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Abstract
The question being addressed in this research is whether
mixed-initiative (human-computer collaboration) implemen-
tations of procedural content generation in games can aid
in their creation. This paper argues that a mixed-initiative
approach can potentially alleviate some strain from the gen-
eration of content in iterative processes as well as offer novel
approaches to design. This proposal is supported by three
papers [1, 3, 4] investigating the opinion of people who had
collaborated with an algorithm on how their design process
was affected by their collaboration. It also includes an analy-
sis of how mixed-initiative approaches can be implemented
via the Evolutionary Dungeon Designer’s Feasible-Infeasible
Two Population Genetic Algorithm.
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1 Introduction
Creating video games is a difficult and time-consuming pro-
cess. It often involves creating and testing numerous pro-
totypes for game features, level designs, music, and more.
In an effort to combat these difficulties, there have been at-
tempts to automate the development process. As with many
other creative endeavors however, the development process
is often based on heuristics rather than well defined rules
or guidelines. As such, automating these tasks has proven
to difficult. The evaluation of game quality is a particularly
challenging effort due to the nebulous guidelines used to
determine said quality. It is so challenging in fact, that for
an algorithm to accurately mimic the human evaluation pro-
cess for games would require an AI-complete solution[7] (an
algorithm that is as smart as a human) which we don’t yet
have.

This paper explores the use of mixed-initiative implemen-
tations in procedural content generation tools to combat this
very issue. We will first go over two examples of Procedural
Content Generation (PCG) approaches and examine them
through the lens of Liapis’ six game facets. We will then
provide a brief overview of genetic algorithms to provide the
required background knowledge for a series of studies done
by Baldwin et al. on their mixed-initiative PCG (MIPCG) tool:
The Evolutionary Dungeon Designer. We will then go over

Figure 1. The six facets of game design [7]

their findings from user studies on the perceived usefulness
of such a system and discuss the implications of these find-
ings. Then there will be discussion of Guzdial et al.’s MIPCG
tool and a review of their findings from their user studies.

2 Background
2.1 Overview of Procedural Content Generation in

Games
Procedural content generation in games refers to the auto-
mated generation of game content such as levels, visuals, and
music via an algorithm. While PCG has been implemented
in games as long ago as 1981’s Rogue, and with greater main-
stream popularity of the Rogue-like genre occurring in the
early 2000’s, its prominence in the academic community is
fairly recent [6]. The target of PCG in games varies in scope,
from more ambitious attempts to automate the generation
of entire games, to automating singular facets of games such
as level designs or music, or even designing algorithms that
generate content alongside people in a mixed-initiative ef-
fort.

2.2 Six Facets of Game Design
In part of one such ambitious effort to automate the gen-
eration of entire games, Liapis defines six facets of game
design: audio, narrative, gameplay, rules, levels, and visu-
als (see Figure 1). These six facets help clarify the target of
PCG in games and highlight the interactions between the
algorithm(s) responsible for each facet. Liapis proposes two
different approaches to automating game design: a top-down
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approach where some algorithm is responsible for orches-
trating the function of the other generative algorithms, and a
bottom-up approach where each generative algorithm builds
and iterates upon its created content using some form of
shared memory with all the other generative algorithms.
Both of these approaches share a significant weakness: eval-
uating the coherence and quality of generated content, even
in single facets of design, is nearly impossible to do as well
as people can, without an AI-complete solution [7].

2.3 Analysis of Example PCG Games Through the
Six Facets

The automated generation of games being a problem of AI-
complete difficulty suggests a need for human intervention
during their creation and/or evaluation, and in fact many
attempts at incorporating PCG in games have incorporated
just that. Angelina —a piece of software that generates sim-
ple platformer games (games where you navigate through
various obstacles, often by running and jumping)— incorpo-
rates this human intervention element asynchronously by
scraping information from online sources to supply image
backgrounds and sound bytes based on the contents of inter-
net articles (see Figure 2). While this doesn’t solve the issue
of coherence evaluation for the game as a whole, individual
features of each facet that were created by humans should be
coherent. The in-game screenshot from Figure 2 highlights
this disparity, as an image of a child’s face is covering up a
large portion of the level.

