Teaching AI to Play Chess Like People

Austin A. Robinson
University of Minnesota - Morris
Computer Science Senior Seminar
Spring 2021
“If you program a machine, you know what it’s capable of. If the machine is programming itself, who knows what it might do?”

— Garry Kasparov, Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins

- Computer’s have fundamentally changed chess
- Computers can serve a different purpose

Outline

- Background
- AlphaZero
- Maia
 - Development
 - Results
 - Comparison
- Application
- Conclusion
Background: Chess Terminology

- Elo rating
- Blunder
- Time Control

https://ratings.fide.com/profile/1503014
Background: Chess Terminology

- Elo rating
- Blunder
- Time Control
Background: Chess Terminology

- Elo rating
- Blunder
- Time Control

https://upload.wikimedia.org/wikipedia/commons/d/d3/Schachuhr_mechanisch.jpg
Background: Deep Learning

- **Machine Learning**
 - “The hierarchy of concepts enables the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how these concepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning.”

 - *Deep Learning*, by Ian Goodfellow, Yoshua Bengio and Aaron Courville

- **Deep Learning** is allowing computers to learn from experience

- **Reinforcement learning**

[Diagram of a neural network]
Background: Deep Learning

- Machine Learning
 - “The hierarchy of concepts enables the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how these concepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning.”
 - Deep Learning, by Ian Goodfellow, Yoshua Bengio and Aaron Courville

- Deep Learning is allowing computers to learn from experience
- Reinforcement learning
Background: Deep Learning

- Machine Learning
 - “The hierarchy of concepts enables the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how these concepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning.”
 - *Deep Learning*, by Ian Goodfellow, Yoshua Bengio and Aaron Courville

- Deep Learning is allowing computers to learn from experience

- Reinforcement learning

![Reinforcement Learning Diagram](https://miro.medium.com/max/478/1*QVsnwatDVz8wcqJUsLJejw.png)
Background: Monte Carlo Tree Search (MCTS)

- MCTS is a tree search that also implements machine learning principles of reinforcement learning
- 4 primary steps
 - Simulation

[Diagram of MCTS process]

[3]
Background: Monte Carlo Tree Search (MCTS)

- MCTS is a tree search that also implements machine learning principles of reinforcement learning.
- 4 primary steps
 - Simulation
Background: Chess Engines

● **Software that is used to generate and analyse positions**

● **Stockfish**
 ○ More traditional chess engine
 ○ 3564

● **AlphaZero and Leela**
 ○ Deep Learning
 ○ Monte Carlo Tree Search
 ○ 3463
Background: Chess Engines

- Software that is used to generate and analyse positions
- **Stockfish**
 - More traditional chess engine
 - 3564
- **AlphaZero and Leela**
 - Deep Learning
 - Monte Carlo Tree Search
 - 3463

https://stockfishchess.org/
Background: Chess Engines

- Software that is used to generate and analyse positions
- Stockfish
 - More traditional chess engine
 - 3564
- AlphaZero and Leela
 - Deep Learning
 - Monte Carlo Tree Search
 - 3463

https://lczero.org/blog/
AlphaZero
AlphaZero: Architecture

- **Inputs**
- **Output**
 - Probabilities
 - Expected outcome
 - Values
- **Parameters**
- **Obtaining Outputs**
 - Reinforcement through self play
AlphaZero: Architecture

- **Inputs**
- **Output**
 - Probabilities
 - Expected outcomes
 - Values
- **Parameters**
- **Obtaining Outputs**
 - Reinforcement through self play
AlphaZero: Architecture

- **Inputs**
- **Output**
 - Probabilities
 - Expected outcomes
 - Values
- **Parameters**
- **Obtaining Outputs**
 - Reinforcement through self play
AlphaZero: Architecture

- Inputs
- Output
 - Probabilities
 - Expected outcomes
 - Values
- Parameters
- Obtaining Outputs
 - Reinforcement through self play
AlphaZero: Architecture

- Inputs
- Output
 - Probabilities
 - Expected outcomes
 - Values
- Parameters
- Obtaining Outputs
 - Reinforcement through self play
AlphaZero: Architecture

