Teaching AI to Play Chess Like People

Austin A. Robinson University of Minnesota - Morris Computer Science Senior Seminar Spring 2021 "If you program a machine, you know what it's capable of. If the machine is programming itself, who knows what it might do?"

— Garry Kasparov, Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins

- Computer's have fundamentally changed chess
- Computers can serve a different purpose

2

Outline

- Background
- AlphaZero
- Maia
 - Development
 - Results
 - Comparison
- Application
- Conclusion

Background: Chess Terminology

- Elo rating
- Blunder
- Time Control

Background: Chess Terminology

- Elo rating
- Blunder
- Time Control

Background: Chess Terminology

- Elo rating
- Blunder
- Time Control

https://upload.wikimedia.org/wikipedia/commons/d/d3/Schachuhr_mechanisch.jpg

Background: Deep Learning

Machine Learning

- "The hierarchy of concepts enables the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how these concepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning."
 Deep Learning, by Ian Goodfellow, Yoshua Bengio and Aaron Courville
- Deep Learning is allowing computers to learn from experience
- Reinforcement learning

Background: Deep Learning

• Machine Learning

- "The hierarchy of concepts enables the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how these concepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning."
 Deep Learning, by lan Goodfellow, Yoshua Bengio and Aaron Courville
- Deep Learning is allowing computers to learn from experience
- Reinforcement learning

Background: Deep Learning

Machine Learning

- "The hierarchy of concepts enables the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how these concepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning."
 Deep Learning, by lan Goodfellow, Yoshua Bengio and Aaron Courville
- Deep Learning is allowing computers to learn from experience.
- Reinforcement learning

Background: Monte Carlo Tree Search(MCTS)

- MCTS is a tree search that also implements machine learning principles
 of reinforcement learning
- 4 primary steps
 - Simulation

Background: Monte Carlo Tree Search(MCTS)

- MCTS is a tree search that also implements machine learning principles of reinforcement learning
- 4 primary steps
 - Simulation

Background: Chess Engines

- Software that is used to generate and analyse positions
- Stockfish
 - More traditional chess engine
 - o **3564**
- AlphaZero and Leela
 - Deep Learning
 - Monte Carlo Tree Search
 - o **3463**

Background: Chess Engines

- Software that is used to generate and analyse positions
- Stockfish
 - More traditional chess engine
 - o **3564**
- AlphaZero and Leela
 - Deep Learning
 - Monte Carlo Tree Search
 - o **3463**

Background: Chess Engines

- Software that is used to generate and analyse positions
- Stockfish
 - More traditional chess engine
 - o **3564**

• AlphaZero and Leela

- Deep Learning
- Monte Carlo Tree Search
- o **3463**

AlphaZero

• Inputs

- Probabilities
- Expected outcome
- Values
- Parameters
- Obtaining Outputs
 - Reinforcement through self play

• Inputs

• Output

- Probabilities
- Expected outcomes
- Values
- Parameters
- Obtaining Outputs
 - Reinforcement through self play

9

Inputs

- Probabilities
- **Expected outcomes**
- Values
- Parameters
- **Obtaining Outputs**
 - Reinforcement through self play

• Inputs

- Probabilities
- Expected outcomes
- Values
- Parameters
- Obtaining Outputs
 - Reinforcement through self play

• Inputs

- Probabilities
- Expected outcomes
- Values
- Parameters
- Obtaining Outputs
 - Reinforcement through self play

Inputs

- Probabilities
- **Expected outcomes**
- Values
- Parameters
- **Obtaining Outputs**
 - **Reinforcement through self play**

AlphaZero: Training

- 9 hours of training time
 - Reached an Elo rating of ~3200
- Completely random at beginning of the training
- Learned from win, losses and draws

AlphaZero: Training

- 9 hours of training time
 - Reached an Elo rating of ~3200
- Completely random at beginning of the training
- Learned from win, losses and draws

