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Introduction

● What is investing?
○ Using money to buy an asset, then 

selling the asset later for a different 
value (ideally higher)

● Goal is to minimize risk, maximize 
return

● Estimated 50-60% of trades in US 
market are automatically executed 
by computers
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Outline
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Background
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What is Genetic Programming (GP)?

● Sub-field of artificial intelligence (AI)

● Theoretical until 1980’s

● Goal is to solve a given problem

○ In this case, achieve best financial return

● Useful when traditional methods 

cannot find patterns

○ Financial models usually have many 

variables
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Visualizing GP

● Visualized using syntax trees
● Captures order in which function 

components execute
● Output is root node, functions are 

internal nodes, terminal arguments are 
leaf nodes

● Easily visualises how functions change 
between generations
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Generation Example

● Population
○ Set of functions to be evaluated

● Fitness function
○ Evaluates how close each function 

is to optimal one

● GP Operations
○ Selection: carries over best 

functions based on fitness

○ Generate new child functions

● New population/generation
○ Excludes worst functions to keep 

same population size (functions die)
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GP Operations

● Crossover: uses two parent functions 
and swaps at split

● Mutation: chooses variables at random 
and alters them, then becomes child 
function
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In/Out-of-Sample

● In-Sample
○ Existing data
○ Split between training and testing
○ Still useful for finding patterns

● Out-of-Sample
○ Not part of sample
○ Measure effectiveness of model 

against new information
○ Performance can be worse than 

in-sample
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Automated Financial Trading

● Quicker pattern analysis

● No emotion

● Also susceptible to computer error

○ 2010 Flash Crash

○ Domino Effect
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Generating Trading Rules using STGP
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Strongly Typed Genetic Programming (STGP)

● Data types of every argument 
and type returned are 
specified beforehand

● Mutation and crossover are 
different due to type 
requirements

● Smaller search space
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Generating Trading Rules from STGP

● Authored by Michell and Kristjanpoller [3]
● Generate unique trade rules

○ Buy, Sell, Hold Signals

● Goal to beat US market indexes
● 40 Generations, population size of 60

○ Previous evidence showed higher values do not 
improve results
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Proposed STGP Model

● Use daily US Fed fund rate
○ Considered risk-free

● If return is greater, buy
● If return is less than zero, sell
● Otherwise do not trade
● 0.1% transaction cost
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where T is the length of the analyzed period, N is 
the total number of stocks analyzed, ri,t is the 

return of stock i at time t



Testing Period

● Rolling window
○ 252 days (one financial year) training
○ 10 days prediction (two financial weeks)

● January, 2003 - November, 2015
○ Contains entire 2008 financial crisis
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Model Results

● Outperformed all benchmarks
● Buy and hold (B&H) strategy

○ 90 most traded stocks for period
○ 61% of stocks in STGP portfolio outperform 

despite transaction cost

● Used Standard GP model from 1999
○ Population of 500
○ Ran for 50 generations, or until no improvement 

for 25

● Best forecast horizon was 22 days ahead
● STGP Model chose best rule 50% of the 

time (expected 33%)
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Benchmark STGP Model 
Improvement (%)

US Fed Rate 435.16

DJA 65.08

S&P500 51.46

B&H 17.74

Standard GP 407.32



Conclusion
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What does this all mean?

● Usage of computers in trading can be expected to increase

○ Benefits outweigh drawbacks due to competition

● Research has shown GP to be effective in improving returns

● Acceptance by major financial institutions

○ Must thoroughly validate model before usage

● Black box methods

● 7,690 Google Scholar results since 2021 for “genetic programming finance”
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