Figure 2. Facet orchestration diagram with in-game screen-
shot of Angelina with narrative, audio, and visuals being
pulled from online sources. Arrows between facets indicate
the influence of one facet’s content on the generation of
another’s. Levels are procedurally generated, represented by
the computer pointing to that facet. [7]

Game-O-Matic —an AI based game generator that creates
games where "simulation meets political cartoons"—[7] takes
another approach to facet orchestration. In this setup, human-
authored relationships between different entities are used to
generate the rules, visuals, and level layout of the game (See
Figure 3). The relationships are referred to as microrhetorics
or concept maps, and are simply a directed graph connecting
the entities in the relationship through verbs.

Figure 3. Facet orchestration diagram and in-game screen-
shot for Game-O-Matic with human generated narrative
informing generation of rules and levels, and visuals being
scraped from the internet in accordance with game rules. [7]

These examples highlight Liapis’ observation about co-
herence evaluation. While individual, human-created pieces
of content within these games are consistent, their overall
aesthetic is either simplistic or incoherent. This suggests
that PCG in its current form may be best utilized in mixed-
initiative capacities as a means of providing quality control
until significant advancements are made to computer-based
coherence evaluation algorithms. An example of such a pro-
gram based on genetic algorithms will be discussed later in
the paper.

2.4 Genetic Algorithm Basics
Genetic Algorithms (GAs) seek progressively better solutions
for a given objective without guarantee that optimal solu-
tions will be found or even recognized [5]. The methodology
behind this process emulates natural selection. Candidate
solutions (often referred to as individuals) within a popula-
tion are evolved toward better solutions by modifying one or
more of their properties (often referred to as chromosomes
or genotypes) either directly to an individual’s property(s)
via mutation or indirectly when two parent solutions are
bred and pass down their chromosomes via crossover. These
parents are typically individuals selected for the quality of
their solution in the hopes that those desirable qualities pass
down to their children. The overall quality of these individu-
als is referred to as their fitness, which is determined by the
value of the objective function, while the fitness value of a
specific property of an individual is measured by a fitness
function. [8]

2.5 A Typical GA Run
A typical run of a genetic algorithm consists of several steps
looped over and over until a desired solution is obtained:

• Initialization: Some number of possible solutions are
generated (often randomly).

• Selection: A portion of the population (typically the
most fit individuals) are selected to breed a new gen-
eration.
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• Genetic Operators: The selected population are paired
up and undergo some combination of mutation and
crossover to produce children, some of which will be
more fit than their parents.

2.6 Feasible-Infeasible Two-Population Genetic
Algorithm Overview

The FI-2PopGA works in essentially the same way, save
for the use of two distinct populations that are maintained
throughout generations of the algorithm. These populations
are divided into categories based on how well they satisfy
the problem constraints. Measures of an individual’s solution
quality are taken via fitness function to determine which
category they belong in. The first population consists of
candidate solutions that satisfy the problem constraints and
are known as feasible individuals. The second population
consists of infeasible individuals that fail to do so. These
populations are then evaluated under different constraints.
Individuals within a feasible population are evaluated accord-
ing to objective function values that measure how well they
follow the given constraints for the problem. This measure
is also referred to as an individual’s fitness score. Infeasible
individuals instead have their measure of fitness evaluated
with respect to a function of their constraint violations. They
are penalized according to the severity of their constraint
violations in order to remove particularly low fitness indi-
viduals from the population. In this way feasible individuals
are selected to increase payoff while disregarding potential
constraint violations, and infeasible individuals are selected
with the goal of repair while disregarding potential payoffs.

3 The Evolutionary Dungeon Designer
The Evolutionary Dungeon Designer (EDD) is a pattern-
based MIPCG tool where users design dungeon levels similar
to those from the original Legend of Zelda for fantasy role
playing games [2]. It extends the work of the Evolutionary
World Designer, which generated world maps and dungeons
for adventure games without giving enemies, treasures, and
other such elements exact positions within them. EDD uses
a feasible-infeasible two population genetic algorithm (FI-
2PopGA) to include the placement of these elements within
the dungeons it creates.