AlphaZero: Training

- 9 hours of training time
 - \circ Reached an Elo rating of ~3200
- Completely random at beginning of the training
- Learned from win, losses and draws

AlphaZero: Results

- Defeated Stockfish (won 155 games, drew 839 games and lost 6 games)
 - Leela was also able to defeat the same version of StockFish
- Strategies Learned by AlphaZero
 - Common human strategies
 - Unique to AlphaZero

AlphaZero: Results

- Defeated Stockfish (won 155 games, drew 839 games and lost 6 games)
 - Leela was also able to defeat the same version of StockFish
- Strategies Learned by AlphaZero
 - Common human strategies
 - Unique to AlphaZero

Maia

- The Goal of Maia is to play the most like a human
- Maia utilizes a large amount of code from Leela
- Data Sets
- Move Prediction
- Models of Maia

- The Goal of Maia is to play the most like a human
- Maia utilizes a large amount of code from Leela
- Data Sets
- Move Prediction
- Models of Maia

- The Goal of Maia is to play the most like a human
- Maia utilizes a large amount of code from Leela
- Data Sets
- Move Prediction
- Models of Maia

- The Goal of Maia is to play the most like a human
- Maia utilizes a large amount of code from Leela
- Data Sets
- Move Prediction
- Models of Maia

- The Goal of Maia is to play the most like a human
- Maia utilizes a large amount of code from Leela
- Data Sets
- Move Prediction
- Models of Maia

- Overall results should an accuracy around 50%
- Maia was able to show that different ELO ranges have unique play styles
- Everyone plays Chess differently; Maia is the average player for an ELO range
- Stockfish
- Leela

- Overall results should an accuracy around 50%
- Maia was able to show that different ELO ranges have unique play styles
- Everyone plays Chess differently; Maia is the average player for an ELO range
- Stockfish
- Leela

14

- Overall results should an accuracy around 50%
- Maia was able to show that different ELO ranges have unique play styles
- Everyone plays Chess differently; Maia is the average player for an ELO range
- Stockfish
- Leela

14

- Overall results should an accuracy around 50%
- Maia was able to show that different ELO ranges have unique play styles
- Everyone plays Chess differently; Maia is the average player for an ELO range
- Stockfish
- Leela

- Overall results should an accuracy around 50%
- Maia was able to show that different ELO ranges have unique play styles
- Everyone plays Chess differently; Maia is the average player for an ELO range
- Stockfish
- Leela

• In Chess

- Hundreds of Thousand of daily online chess players
- Median Elo Rating 1500
- Training
- Human and AI interactions
 - Harvard two-player Atari study
 - Through Deep Learning were able to produce AI that helped improve human performance

• In Chess

- Hundreds of Thousand of daily online chess players
- Median Elo Rating(Lichess) 1500
- Training
- Human and AI interactions
 - Harvard two-player Atari study
 - Through Deep Learning were able to produce AI that helped improve human performance

• In Chess

- Hundreds of Thousand of daily online chess players
- Median Elo Rating 1500
- Training
- Human and AI interactions
 - Harvard two-player Atari study
 - Through Deep Learning were able to produce AI that helped improve human performance

- In Chess
 - Hundreds of Thousand of daily online chess players
 - Median Elo Rating 1500
 - Training

• Human and AI interactions

- Harvard two-player Atari study
- Through Deep Learning were able to produce AI that helped improve human performance

Conclusion

- Maia shows it possible to capture the play style of people
- Development of more human like chess engines could lead to better training for people

Questions

Sources

[1] Aligning Superhuman AI with Human Behavior: Chess as a Model System -Young, Sen, Kleinberg, Anderson

[2] Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm - Silver

[3] https://www.geeksforgeeks.org/ml-monte-carlo-tree-search-mcts/

[4] https://www.microsoft.com/en-us/research/blog/the-human-side-of-ai-for-chess/?OCID=msr_blog_MaiaChess_tw