Activity Recognition by Using Neural Network in IoT Environment

Machi Iwata

Computer Science Senior Seminar Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota

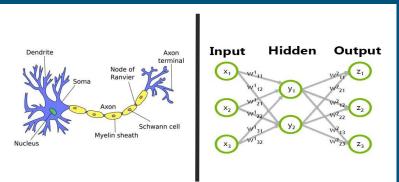
14 April 2022

Introduction

- Internet of Things (IoT) is physical objects that are connected to the internet and collect and transfer data
- Used in many fields
 - Agriculture
 - Healthcare
 - Self-driving car
- Capability of future technological development

Motivation

- Smart home (IoT environment) and sensors collect the data on human activity and assist a user by predicting desired behavior
 - Usual patterns -> configuring IoT environment
 - Unusual patterns -> Reminder
- Goal is to train and analyze the collected data by using neural network and predict desired behavior (Jiho Park et al.)

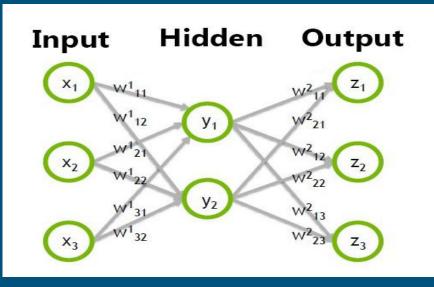


• Background

- Neural Network Overview
 - Feedforward Neural Network (FNN)
 - Recurrent Neural Network (RNN)
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Units (GRU)
- Activity Recognition
- Test and Results
- Conclusion

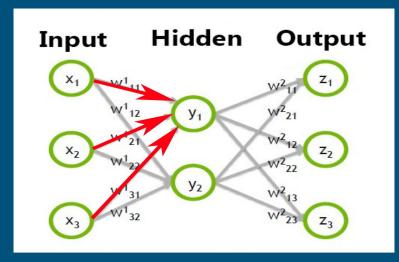
Neural Networks Overview

- Artificial Neural Networks (ANN)
- Inspired by human brain
- Input layer, one or more hidden layers, and an output layer.
- Nodes or neurons
- Weights between layers



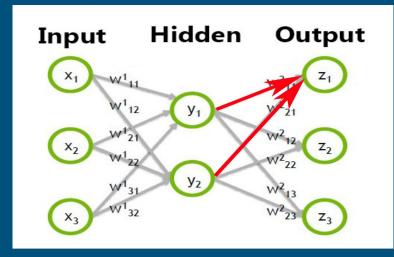
• Background

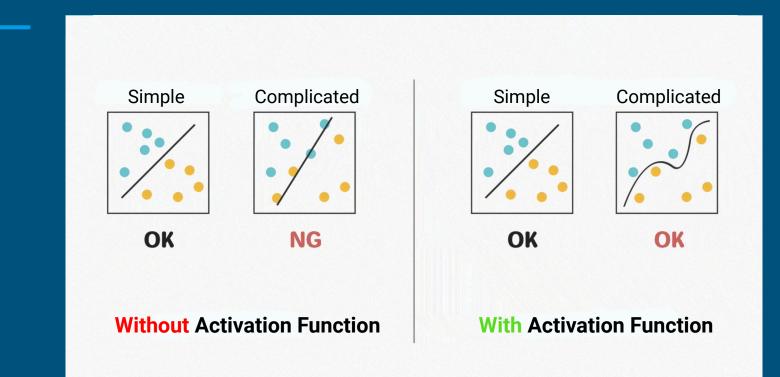
- Neural Network Overview
 - Feedforward Neural Network (FNN)
 - Recurrent Neural Network (RNN)
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Units (GRU)
- Activity Recognition
- Approach
 - Residual-RNN
- Test and Results
- Conclusion


Feedforward Neural Network (FNN)

- Simplest type of ANN
- Connections between the nodes do not form a cycle
 - Only one direction

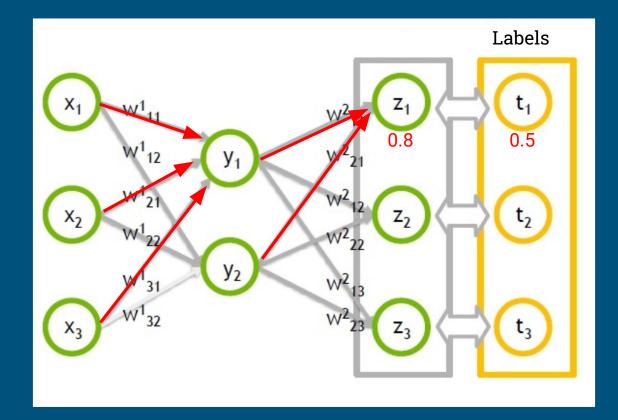
How FNN works


- 1. Multiply by weight
- 2. Sum up all the nodes values from the input layers
- 3. Perform conversion by activation function*


How FNN works

- 1. Multiply by weight
- 2. Sum up all the nodes values from the input layers
- 3. Perform conversion by activation function*

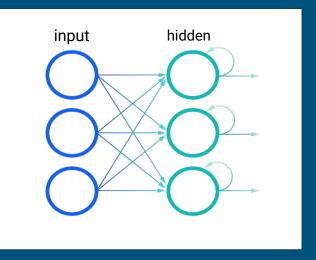
* Non-linear function that determines the output value


Activation Function

Training Neural Network

- Training Neural Network is important for performance with high accuracy
- Supervised learning
 - A neural network is a type of machine learning model
 - Usually used in supervised learning
 - \circ Giving the answer in advance.
 - Need labeled set of data

Neural Network Training



• Background

- Neural Network Overview
 - Feedforward Neural Network (FNN)
 - Recurrent Neural Network (RNN)
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Units (GRU)
- Activity Recognition
- Approach
 - Residual-RNN
- Test and Results
- Conclusion

Recurrent Neural Network (RNN)

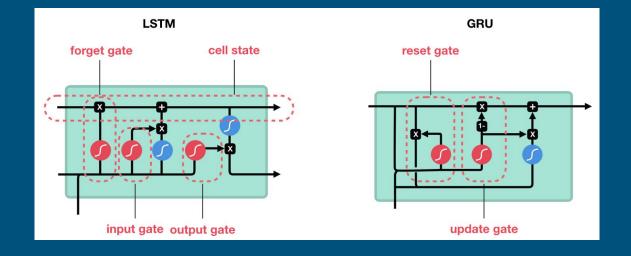
- Class of ANN
- Derived from FNN
- Internal cycle
- Input is sequential
- Use their internal memory
 - Capable of predicting sequential data
 - Suitable for pattern recognition

The Issue of RNN: Short-Term Memory

Cannot carry information when a sequence is long

Solution

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)


• