International” license.

This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0 @ @ @ @

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Thomas J. Dahlgren

Detecting Anti-Patterns to Improve Continuous
Integration

Thomas J. Dahlgren
dahlg136@morris.umn.edu
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA

Abstract

Continuous Integration (CI) is a popular software engineer-
ing technique. It is where code changes from multiple de-
velopers are integrated into one central repository that runs
“builds” and “tests” on the code. The advantage of this pro-
cess is that differences in code and errors are found early
in the development process and allow for faster releases of
software. During this process there are multiple practices
that can slowly remove the advantage of CI. These ill prac-
tices are called anti-patterns. These anti-patterns can be hard
to spot by a team before they start to noticeably affect the
project. Using tools to automatically detect these patterns
for a team can help fix this problem. This paper discusses the
use of two such tools to detect anti-patterns during the de-
velopment process and in the configuration files of projects.
These tools were able to successfully detect anti-patterns in
open source CI projects and submit pull requests for those
projects to get developer feedback. Developers responded in
a positive way to having an overhead detection system for
anti-patterns.

Keywords: anti-patterns, continuous integration, CI, soft-
ware engineering

1 Introduction

Continuous integration (CI) is a software development pro-
cess where developers integrate their code changes into a
main code base that runs automated builds and tests. During
this process there are many problematic practices a team of
developers might follow that will take the benefits of using
continuous integration away. These are called anti-patterns.
There are tools being made now to detect anti-patterns auto-
matically and alert teams to them so they can be fixed. One
of the tools is CI-Odor and it detects anti-patterns in the
process of merging branches, the skipping of failing tests,
and the slowing of build times. Two other tools, Hansel and
Gretel, detect anti-patterns in the configuration file for CI
projects, and attempt to automatically remove them.

In this paper Section 2 will introduce the background
needed to understand GitHub, Continuous Integration, and
anti-patterns. Section 3 discusses the use of CI-Odor to detect
anti-patterns in the software development process. A sur-
vey was sent out to developers to decide what anti-patterns
they found prevalent in their projects and which ones should

Your Work

Main

Figure 1. An example of merging branches into main. [1]

be detected. The paper then goes over the accuracy of CI-
Odor and how developers responded to getting feedback
about the anti-patterns in their projects. Section 4 will intro-
duce the tools Hansel and Gretel which detect and remove
anti-patterns in the configuration files of a CI project. It
also covers the prevalence of these patterns in CI projects
and how developers respond to them. The fifth section is a
discussion of the two tool sets and their effectiveness with
developers.

2 Background
2.1 GitHub

GitHub is an internet hosting service for software projects
that uses Git for version control. Git allows for the creation
of branches which allow a developer to duplicate part of
the source code of a project so they can make changes to it
without directly affecting the main code base. Uploading new
code to GitHub is known as pushing a commit. A commit is
when you save your current work so it can be pushed onto
GitHub. Once the developer has finished writing their code
they can push it to GitHub and make a pull request to merge
it back into the main code (see Figure 1). A pull request is
when you start the process of putting your new code into the
main code base. Merging is the new code becoming the main
source code after a pull request is accepted. Everything that
is put on GitHub is saved so any changes can be reverted if
the changes were to break the project or an older version of
the project is deemed better than the current version.

Detecting Anti-Patterns to Improve Continuous Integration

before_install:
- sudo apt-get update -qq

install:
- wget https://bit.1ly/hj67 -0 /tmp/casper.tar.gz
- tar -xvf /tmp/casper.tar.gz
- bower install

Figure 2. Example of configuration file commands for the
“before install” phase and the “install” phase. [2]

2.2 Continuous Integration

Continuous integration is the practice of integrating the code
of multiple people into one main branch frequently (often
multiple times a day). The other way of developing code
would be to merge everyone’s code into the main code branch
when a team is ready to release their software. CI is used to
improve the time it takes to integrate all of a team’s code
together, and issues the team has with each other’s code can
be found earlier in production. CI projects are usually hosted
on services like GitHub. With CI, when code is pushed to a
branch there ia a set of builds and tests that are automatically
run to ensure the project compiles with these changes and
still has the desired functionality, as determined by the tests.
Common services that run these builds and tests would be
GitHub Actions and Travis CL Should the tests pass and the
builds succeed then the developers of the project know the
new code didn’t “break” anything they tested for and can
keep adding to the project. After every build a build log is
made that has the results of how the build worked out and
how all the tests did. The goal of CI is to commit often and
merge branches into main frequently so that conflicts in the
code can be found by the team early.