3.1 EDD Implementation
EDD creates dungeons that are an𝑀×𝑁 grid of tiles that con-
sist of six different types: enemy, floor, wall, door, treasure,
and entrance, where the player can move through all tile
types except walls. EDD generates suggestions for individual
room layouts using the FI-2PopGA where two populations—
consisting of feasible and infeasible rooms—are evolved in
parallel via separate genetic algorithms. Feasible rooms are
rooms that satisfy the playability constraint. They contain
at least one treasure and enemy and allow access between

(a) Chamber (b) Corridor (c) Joint (d) Turn

Figure 4. Examples of micro-patterns detected by the gener-
ator [2]

the entrance and all other doors, treasures, and enemies,
while infeasible rooms violate this constraint in some ca-
pacity. These populations are interbred in order to promote
solution diversity within the overall solution space that con-
tains all possible solutions for the FI-2PopGA. This space
can be further subdivided into the feasible and infeasible
solution spaces, which contain their respective solution type.
By including the infeasible population we’ll occasionally
have infeasible solutions crossover into the feasible solution
space and thus explore its outer border. This is particularly
important for constrained optimization problems such as
this that will have the optimal solution somewhere between
the feasible and infeasible regions.
Individuals from these populations are evaluated based

on fitness scores derived from the quality of various micro
and meso patterns [3]. An example of a function behind
these fitness scores is seen in equation 1, where the quality
(Qcorridor) of a given corridor (c) is a simple min function that
returns 1 if the length of the corridor (Area(c)) is greater than
or equal to the user desired corridor length, and 𝐴𝑟𝑒𝑎 (𝑐)

𝑇 corridorlength
if the length is less than desired, thus rewarding corridors
that are at least as long as the user desires.

𝑄corridor (𝑐) =𝑚𝑖𝑛(1.0, 𝐴𝑟𝑒𝑎(𝑐)
𝑇 corridorlength

) (1)

Micro patterns are further subdivided into inventorial
and spatial patterns, where the former are base tile types
consisting of enemies, doors, and treasure tiles, and the latter
are a combination of wall and floor tiles consisting of joints,
chambers, turns, and corridors (see Figure 4). Meso patterns
include ambushes, guard chambers, treasure chambers, dead
ends, and guarded treasure, which are combinations of micro
andmeso patterns. Quality scores for these patterns are based
on user-selected parameters for desired quantities and types
of these patterns, which are then used in fitness functions to
determine an individual’s feasible or infeasible fitness score.
In addition to allowing the user to guide content genera-

tion through micro and meso pattern parameters, users are
also able to directly edit rooms EDD generates via the room
editing view (see Figure 5). Once a user has finished editing
the room, they can then generate four new room suggestions
using the FI2PopGA. Two of these suggestions are designed
to mimic only the types of micro and meso patterns con-
tained within the user-edited map, while the other two are
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Figure 5. The Room Editing View [3]

intended to mimic user patterns as well as the approximate
layout of the user map. The former two suggestions only
include the user-edited map in the first generation of the
genetic algorithm. The latter also does this, but also includes
a mutation of the user-edited map within each generation.
These mutations keep the individuals of these suggestion
types more closely approximate to the current map. In this
way, the system is allowed some freedom for novel genera-
tion of content while also closely preserving the user’s intent
should they want more control.

3.2 EDD User Study
A user study was conducted in order to determine the rele-
vance of the mixed-initiative component as well as discover
useful features for future iterations of the software [3]. The
study had five people from the game development industry
test the software in order to determine the effectiveness of
the MIPCG component. They each designed three increas-
ingly difficult 11×11 rooms that would be a part of the same
dungeon level. Their levels were saved for analysis upon
completion and participants took part in a structured inter-
view.

Users generally believed EDD to be an interesting and use-
ful tool for dungeon design, with only one of the five saying
otherwise. Four out of five of them also considered EDD’s
pattern detection important, with the dead end detection
capabilities being deemed especially so. There was friction
however, where one participant attempted to design their
level without adhering to the established design patterns
and consequently the tool failed to recognize it. A similar
complaint was voiced by two of the participants who wished
to be able to modify existing design patterns, or even cre-
ate entirely new ones. Four of the participants wished for
a graph-like view of all the designed rooms in a dungeon
to more easily parse how rooms are connected as a whole.

These findings suggest that while users find value in EDD’s
ability to save time by generating levels as an editing base,
they desire more control over the design process even if it
potentially hinders the generation of novel content.

3.3 EDD Improvements
A new iteration of EDD [1] was created in response to the
findings from the aforementioned user study with the fol-
lowing improvements:

• Users can now create and edit a grid-based dungeon of
varying dimensions with interconnected rooms where
they previously could only edit a single room.

• Users receive more information about consequences
of their alterations to individual rooms as well as the
differences between the current room and the sugges-
tions proposed by the algorithm.

