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Abstract
Web bots have become a major part of the internet over the
past couple years. Though some have good intent, most bots
are created with bad intentions. Because of these “bad” bots,
detection techniques are needed to detect and deny access
to those bots. However, some of these bad bots use advanced
technology which makes them harder to detect than “simple”
bots. This paper discusses the history of web bots and the
impact they have on the internet. It also explores proposed
frameworks for detecting advancedweb bots efficiently using
different techniques including web logs and mouse behavior.
Both show promise in being effective tools for detecting
web bots with mouse behavior being found to be extremely
helpful.
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1 Introduction
Over the years, web bots have become somewhat of a ne-
cessity for the web to function properly. For example, bots
can be used for indexing materials on the web, extracting
specific data from sites for various means, and many more
tasks. In 2019, web bots used 37.9% of all internet traffic [3].
The complexity of bot behavior varies, and in this paper,
we categorize bots as being “simple” or “advanced.” “Simple”
bots are used for more mundane tasks like simply download-
ing data from the web. However, “advanced” bots actively
aim to evade detection, which can be more problematic. In a
2021 study by Imperva (a cybersecurity company that sells
security solutions), Imperva determined 16.7% of bots were
defined as sophisticated, 40.4% as moderate, and 42.9% as
simple. Combined, moderate and sophisticated account for
57.1% of bot traffic which shows that the majority of bots
exhibit behavior that makes them challenging to detect [5].
In this paper, I begin with background in Section 2, explain-
ing problems bots can/have caused, CAPTCHAs, and how
bots have evolved. After that, Section 3 discusses a detec-
tion framework that uses web logs to detect bots. Section
4 builds on the previous framework with the addition of
mouse behavior logs being used to detect bots. In Section 5,
I discuss an “on-the-fly” detection framework for detecting
bots. Section 6 briefly discusses the implications bots have
on social media and how they can influence what we see.
Finally, Section 7 brings forth the conclusion.

2 Background
2.1 Problems bots cause
Some web bots can be, and have been, used for malicious
purposes. Some common malicious uses for web bots include
vulnerability scanning, carding, spamming, and denial of
service attacks (commonly referred to as DOS attacks) [4].
Bots can also influence certainmarkets via the use of scalping
bots that buy an entire stock of something that is sought after
(for example, graphics cards, game consoles, etc.) and re-sell
those items for well above theManufacturer Suggested Retail
Price. All of these problems affect human users, making their
internet experience more frustrating than it needs to be.

2.2 CAPTCHAs
One of the most common approaches to tackle web bots in
recent times are Completely Automated Public Turing test to
tell Computers and Humans Apart, more commonly referred
to as CAPTCHA. CAPTCHAs come in many forms; probably
the most well known is Google’s version, which they call
reCAPTCHA. Some examples include selecting images of
buses or other objects or typing out obscured strings, but
they all lead to the same end goal. Though effective, it is
undeniable that CAPTCHAs interrupt and cause somewhat
of an annoyance for the user. Some also lack certain accessi-
bility options making it harder for some people to complete
them. In addition, there have been some cases of speech-
to-text generators being used to bypass the tests, therefore
letting some bots through [4].

2.3 How have bots evolved?
With new bot detection techniques, bot developers have
retaliatedwithmore advancedweb bots that have specifically
been developed to avoid detection. These new advanced
bots avoid detection by imitating human behavior [4]. Some
have been found to use speech to text to solve CAPTCHAs
that display randomized text and some use simulated mouse
movement to make it look like a human is using a mouse.
Without imitating mouse behavior, mouse movements from
a bot would look like point-to-point movements or none at
all if someone is using a script.



Evolution of Web Bots and How They Are Detected

Figure 1. Proposed framework by C. Iliou et al. [4]