2.3 Configuration Files

A configuration file uses commands to determine what order
the builds and tests should be run on a cloud platform (see
Figure 2). In the configuration file there are phases that have
certain commands that need to be run under them for exam-
ple “install” commands go under the “install” phase. Other
phases would be the “script” phase and the “deploy” phase.
This file needs to be maintained by the team and changed
to fit the project’s needs as it evolves. There are features
that the configuration file can use or misuse. For example
it can specify branches that should be built when commits
are made to that branch or it could have a command that
introduces a security issue into the project.

2.4 Anti-Patterns in Continuous Integration

Anti-patterns are responses to a problem that are ineffective
or counterproductive. Something is also an anti-pattern if
there is a documented solution to a problem that proves the
anti-pattern is not effective. Since anti-patterns may seem

/" Uptrend: Over the last 90 days, your build duration increased by 51.4%.
Average build duration for master branch
1000

800 -

600

400
200
0

Avg. build duration [s]

8-05-14
8-05-21
8-05-28
8-06-04
8-06-11
8-06-18
8-06-25
8-07-02
8-07-09
8-07-16
8-07-23
8-07-30
8-08-06
8-08-13

20
20
20
20
20
20
2018
20
20
20
20
20

2018-08-
20

Week (starting date)

Figure 3. Example of slow build times. [3]

like they work or are effective it is hard for developers to
know if anti-patterns are in their projects [4]. They can also
show up in a project if a team is facing a deadline and needs to
quickly get their software released or if upper management is
putting pressure on the team to ignore certain CI principles.

3 CI-Odor

CI-Odor is a tool that was created to test if the detection
of anti-patterns was useful to developers who are currently
using CL It goes through the GitHub history and build logs of
GitHub repositories and automatically detects anti-patterns
that have entered a project. In order to decide what anti-
patterns would be detected, a survey was publicly advertised
in newsletters and public forums. The survey used Likert
Scales “on a scale of 1 to 5 how strongly do you agree” and
open questions to see what developers would find useful
during their CI process. Four main anti-patterns came up
from the survey: increasingly slow build times, skipped failed
tests, late merging of branches into main, and broken release
branches. [3]

3.1 Methods For Each Anti-Pattern

3.1.1 Increasingly Slow Build Times. Slow build times
increase the amount of time it takes developers to get feed-
back on the build. This will slow down the project over time
as developers wait for the build to run. To detect increasingly
slow build times, the build times need to be monitored over
time. Previous build logs will be in the history of the reposi-
tory, so CI-Odor can be applied to projects that didn’t use
CI-Odor from their inception. The report of this anti-pattern
is a bar graph that has a line through it (see Figure 3). A
medium severity warning is given to builds that are slower
than 75% of previous builds. A high severity warning is given
to builds that are clear outliers of all the observed build times.

3.1.2 Broken Release Branches. When a release branch
is broken it means the developers can’t get feedback on the
newly added features of that release. They have to put more
time into fixing it that could have gone towards planning

GI*D In your project, branches are typically synced with master every 2.8 days.
However, branch featureX was last synced with master on Nov 23, 10:25 and
branch master has commits that are 19 days newer than that.

Your latest commits were performed on branch featureX. While you
typically merge branches within 1.8 days in your project, branch featureY was
last changed 3.7 days ago and has not been merged into featureX yet.

G In your project, branches typically do not run in parallel for more than 2.6
weeks. However, work on branch featureX started 5.1 weeks ago and the
branch has not been synchronized with its parent since.

m Your feature branches are typically open for 2.3 weeks, however, you
have been working on featureX for 7.3 weeks now.

Tip: Make sure that you do not forget to sync these branches from time to time.
Tip: Frequently synchronized branches are easier to integrate.

Tip: Break features into smaller tasks to finish them faster.

Figure 4. Example of a late branch merging report. [3]

the next set of features. The status of each build in the main
branch is kept in the git history. This makes it easy for CI-
Odor to find how many failed builds there have been and
how long it took for each failed build to be repaired. CI-Odor
uses this data to give a report to the team about trends in the
build times. The report includes the average time it takes for
the branch to be fixed, a bar chart of the amount of broken
builds that happened each week, and a message about the
trend in broken main branches (e.g., “The main branch was
broken 90% less than usual over the last 90 days”).

