
Detecting 
Anti-Patterns of 
Continuous 
Integration
Thomas Dahlgren
University of Minnesota Morris



Introduction

● Continuous integration (CI) is a way of developing software
○ Small changes integrate faster

○ Improves feedback

○ Improves development time

● Anti-patterns take away the advantages
○ Can slowly enter a project

○ Might not know about them

○ Appear in all parts of a project

● Can we detect them?

2



Outline

● Introduction

● Background

○ Github and version control

○ Continuous Integration (CI)

○ Anti-patterns and CI

● Detection of anti-patterns with CI-Odor and developer’s feedback

● Detection of anti-patterns with Hansel and Gretel and developer’s feedback

● Conclusion

3



Background: GitHub

● Developers can store their code

● Branches are used for teams to integrate their code

● Keeps everything stored

4

https://www.nobledesktop.com/blog/what-is-git-and-wh
y-should-you-use-it

https://www.nobledesktop.com/blog/what-is-git-and-why-should-you-use-it
https://www.nobledesktop.com/blog/what-is-git-and-why-should-you-use-it


Background: Continuous Integration

● Continually integrate code into main

● Run builds and tests

○ A build is runnable code

○ Tests are made by the team for the code

● Repeat

● Release

5

https://www.pagerduty.com/resources/learn/what-is-con
tinuous-integration/

https://www.pagerduty.com/resources/learn/what-is-continuous-integration/
https://www.pagerduty.com/resources/learn/what-is-continuous-integration/


Background: CI configuration Files

● Used to build the project on the cloud (Travis CI, 

GitHub actions)

● Includes the build order of jobs

● Specifies the tools needed to build

● Is updated with the project as it grows

6

Source:  Gallaba (2020)



Background: Anti-Patterns

● Appear to be good or neutral, but are bad

● Slowly enter a project

● Hard for developers to see

7



Outline

● Introduction

● Background

○ Github and version control

○ Continuous Integration (CI)

○ Anti-patterns and CI

● Detection of anti-patterns with CI-Odor and developer’s feedback

● Detection of anti-patterns with Hansel and Gretel and developer’s feedback

● Conclusion

8



CI-Odor

● CI-Odor detects anti-patterns developers make 

during the development process

● Name similar to “code smells”

● Detects four anti-patterns

● Builds a report for the developers

9

Source:  Vassallo (2019)



CI-Odor: Deciding on Anti-Patterns 

● Collected a list of anti-patterns from Paul Duvall

● Put out a survey that 144 developers responded to

● Decided on the 4 anti-patterns

10



CI-Odor: What Are the Anti-Patterns?

● Increasing build times

○ Slows feedback to the team

● Late branch merging

○ Makes integrating harder

● Skipped failed tests

○ Removes safety of tests

● Broken release branches

○ Slows feedback on new feature

11



CI-Odor: Detection

● CI-Odor uses build logs in the projects history for 

finding the anti-patterns

○ Slow build times, broken release branch, and skipped 

failed tests

● Late branch merging looks at the activity on the 

branches

● Slow build times and late merging of branches 

were given severity warnings

12

Source:  Vassallo (2019)



CI-Odor: Finding Projects

● Searched for projects that were active

○ Needed to use CI

○ Java and Maven

○ 5 members

○ Communication channel

● Got 36 projects that fit the criteria

13



CI-Odor: Detection

● 8,520 detected incidents 

○ 3,823 high severity

● Slow Build Times

○ 18,474 builds across the projects

○ 20 projects had increasingly slow builds

○ 3% of builds were high severity

● Broken Release Branches

○ 11.51% of release branches were broken

14



CI-Odor: Detection

● Skipped Failed Tests

○ 15 of 36 projects had them

○ In only 56 of the builds

● Late Branch Merging

○ Affected 35 of 36 projects

○ Median of 2 for each

○ 115 high severity warnings

15



CI-Odor: Developer feedback

● Sent out another survey

○ Sent to the teams of the 36 projects

○ Sent out on forums as well

○ Asked about the reports

● Heard back from 13 of the developers from 7 of the 36 projects

○ 8 agreed reports were useful, 3 disagreed, 2 neutral

○ Disagreed over project specifics

○ 5 were made curious

16



CI-Odor: Developer Feedback

● 42 people responded overall (29 general devs) to questions about what they agreed 

with

○ Slow Build: 81.1% 

○ Skip Failed Tests: 84.4%

○ Late Merging: 75%

○ Broken Release Branch: 86.4%

● Should CI-Odor break the build?