3 Utilizing Web Logs to Detect Bots
3.1 Machine Learning Framework
The machine learning framework proposed by C. Iliou et al.
for detecting bots via web logs (see Figure 1) starts off by
using regular expressions to comb through a given HTTP log
database. Using a regular expression allows the researchers
to choose what data they want to use [4]. When extracting
the web logs, there are four steps the framework follows:
Session extraction, feature extraction, feature selection, and
classification. During the session extraction step, the frame-
work takes the session’s IP and browser agent name to create
a session id that is then stored. This is important because it
helps distinguish sessions that occur on the same IP. Feature
extraction then takes the data from the session and converts
it into more measurable values that are then used for the
training and testing portion of the framework [4]. After test-
ing features with the training data, the authors then selected
the best performing features to the framework. The final step,
classification, classifies the sessions as human or bot. This is
done by using a classification algorithm. The authors used
four of methods; Support Vector Machine (SVM), Random
Forest, Adaboost, andMulti Layer Perceptron (MLP). Though
the authors used these four, they say that the “framework is
built to allow for the effortless incorporation of any machine
learning algorithm” [4].
The framework takes the browser/user agent and the IP

address of the session and compares them to external servers
that contain known web bots. A browser/user agent is data
that is sent to the server you are trying to access letting
the server know what type of system you are on and what
browser you are using to access the server; some bots lack
this element. The framework then automatically annotates
each session as one of the following: human, simple bot,
or advanced bot. Figure 2 shows the process by which the
sessions are categorized. This framework uses supervised
learning instead of unsupervised learning. Supervised learn-
ing is a machine learning method that has a dataset that

Figure 2. Automatic Annotation Process (decision tree) by
C. Iliou et al. [4]

is labeled with correct outcomes whereas an unsupervised
method has an unlabeled dataset. The dataset is split into
two parts: training and testing. About 61% of data is used for
training and the remaining 39% is used for testing. It is impor-
tant to have more data used for training to avoid over-fitting.
Over-fitting is a problem commonly faced in machine learn-
ing and occurs when the model is really good at classifying
data that was in the training set. However, when it comes to
classifying data that was not in the training set, it does not
do so well. The final step of the framework is classification
which uses the training phase which is supplied with known
bot and human sessions. The training phase takes the chosen
features from the session (feature composition). After that,
it then annotates the session (automatic annotation). The
framework then decides the most important features and
selects them (feature selection). The training phase then con-
cludes by using the classification algorithms. For the testing
phase, the features that were chosen are extracted from the
incoming session. This testing data is used to classify the ses-
sion. During the authors testing, these sessions were labeled
as human or bot by the researchers but the labels remained
a secret to the framework so that they could evaluate the
performance of the framework [4].
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3.2 Framework Results
Through testing, the researchers discovered that the “web
bot detection problem is a multifaceted one, characterised by
the coexistence of simple bots that can be detected easily and
advanced web bots that are considerably more difficult to
detect” [4]. However, it was found that, “if the framework is
applied on a false-positive intolerantWeb server, its effective-
ness regarding detecting advanced Web bots is significantly
reduced” [4]. Besides false-positive intolerant servers, this
framework was an effective way to detect web bots.

4 Utilizing Mouse Behavior to Detect Bots
More advanced web bots are able to mimic human mouse
behaviors which in turn makes it easier for them to avoid
certain levels of detection. For example, if a user is seen to
be just going from one input to another in the most efficient
way, that’s probably a sign that the “user” is indeed a bot.
However, when you add some variance (because human
mouse behavior is not perfect) to the trajectory of that mouse,
all of a sudden that “user” looks like a real person instead of
a bot.

4.1 SapiAgent: Generating Mouse Behaviors
One such method for generating human-like mouse behav-
iors comes from a deep-learning framework called SapiAgent,
developed by M. Antal et al. [1]. The main goal of SapiAgent
is to be comparable to mouse movements performed by real
humans so that the generated mouse movements are not
detected by state-of-the-art detection software. SapiAgent
is able to create its mouse movements with a dataset that
contains mouse usage data from 120 subjects. The subject
pool was quite diverse in terms of gender, age, and handed-
ness [1]. The data was collected by having the subjects play
a simple game where their mouse movements were sampled
at a frequency of 60Hz. Different actions were performed
such as left and right clicks, double clicks, and drag and drop
all being included in the samples. This data is then graphed
and examined.