3.1.3 Skipped Failed Tests. Skipping a failing test will
stop a build from failing, but it also decreases the security
that the testing framework of CI provides. To detect how
many failed tests are skipped CI-Odor uses this equation:

(ABreaks < 0) A (ARuns < 0V ASkipped > 0)

Here ABreaks represents the change in build breaks, ARuns
is the change in number of tests run, and ASkipped is how
many skipped tests have been added to the build. If the
Boolean test is true, then skipped tests have been added to
the main branch of the project.

3.1.4 Late Merging of Branches. Branches that go a long
time without being merged with main become increasingly
hard to integrate into main. If the non-main branches deviate
greatly from each other, then merging them all into main at
the same time will also cause merge conflicts that slow down
the development process. To detect branches that need to be
merged with main it needs to detect: missed activity, branch
deviation, branch activity, and branch age. Missed activity
is how long a branch goes without the main branch being
merged into it. Branch deviation is how different the branch
is from other branches in the repository. Branch age keeps
track of how long it’s been since a branch was created. To
determine a severity warning CI-Odor compares the values
of the four metrics with the values that the other branches
in the project have had over the course of the project (see
Figure 4 for an example of a report on late branch merging).

Thomas J. Dahlgren

3.2 CI-Odor Results

Once CI-Odor was configured to detect these patterns it was
tested on public GitHub repositories. The first few projects
were selected by the CI-Odor team so that they could guaran-
tee feedback. A search for other projects that fit the criteria
of using Java and Maven (for detecting skipped tests), using
CL being an active project, having build files, and having
a team of at least five people was done to find other suit-
able candidates. Thirty-six projects were chosen that fit all
the criteria. Of the 36 projects, 20 of them showed they had
increasing build times. While we expect the build time to
increase with the project size, some projects showed a wor-
risome amount of increase. 3% of the projects were flagged
with a high-severity warning based on their increasingly
slow build times. Broken release branches were detected in
all of the projects. CI-Odor found the average time it took for
the break to be fixed was around 1 day. Builds with skipped
tests were rare among the tested projects. Only about 2.5%
of builds were flagged with this anti-pattern showing devel-
opers don’t normally skip failing tests between builds. All
of the projects except one had late merging of branches into
main with 115 high severity warnings being flagged across
the 35 projects. [3]

3.3 Developer Feedback

After CI-Odor was run on the 36 projects a second survey was
given to the developers who got to see CI-Odor feedback
on their own projects. The second survey was composed
of Likert scale questions in the same way as the first one,
now asking about the usefulness of CI-Odor’s generated
reports. Around two-thirds of the developers who answered
the questionnaire found the reports to be useful to the project.
The ones who didn’t like the reports didn’t like how CI-
Odor wasn’t specific enough for their project or didn’t like
bugs that appeared in CI-Odor. A majority did agree that
the detection of anti-patterns was useful since they brought
awareness of the issue to the team.

Most of the developers said they found it easy to fix late
merging and skipped failed tests, but increasing build times
were harder for them to do anything about. Only about 25%
of developers thought CI-Odor should have the ability to
fail builds for having too many high severity anti-patterns.
Most developers would rather it just report on issues in the
project without doing anything else. 67.4% of the developers
see CI-Odor leaving a positive effect on their project and
54.7% would integrate it into their projects immediately as it
is.

4 Anti-patterns in project configuration
files
The other approach to finding anti-patterns is to find them

in the configuration files of a project. These anti-patterns
are usually mistakes made with the configuration file for

Detecting Anti-Patterns to Improve Continuous Integration

Phase Functionality Command
Install Install dependencies npm install, apt-get install, bower install, jspm, tsd
Script Testing npm test, mocha, jasmine-node, karma, selenium
Run Interpreter/Framework node, meteor, jekyll, cordova, ionic
Static Analysis codeclimate, istanbul, codecov, coveralls, jscover, audit-package
Deploy Deploying by script sh .*deploy.*.sh

Figure 5. Examples of phases and the commands that go with them.

a CI project, and can be detected by the tool Hansel and
removed by the tool Gretel. The anti-patterns that were de-
cided for Hansel and Gretel to detect were redirecting scripts
into interpreters, bypassing security checks, using irrelevant
properties, and commands unrelated to the phase. Hansel
uses YAML and BASHLEX parses to find anti-patterns in the
configuration files of a project, specifically the .travis.yml
files. Gretel then uses RUAMEL.YAML to remove the anti-
patterns. [2]