○ No, 59.6% disagree for slow builds

○ 65.9% disagree for late merges

17



Outline

● Introduction

● Background

○ Github and version control

○ Continuous Integration (CI)

○ Anti-patterns and CI

● Detection of anti-patterns with CI-Odor and developer’s feedback

● Detection of anti-patterns with Hansel and Gretel and developer’s feedback

● Conclusion

18



Hansel and Gretel

● Two tools to detect anti-patterns in the configuration files of Travis CI projects

○ Hansel detects them

○ Gretel removes them

● Made to determine 3 things:

○ How prevalent are anti-patterns in the configuration files

○ Can they be removed automatically

○ Will developers accept these changes

19



Hansel and Gretel: Which anti-patterns

● The researchers browsed for anti-patterns

○ Looked over official Travis CI documentation

○ Used the TravisLint tool (only detects syntax errors)

○ Looked at community forums

● Decided on 4 anti-patterns

● Using Irrelevant Properties

○ Can be typos or old

○ Travis CI ignores them in runtime

20



Hansel and Gretel: Which anti-patterns 

● Bypassing Security Checks

○ Using SSH insecurely

● Redirecting Scripts into Interpreters

○ Downloading a script from URL

○ Can fail

● Commands Unrelated to the Phase

○ Misplaced commands cause maintenance issues

○ Travis CI optimized for commands under certain 

phases (slower builds)

21

Source:  Gallaba (2020)



Hansel and Gretel: Finding and Removing

● Hansel’s detection

○ Parses the configuration file for anti-patterns

○ Knows which phases have which commands

● Gretel’s removal

○ Deletes the anti-pattern completely

○ Moves the command to where it should be

○ Makes a phase if it doesn’t exist

22



Hansel and Gretel: Finding Projects

● Found 9,312 projects that 

○ Use Travis CI

○ Have at least 500 files

○ Aren’t copies

● Ran Hansel and Gretel on the Projects

○ 894 had an anti-pattern (9.6%)

23



Hansel and Gretel: Detection

● Redirecting Scripts into Interpreters

○ 206 instances

● Bypassing Security Checks

○ 63 instances

● Using Irrelevant Properties

○ 242 insances

● Commands Unrelated to the Phase

○ 519 commands in unrelated phases

24

Source:  Gallaba (2020)



Hansel and Gretel: Detection Rate

● 100 of the 9,312 projects were chosen for manual review

○ The researchers checked them for anti-patterns

○ Hansel detected 24 of the 29 anti-patterns (82.76%)

○ 3 of them were edge cases for script redirection

○ 2 were missed bindings (composer tool also goes to install phase)

25



Hansel and Gretel: Removal

● Selected 250 anti-patterns from the original projects

○ Chose until adding more wouldn’t add anything to the 

test

● Used TravisLint to make sure the configuration files 

were correct

○ Was run before and after using Gretel

● 174 of the 250 were able to be removed 

automatically

○ 69 of the 76 require manual verification

○ The remaining 7 use yarn, which Gretel didn’t support

26

Source:  Gallaba (2020)



Hansel and Gretel: Developer Feedback

● Sent out 174 pull requests with Gretel fixes 

○ 49 received responses, 36 accepted and integrated

● Rejection reasons for the 13

○ 2 rejected for build breaks

○ 2 didn’t want the commands moved

○ 2 were projects no longer developed

○ 1 because developer disagreed

○ 6 received no feedback on rejection

27



Outline

● Introduction

● Background

○ Github and version control

○ Continuous Integration (CI)

○ Anti-patterns and CI

● Detection of anti-patterns with CI-Odor and developer’s feedback

● Detection of anti-patterns with Hansel and Gretel and developer’s feedback

● Conclusion

28



Conclusion

● Have gone over the use of anti-pattern detection tools

● The two discussed found different anti-patterns

○ Observation: one anti-pattern could lead to another

● Developers liked being alerted to anti-patterns

● Developers accepted the changes suggested from Gretel (73.47%)

● Future work

29



Acknowledgements

Thanks to my advisor Kristin Lamberty for her help during my research process.

30



References

● Keheliya Gallaba and Shane McIntosh. 2020. Use and Misuse of Continuous Integration Features: An 

Empirical Study of Projects That (Mis)Use Travis CI. IEEE Transactions on Software Engineering 46, 1 

(2020), 33–50.

● Carmine Vassallo, Sebastian Proksch, Harald C. Gall, and Massimiliano Di Penta. 2019. Automated 

Reporting of Anti-Patterns and Decay in Continuous Integration. In Proceedings of the 41st 

International Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE 

Press, 105–115.

31



Questions?

32