- Inputs
- Output
 - Probabilities
 - Expected outcomes
 - Values
- Parameters
- Obtaining Outputs
 - Reinforcement through self play
AlphaZero: Training

- 9 hours of training time
 - Reached an Elo rating of ~3200
- Completely random at beginning of the training
- Learned from win, losses and draws

AlphaZero: Training

- 9 hours of training time
 - Reached an Elo rating of ~3200
- Completely random at beginning of the training
- Learned from win, losses and draws

AlphaZero: Training

- 9 hours of training time
 - Reached an Elo rating of ~3200
- Completely random at beginning of the training
- Learned from win, losses and draws

AlphaZero: Results

- Defeated Stockfish (won 155 games, drew 839 games and lost 6 games)
 - Leela was also able to defeat the same version of StockFish
- Strategies Learned by AlphaZero
 - Common human strategies
 - Unique to AlphaZero

[3]
AlphaZero: Results

- Defeated Stockfish (won 155 games, drew 839 games and lost 6 games)
 - Leela was also able to defeat the same version of StockFish
- Strategies Learned by AlphaZero
 - Common human strategies
 - Unique to AlphaZero
Maia: Development

- The Goal of Maia is to play the most like a human
- Maia utilizes a large amount of code from Leela
- Data Sets
- Move Prediction
- Models of Maia
Maia: Development

- The Goal of Maia is to play the most like a human
- Maia utilizes a large amount of code from Leela
- Data Sets
- Move Prediction
- Models of Maia
Maia: Development

- The Goal of Maia is to play the most like a human
- Maia utilizes a large amount of code from Leela
- Data Sets
- Move Prediction
- Models of Maia
Maia: Development

- The Goal of Maia is to play the most like a human
- Maia utilizes a large amount of code from Leela
- Data Sets
- Move Prediction
- Models of Maia
Maia: Development

- The Goal of Maia is to play the most like a human
- Maia utilizes a large amount of code from Leela
- Data Sets
- Move Prediction
- Models of Maia
Maia: Results

- Overall results should an accuracy around 50%
- Maia was able to show that different ELO ranges have unique play styles
- Everyone plays Chess differently; Maia is the average player for an ELO range
- Stockfish
- Leela
Maia: Results

- Overall results should an accuracy around 50%
- Maia was able to show that different ELO ranges have unique play styles
- Everyone plays Chess differently; Maia is the average player for an ELO range
- Stockfish
- Leela

[1]
Maia: Results

- Overall results should an accuracy around 50%
- Maia was able to show that different ELO ranges have unique play styles
- Everyone plays Chess differently; Maia is the average player for an ELO range
- Stockfish
- Leela
Maia: Results

- Overall results should an accuracy around 50%
- Maia was able to show that different ELO ranges have unique play styles
- Everyone plays Chess differently; Maia is the average player for an ELO range
- Stockfish
- Leela
Maia: Results

- Overall results should have an accuracy around 50%.
- Maia was able to show that different ELO ranges have unique play styles.
- Everyone plays Chess differently; Maia is the average player for an ELO range.
- Stockfish
- Leela
Applications

- **In Chess**
 - Hundreds of Thousand of daily online chess players
 - Median Elo Rating 1500
 - Training

- **Human and AI interactions**
 - Harvard two-player Atari study
 - Through Deep Learning were able to produce AI that helped improve human performance
Applications

- **In Chess**
 - Hundreds of Thousand of daily online chess players
 - **Median Elo Rating (Lichess) 1500**
 - Training

- **Human and AI interactions**
 - Harvard two-player Atari study
 - Through Deep Learning were able to produce AI that helped improve human performance
Applications

● In Chess
 ○ Hundreds of Thousand of daily online chess players
 ○ Median Elo Rating 1500
 ○ Training

● Human and AI interactions
 ○ Harvard two-player Atari study
 ○ Through Deep Learning were able to produce AI that helped improve human performance
Applications

● In Chess
 ○ Hundreds of Thousand of daily online chess players
 ○ Median Elo Rating 1500
 ○ Training

● Human and AI interactions
 ○ Harvard two-player Atari study
 ○ Through Deep Learning were able to produce AI that helped improve human performance
Conclusion

- Maia shows it possible to capture the play style of people
- Development of more human like chess engines could lead to better training for people
Questions
Sources