4.1 Methods For Each Anti-Pattern

4.1.1 Redirection of Scripts into Interpreters. Redi-
recting scripts into the interpreter with a hard-coded URL is
prone to security issues, and a network failure while down-
loading the script could result in a partially installed script.
To detect the redirection of scripts into interpreters Hansel
parses the configuration file to find commands that use pipes.
If there is a command to download and then use a script it is
an anti-pattern. To fix this anti-pattern the integrity of the
script needs to be checked once downloaded or the script
should be downloaded once and committed to the project.
Since these solutions are outside of the scope of a .travis.yml
file, Gretel cannot fix this anti-pattern. It has to be done by
the team of the project.

4.1.2 Bypassing Security Checks. Configuration files
can use SSH to connect to hosts remotely and download
files or run code. Using it insecurely can lead to man-in-
the-middle attacks. These are attacks where something pre-
tends to be the host you’re trying to connect to. To find
a bypass of a security check anti-pattern Hansel looks for
an ssh_known_hosts property in the add-ons section, the
command StrictHostKeyChecking = no, or the command
User-KnownHostsFile = /dev/null. These introduce se-
curity issues because they bypass the checks of ensuring
the correct host is connected to. The only way to fix this
anti-pattern is to have Gretel remove them from the configu-
ration file when found. Then a known_hosts resource needs
to be added to the project by the team so they aren’t using
any host that isn’t known to the project. And finally the
argument -0 UserKnownHostsFile = known_hosts needs
to be used whenever SSH is used in the configuration file.

4.1.3 Using Irrelevant Properties. Travis CI configura-
tion files can contain properties that aren’t supported by
Travis CL Users could have accidentally added these to their
configuration files or have properties no longer supported by
Travis CI left over in the project. Since Travis CI only gives
a warning for these properties a developer might not see it,
specifically if the build is successful, so detecting irrelevant
properties can help bring awareness to the team. Irrelevant
properties are parsed by Hansel and flagged as anti-patterns
if they are in the wrong section of the configuration file
or unrecognized. Gretel will remove properties that aren’t
mapped correctly and move their commands under the cor-
rect property. If a property is a slightly misspelled property
for example, “before_srcipt”, then Gretel will correct the
spelling (before_script). If it doesn’t recognize a property as
a known one it will set a warning that the property is not
used by Travis CI at run time.

4.14 Commands Unrelated to the Phase. Putting com-
mands into an unrelated phase can cause maintenance prob-
lems. On top of that commonly used phases having different
purposes than what is expected of them can make it hard
for a developer to join the team since they won’t be able to
easily understand the behavior of that phase (see Figure 5
for common commands in phases). Travis CI also has op-
timizations to speed up phases that it can’t use if a phase
is not used correctly. Since different projects use different
programming languages, Hansel needs to be configured dif-
ferently to detect commands that weren’t related to a phase
for each framework. The researchers decided to configure it
for Node.js since they found it to be the most popular lan-
guage that uses Travis CI. For example Hansel would detect
npm install commands outside of the install phase. Gretel
will remove them from the phase they are not associated
with and then add them to the end of the phase they should
be in. If the phase is not defined in the configuration files
then the phase will be added to the file.

4.2 Effectiveness of Hansel

Out of 9,312 tested projects 894 had at least one of the anti-
patterns. To test the accuracy of Hansel the developers man-
ually found anti-patterns in 100 of the projects that had
anti-patterns and found that Hansel detected 82.76% of the
anti-patterns in those projects. Specifically they found 29

anti-patterns in the 100 projects and Hansel detected 24 of
them. 3 of the missed anti-patterns were the redirection of
scripts into interpreters where the script was instead piped
to an extractor after download. Since the script isn’t exe-
cuted it could be dropped from the requirements of Hansel
giving it an accuracy of 93.10%. The 2 other misses were
because Hansel wasn’t configured to detect a command that
belonged in the install phase for PHP code.

Since most of the instances of redirecting scripts into in-
terpreters involved the METEOR web framework the re-
searchers reached out to ask the framework developers about
it. The METEOR developers said that the community is di-
vided on the security implications of script redirection for
their package and they don’t have another solution for it.
The researchers of Hansel suggest that if needed, download-
ing only over HTTPS, ensuring the script is downloaded
fully, and regularly checking if the script still works after it
is updated are ways to work with needing to redirect scripts.