The authors used this gathered data to create two different
Bézier curves, quadratic and cubic. Bézier curves are curves
which have starting and ending points that are, “always
bounded by the convex hull of its control points” [1]. In this
case, the control points were the start and end points of
the user’s mouse movements and they also made sure the
length of the curve was the same in regards to the time of
the mouse movement. The authors decided to use the cubic
Bézier curves over the quadratic ones because they found
the quadratic ones to be more of a “baseline” whereas the
cubic curves were more “Human Like“ [1]. This data is then
plugged into an autoencoder. An autoencoder’s purpose is
to try to find the best way to represent a certain dataset in
the lowest dimension possible while also staying close to
the original dataset. The autoencoder the authors used can

Figure 3. Autoencoder for generating human-like trajectory
from equidistant points. [1]

Figure 4. 1. Training the bot agent. 2. Generating mouse
trajectories. [1]

be seen in Figure 3 where it initially takes in the endpoints
and generates a “human like” mouse trajectory. The overall
approach of SapiAgent is outlined in Figure 4 which also
showcases where the autoencoder is used.

In the end, the authors of SapiAgent concluded that their,
“experimental results show that SapiAgent trained in a novel
way generates more realistic mouse trajectories compared
with conventional autoencoders and Bézier curves” [1]. They
also believe that SapiAgent could be used to generate more
data similar to mouse trajectories.

4.2 Detecting Advanced Bots with Mouse Behavior
Because these bots are more “human-like,” they are harder
to detect than more simple web bots. Christos Iliou, et al.
have proposed a framework that utilizes web logs and mouse
behavior to detect such advanced bots [3]. Currently, the
most used approach to detect advanced bots is to usemachine
learning while focusing on classification and/or clustering
algorithms [3]. The framework proposed by Christos Iliou, et
al. uses two separate detection modules. One module detects
bots based on web logs and the other detects bots based on
mouse movements. The framework can be seen in Figure 5.

The module that uses web logs is the framework discussed
in Section 3. While the user is using the site, the second
module is collecting mouse data and logging it. This data
includes the 𝑥 and 𝑦 coordinates of the mouse and the time
𝑡 the action took place. The data is collected in such a form
{(𝑥1, 𝑦1, 𝑡1), (𝑥2, 𝑦2, 𝑡2), ..., (𝑥𝑛, 𝑦𝑛, 𝑡𝑛)}. All of this mouse col-
lection is done with a JavaScript file that is embedded in
the page [3]. Finally, the prior steps are combined using a
fusion method. This fusion method takes the scores from
both modules (𝑠𝑐𝑜𝑟𝑒𝑚𝑣 for mouse movements and 𝑠𝑐𝑜𝑟𝑒𝑤𝑙 for
web logs) and combines them to get a total score (𝑠𝑐𝑜𝑟𝑒𝑡𝑜𝑡 ).
However, if 𝑠𝑐𝑜𝑟𝑒𝑚𝑣 is either very high or very low, Iliou et al.
determined that just using the score from mouse movements
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Figure 5. Christos Iliou, et al proposed this framework for categorizing users as being a bot or a human [3]

was enough to determine a session as human or bot [3]. Fig-
ure 6 displays the process in which the mouse behavior data
is collected.

Figure 6. Mouse data collection process [3]

In C. Iliou et al. final findings, they discovered that the
mouse behavior module was more effective at detecting bots
in general than the module that used web logs [3]. They
also determined that, “simulating humanlike mouse move-
ments is more difficult than simulating humanlike browsing
behaviour and simulating both simultaneously requires a
higher complexity than the ones tested in this work” [3]. Fi-
nally, C. Iliou et al. concluded that their, “proposed approach
is suitable for the online detection of web bots, as it achieves
high effectiveness with very few requests” [3]. They found
that some sessions were identified in as few as two to three
requests.

4.3 Is Mouse data helpful?
From the work of C. Iliou et al., it does seem that the usage of
mouse behavioral data can be an effective tool to detect bots
compared to other methods. They found it more useful than
using web logs for detecting bots. However, bots like SapiA-
gent have been able to create realistic mouse behavior [1].
Because bots like SapiAgent have shown that it is possible
to simulate realistic human mouse movements, being able
to detect bots by mouse movement might not be as effective
in the future as it is now.

5 On-the-fly detection
Being able to identify web bots in real time brings forth many
advantages, one being the ability to prevent threats sooner.
One of the most common current “on-the-fly” techniques
for detecting bots is a CAPTCHA. Though CAPTCHAs are
useful, they add a layer of annoyance for the regular user.
G. Suchacka et al. have acknowledged this fact and have
proposed a framework that uses machine learning to detect
ongoing visits as human or bot [6]. Their framework is able
to classify a user as soon as it receives enough information
from the user’s session.

