced by the detector when
tested on ResNet-18 (“Ours” refers to IPP framework)[3]

What if the encoder was leaked? An attacker might at-
tempt a transfer attack, where they train their own samples
using a remarkably similar encoder to the encoder which
was leaked. The IPP framework was tested for this by sim-
ulating a scenario where a “same” encoder using the same
dataset, architecture, and parameters is used to make fake
samples. They watermarked a DNN, MobileNetV2, with the
IPP framework five times using a different set of key sam-
ples each time. This resulted in five pairs of key samples
and MobileNetV2 where they match, indicated by matching
numbers in Figure 6. The x-axis represents samples gen-
erated by the encoder being sent and the y-axis represents
which model the samples are being sent to. It can be ob-
served in Figure 6 that the diagonal where the pairs match
shows a high accuracy. This means the models labeled the
samples correctly when they were fed the key samples used
to train the encoder. The transfer attack does not work be-
cause the initialization of the neural network is crucial to
the training process [3].

Figure 8: Accuracy of IPP framework in robustness test [3]

6.5 Feasibility
Robustness It’s possible for an attacker to fine-tune a

stolen model by training it on new datasets, creating a new
model which has the characteristics of the previous while
being distinct.

In an experiment to test the framework’s robustness, the
IPP framework was fine-tuned through different five datasets:
V-13, V-16, R-18, R-34, and PreActR-18 as seen in figure
8. The IPP framework retained the highest accuracy due
to the model not changing significantly as a result of the
fine-tuning.

Functionality The IPP framework should clearly associate
the a DNN with its author. One problem which neural net-
works face is the problem of over-fitting, where a neural net-
work is trained too intensely on one data set and its behavior
doesn’t generalize to other data sets. The IPP framework
uses this downfall to its advantage by over-fitting the wa-
termarking technique, ensuring that its behavior will only
trigger when presented with authentic key samples. This
guarantees association between a DNN and its author.

7. CONCLUSION
The authors of the IPP blind-watermark framework have

created a robust watermarking algorithm for deep neural
networks. Their tests have shown that the framework ver-
ifies the author’s ownership of the DNN without degrading
its performance. A watermarked model is able to identify
key samples while unwatermarked models don’t falsely rec-
ognize key samples. The framework can successfully evade
detection of its algorithm. The algorithm can also defend
against fraudulent claims of ownership. Lastly, the frame-
work’s training process can’t be replicated by third-parties.
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