The second anti-pattern of bypassing security checks was
common. There were 63 detected cases in the 100 projects
and 37 of them were setting StrictHostKeyChecking=no.
18 of them were putting ssh_known_hosts in the add-ons
section of the configuration file to define host names and
IP addresses used during the build process. This makes the
project susceptible to DNS spoofing and other network at-
tacks. The other 8 were the disabling of host key checking
so it would be unknown if the correct host was connected
to.

242 irrelevant properties were detected in the sample
projects. Hansel was able to identify 74 misspelled prop-
erties. These properties are ignored by Travis CI when run.
There were 148 properties that were misplaced. Some of
these misplacements are ignored by Travis-CI just like the
misspelled ones. 15 properties were flagged for being exper-
imental properties. For example using the group property
even though the Travis CI developers advised against using
it at the time of the research since its usage might change
before its official release. Five properties detected were us-
ing old Travis CI properties that may one day no longer be
supported.

The final anti-pattern being detected, using commands
outside of the relevant phase, detected 467 cases of install
phase commands being used outside of the install phase.
Since Travis CI optimizes the install phase the developers
aren’t getting the benefit of faster build times. There were
52 deploy phase commands found in the scripts phase. Since
Travis CI optimizes the deploy phase for bandwidth and the
script phase for CPU performance these benefits are lost to
misplaced commands.

4.3 Effectiveness of Gretel

To test if Gretel could automatically remove anti-patterns,
250 anti-patterns were chosen to be tested. TravisLint was
used on the configuration files before Gretel was run on

Thomas J. Dahlgren

language: node_js language: node_Js

node_js: node_js:
- '0.10" - '0.10"
before_script: install:

- cd frontend

- npm install -g bower
grunt-cli

- npm install

- bower install

script:

- grunt test

— cd frontend

- npm install -g
bower grunt-cli

- npm install

- bower install

script:

- grunt test

Figure 6. Example of where an install command is in the
before phase which is wrong, but can’t be moved automat-
ically because of a “cd” command. On the right is how the
commands should be in the install phase.

them to make sure they were valid. Then the team manu-
ally checked the results of Gretel to make sure the scripts
had the same behavior as before Gretel was run. Of the 250
anti-patterns, 174 could be removed automatically. 69 of the
remaining cases needed to have manual verification to be
removed. 38 of the 69 had state altering commands such as
file system commands, package managers, and environmen-
tal variables. These commands in some cases were related to
commands that Gretel has moved to a different phase of the
configuration file and needed to be moved with them (see
Figure 6 for an example of such a case).

12 were commands that were connected with a double
ampersand (&&) meaning the command after the amper-
sands only runs if the one before was a success. Installation
commands can be removed from these ampersands since if
they fail then the build will fail and alert the team of the
problem. And 29 of them had to do with the ruamel.yaml
framework changing text as it moved it to the correct part of
the configuration file. Errors such as turning the number “.10”
into “.1” and line breaks adding a “\n” to the end of a moved
command were mistakes that Gretel would make when mov-
ing text. The researchers were able to fix these errors that
Gretel had but didn’t test them again on further projects.
Seven of the remaining 69 that couldn’t be removed were
because they used Yarn, a package manager to download
scripts, and Gretel didn’t have support for Yarn yet since
its fixes would require a change they plan on adding in the
future.

4.4 Developer’s reaction

The 174 anti-patterns that could automatically be removed
were submitted as pull requests. 49 of the pull requests got a
response from the developers and 36 of them were accepted
into the projects at the time of the paper’s release. Two of
the rejections were from pull requests that were made made
on branches that had broken builds so new pull requests
weren’t being accepted. Another 2 were rejected since the
developers didn’t like how new commands were added to the
project. The commands were added to the configuration file

Detecting Anti-Patterns to Improve Continuous Integration

to preserve the behavior the file had before moving the com-
mands to the right phase. Two other requests were rejected
since the projects were no longer maintained. One developer
rejected a pull request because of Travis CI documentation
that showed an install command in the before_script phase.
The researchers reached out to Travis CI and they told the
researchers that the documentation did need to be updated
to move the commands into the install phase. The remaining
6 rejections didn’t receive any feedback from the developers.