• Navigation tools were addedwithin and between views
to provide an overview of the dungeon and provide
better context of the edited room.

• The algorithm was updated to better allow the preser-
vation of a designer’s aesthetic by implementing locked
sections of rooms and by extending the evaluation
function to include measurements of symmetry and
similarity in provided suggestions.

3.4 Follow-up User Study
A follow-up user study with five participants from the games
industry was conducted to assess how the improvements
affected the user experience while collaborating with the
tool. This study had users view a brief demonstration of
EDD to showcase its workflow during the creation of a 3 × 3
dungeon. The researchers then gave them ten minutes to
create their own 3 × 3 dungeon. Their work was saved for
later analysis and users went through a structured inter-
view upon completion of the task. A questionnaire about
their background in game design, dungeon-based games,
and previous experience with mixed-initiative tools was also
administered.

3.5 Study Findings
The researchers found their main goal of establishing a
mixed-initiative interaction with flexible human and com-
puter design roles was only partially achieved. They found
that the room suggestions and whole dungeon navigation
definitely supported user decision making during the design
process, and while the users didn’t feel restricted by the
system, they still expressed a desire for more control over
the EDD when designing their levels. Other user concerns
included unclear design pattern visualization, a lack of use-
fulness for the world view, and doubts about the accuracy
and sufficiency of information provided about generated
room suggestions. In spite of these concerns however all five
participants in the study found the new version of EDD to be
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overall good and intuitive, and believed the generated map
suggestions for each room to be the most helpful to their
design process.

4 Morai Maker
Morai maker is another mixed-initiative level creation tool
wherein a person works collaboratively alongside an AI
agent to build Super Mario Bros.-like platformer levels [4].
This tool was used in a pair of studies to first investigate the
development needs of the tool, and then later explore the
ways that the tool impacted the behavior of practicing game
designers.

4.1 Morai Maker Implementation
Morai Maker works with a user to create two dimensional
platformer levels using three different AI partners: Markov
Chain, Bayes Net, and a Long Term Short Term Memory
Recurrent Network (LSTM), whose lower-level function de-
tails are outside the scope of this paper. Differences on their
function within the context of Morai Maker are relatively
simple however. The Markov Chain only looked at a 2x2 grid
of level content, the Bayes Net examined a width of 16 grid
points, and LSTM considered almost the whole level [4].

4.2 User Workflow
User interaction with the software takes place within the
level editor interface (see Figure 6). Users can select blocks
and place them within the level. They can place as many
blocks as they like, and when they are satisfied with their
changes they can press the ’End Turn’ button to prompt AI
level additions. The AI were not allowed to do anything other
than add components to the level. These additions are added
piece by piece to the current level and the camera scrolls to
where the changes are taking place. All changes to the level
are logged and tagged as either being created by the human
or AI partner. The user is then able to resume editing the
level, and the process can be repeated for as long as needed.
Users can also test their levels by pushing the ’Run’ button
at any time.

4.3 Study 1: Investigating Design Considerations
Guzdial et al’s initial study was run to derive design lessons
about the interface as well as the AI system. They were
interested in what impact the choice of AI algorithm would
be on the user experience as well as getting feedback on
their UI’s usability. The study included 91 participants that
took part, but only 84 followed the study guidelines correctly
and interacted with their AI partner. Their age range was
skewed younger, with 64 participants being in the 18-22
age range, 19 in the 23-33 range, and only one in the 34-
55 range. While they were not game developers as in the
previous studies, the vast majority of them had played Super
Mario games before, with only seven of them having never

Figure 6. Screenshot of Morai Maker level editor [4]

been exposed to them before. Participants were given a short
tutorial on the level editor and its function, and were allowed
to view two examples of two level types from the original
Super Mario Bros. Then they worked with two randomly
assigned AI partners back to back to design two different
levels. Participants were tasked with designing either an
above ground or below ground level for each design session,
where each session was capped at fifteen minutes. They were
required to interact with their AI partner by pressing the
’End Turn’ button at least once for each design session. They
were then given a survey with questions about which of the
two agents were preferred in terms of most fun, frustrating,
challenging, helpful, which lead to the most surprising and
valuable ideas, and which they would most want to use again.

