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“If you program a machine, you know what it’s capable of. If the machine is 
programming itself, who knows what it might do?”

― Garry Kasparov, Deep Thinking: Where Machine Intelligence Ends and Human 
Creativity Begins

● Computer’s have fundamentally
changed chess

● Computers can serve a different 
purpose

2https://www.pri.org/stories/2018-01-05/garry-kasparov-and-game-artificial-intelligence
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Background: Chess Terminology

● Elo rating
● Blunder
● Time Control
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Background: Deep Learning

● Machine Learning
○ “The hierarchy of concepts enables the computer to learn complicated concepts by building them out of 

simpler ones. If we draw a graph showing how these concepts are built on top of each other, the graph is 
deep, with many layers. For this reason,we call this approach to AI deep learning." 
- Deep Learning, by Ian Goodfellow, Yoshua Bengio and Aaron Courville

● Deep Learning is allowing computers to learn from experience
● Reinforcement learning
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Background: Monte Carlo Tree Search(MCTS)

● MCTS is a tree search that also implements machine learning principles 
of reinforcement learning

● 4 primary steps
○ Simulation
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Background: Chess Engines

● Software that is used to generate and analyse positions
● Stockfish

○ More traditional chess engine
○ 3564

● AlphaZero and Leela
○ Deep Learning
○ Monte Carlo Tree Search
○ 3463
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AlphaZero

8



AlphaZero: Architecture

● Inputs
● Output

○ Probabilities
○ Expected outcome
○ Values

● Parameters
● Obtaining Outputs

○ Reinforcement through self play
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AlphaZero: Training

● 9 hours of training time
○ Reached an Elo rating of ~3200

● Completely random at beginning of the training
● Learned from win, losses and draws
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AlphaZero: Results

● Defeated Stockfish (won 155 games, drew 839 games and lost 6 games)
○ Leela was also able to defeat the same version of StockFish

● Strategies Learned by AlphaZero
○ Common human strategies
○ Unique to AlphaZero
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Maia
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Maia: Development

● The Goal of Maia is to play the most like a human
● Maia utilizes a large amount of code from Leela
● Data Sets
● Move Prediction
● Models of Maia
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Maia: Results

● Overall results should an accuracy around 50%
● Maia was able to show that different ELO ranges have unique play styles
● Everyone plays Chess differently; Maia is the average player for an ELO 

range
● Stockfish
● Leela
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Applications

● In Chess
○ Hundreds of Thousand of daily online chess players
○ Median Elo Rating 1500
○ Training

● Human and AI interactions
○ Harvard two-player Atari study
○ Through Deep Learning were able to produce AI that helped improve human performance
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Conclusion

● Maia shows it possible to capture the play style of people
● Development of more human like chess engines could lead to better training 

for people

17



Questions
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