5 Discussion

Both the CI-Odor and Hansel and Gretel researchers saw
positive results with detecting anti-patterns that hindered
the CI process. The tools that they used were able to auto-
matically identify anti-patterns accurately. Developers on
real CI projects were surveyed and actual changes were sug-
gested and accepted into the projects they work on. It was
also learned that CI-Odor was found not only useful for de-
tecting anti-patterns, but useful for teaching someone about
the CI process. Both of the research teams agree that more
projects should be sampled with their tools. They both only
covered one programming language (CI-Odor was used on
Java projects and Hansel and Gretel were used on Node.js
projects) so a wider variety of languages should be examined.
The anti-pattern of putting commands into the wrong phase
that Hansel detected could lead to slower build times due
to not being optimized on CI project building software. On
the other hand increasingly slow build times was one of the
anti-patterns that CI-Odor could detect, and the developers
didn’t know how to go about fixing it. So Hansel could help
fix 2 anti-patterns in one if the misuse of commands is one
of the causes of increasingly slow build times.

6 Conclusion

Continuous integration is a very useful tool for software
engineering. It gives teams that use it many benefits for a
fast development cycle. Anti-patterns take away some of
these benefits. This paper has covered two categories of
those anti-patterns: ones in the process of CI and ones in the
configuration files. The first study with CI-Odor confirmed
with developers that they would like certain anti-patterns in
their development process to be detected. It also confirmed
that they could be detected and that all projects they tested
with it had at least one anti-pattern in them. The second
study looked at the anti-patterns in the configuration files
of CI projects. It showed that around 9.6% of projects have
anti-patterns in their configuration files. These anti-patterns
decrease the security of the projects and can slow down the
CI process. The researchers were also able to confirm that
the anti-patterns could be automatically removed making it
easy for teams to fix.

The studies in this paper were initial looks into the process
of detecting anti-patterns. Future work towards detecting

more anti-patterns and detecting them with more techniques
than just the build logs and configuration files could further
help teams with CI. More programming languages will also
need to be supported so more developers can benefit from
the use of anti-pattern detection tools. Making tools that
can adapt to specific project workflows will allow teams
to integrate the tools into their projects without having to
change how they choose to practice CI.

Acknowledgments

I would like to thank my advisor Kristin Lamberty and in-
structor Elena Machkasova for helping provide feedback and
support on my paper. I would also like to thank John Hoff
for providing external feedback on my paper.

References

[1] 2021. Git Branches: List, Create, Switch to, Merge, Push, Delete. https:
//www.nobledesktop.com/learn/git/git-branches [Online; accessed
May 25, 2022].

[2] Keheliya Gallaba and Shane McIntosh. 2020. Use and Misuse of Continu-
ous Integration Features: An Empirical Study of Projects That (Mis)Use
Travis CL. IEEE Transactions on Software Engineering 46, 1 (2020), 33-50.
https://doi.org/10.1109/TSE.2018.2838131

[3] Carmine Vassallo, Sebastian Proksch, Harald C. Gall, and Massimiliano
Di Penta. 2019. Automated Reporting of Anti-Patterns and Decay in
Continuous Integration. In Proceedings of the 41st International Confer-
ence on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19).
IEEE Press, 105-115. https://doi.org/10.1109/ICSE.2019.00028

[4] Wikipedia. 2022. Anti-pattern — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Anti-pattern&oldid=
1078641245. [Online; accessed 25-March-2022].

https://www.nobledesktop.com/learn/git/git-branches
https://www.nobledesktop.com/learn/git/git-branches
https://doi.org/10.1109/TSE.2018.2838131
https://doi.org/10.1109/ICSE.2019.00028
http://en.wikipedia.org/w/index.php?title=Anti-pattern&oldid=1078641245
http://en.wikipedia.org/w/index.php?title=Anti-pattern&oldid=1078641245

	Abstract
	1 Introduction
	2 Background
	2.1 GitHub
	2.2 Continuous Integration
	2.3 Configuration Files
	2.4 Anti-Patterns in Continuous Integration

	3 CI-Odor
	3.1 Methods For Each Anti-Pattern
	3.2 CI-Odor Results
	3.3 Developer Feedback

	4 Anti-patterns in project configuration files
	4.1 Methods For Each Anti-Pattern
	4.2 Effectiveness of Hansel
	4.3 Effectiveness of Gretel
	4.4 Developer's reaction

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