4.4 Results
The results were split into three conditions based on the
pair of AI partners interacted with. Each pair of partners
was then ranked based on experiential features such as most
fun, creative, etc. Ranking of these partners by experiential
features was inconsistent, suggesting that none of the indi-
vidual AI agents are significantly better creative partners and
that it was simply a matter of individual preference (see [4]
for more detailed information). Their rankings for most sur-
prising and valuable partner highlight these inconsistencies
as Bayes was ranked higher than LSTM, Markov higher than
Bayes, but comparing Markov to LSTM found no significant
relationship. The researcher’s key takeaways are as follows:

• No single partner could meet all of the users’ different
expectations.

• Participants consistently created levels that were sig-
nificantly different from traditional Super Mario Bros
level structures.

• Participants didn’t understand how their AI partners
worked, but were willing to invent explanations for
their behaviors.
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4.5 Study 2: Morai Maker’s Impact on User Process
A second study was run using an updated version of Morai
maker that took into account the user feedback from the first
study. This study targeted practicing, published game design-
ers and sought to answer three different research questions:

• Does leveraging active learning to adapt the AI partner
to a user allow a tool to better serve level designer
needs?

• Can Explainable AI allow users a better understanding
of the AI, and thus allow greater utilization of the tool?

• Will the overall changes lead to beneficial experiences
for the designers?

The updated version ofMoraiMaker had a few core changes
made. In response to the lack of user satisfaction with any
of their prior algorithms, Guzdial et al. swapped to a more
co-creative model of their system. In this version, they used
a semi-Markov Decision Process with a three layer Con-
volutional Neural Network (CNN) as their AI agent that
was trained on interactions of the 91 participants using the
"Reuse" ranking (1 or -1) for the final reward. While the finer
details of its function are beyond the scope of this paper, a
CNN was chosen because it tends to focus on small, local
features that are helpful in making global decisions, which
seemed most promising based off of user feedback from the
prior study. They also included a small negative reward if a
human deleted an AI addition and a small positive reward
if a human kept the changes in order to better adjust the
agent to a user’s preferences. These rewards were local to
an addition’s placement, so deletion of a particular tile type
didn’t mean that tiles of that type would be deleted outside
of that part of the level. These changes effectively created a
tool capable of adapting to user preferences during use by
picking up on a user’s local level structures.
This new study gave 14 game designers a full run-down

of the tool and provided them time to ask any questions
they had to study personnel. This included explanations of
the AI. Participants again designed two levels using the tool,
but this time they interacted with a single agent that was
not reset between levels. They were tasked with creating
either an above or below ground level each time. Participants
were encouraged to voice their thoughts during the design
process and asked the following questions at the session’s
conclusion:

• Did you prefer the AI behavior in the first or second
session?

• Would you prefer this tool with or without the AI
partner?

• Did you feel the agent was collaborating with you?
• Did you feel the agent was adapting to you?
• If you asked for explanations, did you find that they
improved your experience?

Figure 7. User responses to survey questions on AI collabo-
ration experience [4]

4.6 Results
Participant responses to the survey can be seen in Figure 7.
While people tended to rate working with the more adapted
AI more highly in terms of experiential ratings, it seems as
though collaboration and adaptation rankings suffered. Qual-
itative answers to the aforementioned research questions
were also gleaned from user remarks during their sessions.
They found that the AI consistently adapted to the partici-
pants, and that people generally found the tool valuable in
the design experience by providing inspiration for design
ideas either unintentionally or not. Those who didn’t find
consistent value in the tool often complained about the seem-
ing randomness of the AI decisions. The researchers did not
find a meaningful answer to their question regarding the
usefulness of an Explainable AI.

5 Conclusions and Future Work
With video games becoming increasingly popular and often
more complex, the demand for tools to ease the development
process will likely only increase going forward. In this paper
we review a number of different approaches to these sorts
of tools and find that an MIPCG approach has been viewed
positively by a handful of game designers, and that MIPCG
has the potential to alleviate some of the game development
burden by generating content automatically.
In general, it appears as though MICPG has been well-

received. Most users enjoyed mixed-initiative design efforts
and found particular value in MIPCG tools as sources of
inspiration. This is evidenced by positive user responses to
EDD’s generated map suggestions and user comments on
Morai Maker as a useful source of inspiration for when they
ran out of ideas. While these findings do highlight potential
benefits of MIPCG, studies investigating user opinion on
their value are quite rare and tend to have small sample sizes.
Further research should consider running larger user studies
to better understand how users would most benefit from
collaboration with PCG tools.
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