5.1 Proposed Framework
The framework proposed by G. Suchacka et al. can be seen
in Figure 7. The back end portion of the framework is trig-
gered periodically and handles the processing of historical
HTTP data, training the neural network, and monitoring
and storing the performance scores which uses the recall
(“fraction of positive sessions that are correctly classified”)
[6], precision (“fraction of positive decisions that are correct”
[6]), and accuracy (“fraction of correct classifications” [6])
of the network. If it detects a decrease in performance, the
network will re-train the neural network estimator [6]. The
front end portion of the framework handles the real time
activities of whenever there is a new incoming request. Sim-
ilarly to the previously mentioned framework that used web
logs, this framework also labels each session as human or bot
by using third party sites by using session user agent strings
and IP addresses. Each request is given a value that is used
to estimate if the session is 0 (human), 1 (bot), or None (same
as “undecided”). Sessions that end too quickly to decide are
given an “undecided” classifier; in this case, G. Suchacka et
al. suggest the idea of presenting a CAPTCHA to that user
the next time they connect [6]. The framework uses ten dif-
ferent features for recognizing the sessions. Seven features
come from the HTTP request headers, two come from the
HTTP response headers, and the last feature comes from
the HTTP server’s timestamp to log the time at which the
session begins [6]. These ten features can be categorized in
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Figure 7. G. Suchacka et al.’s proposed detection framework
[6]

three types of data: numerical features, categorical features,
and boolean features.

5.2 On-The-Fly Detection Results
Through their testing, G. Suchacka et al. discovered that their
framework, “is able to determine a decision for nearly all
active sessions, leaving only 0.69% of them undecided” [6].
They go on to claim that about 99% of the sessions tested with
their framework were able to be classified within only six
requests. Not only that, the max number of requests through-
out the whole dataset was 19. The accuracy of the framework
was also pretty impressive, they claim that 96% of sessions
where classified correctly. Furthermore, G. Suchacka et al.
claim that, “the classifier can be easily implemented as a
simple extension to a real Web server software and inte-
grated with other fallback bot detection mechanisms, like a
CAPTCHA test” [6]. This should allow easy implementation
for anyone that wants to use it.

6 Bot Impact on Social Media
Social networks have become a major part of many people’s
lives over the past decade. Social media can be used to con-
nect with friends over long distances as well as being able
to seeing up to date news from all over the globe. Social
networks also carry a huge influence on their users which, if

controlled, could push certain agendas. According to a study
done in 2017 by O. Varol et al., it was estimated that about
15% of accounts on Twitter were bots [7]. It is likely that
over the last five years that that number has only increased
due to major political events.

One thing Twitter bots have been found to do is increase
certain URL traffic according to Z. Gilani et al. [2]. Z. Gilani
et al.’s Twitter bot took popular “job” related tweets that
included URLs. The bot then took the URLs and shortened
them by having them go through their own web server so
they could log the data from users that clicked the link. After
roughly two years of data logging, they discovered that more
than 44% of clicks were performed by bots; this can be seen
in Figure 8. They also discovered that roughly 4% of the users
were recurring bots [2].

Figure 8. Number of Clicks per URL over two years from Z.
Gilani et al. [2]

6.1 Social Media Companies’ Response
Social media companies like Twitter have recently imple-
mented a label that is displayed on tweets that originate
from an automated source. This was added to inform users
if a tweet is from a real human or from a bot. However, this
label is not given to bots pretending to be humans; the label
is reserved for accounts that utilize the Twitter API to post
tweets.

7 Conclusion
The issue with advanced bots will only increase, which is
why frameworks like the ones mentioned in this paper are
important. Each discussed framework has displayed its ef-
fectiveness at detecting advanced web bots from varying
techniques. The use of web logs has shown to be an effective
technique for detecting bots as well as the more complicated
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technique of using session mouse behavior. Some of the au-
thors of some of these frameworks have stated that they have
future plans and improvements for their proposed frame-
works to implement new features and to improve speed
and efficiency of the framework. Within the near future,
hopefully we can see some of these frameworks being imple-
mented into live servers (instead of test servers) providing
effective bot detection that does not rely on the interruptive
common CAPTCHA.
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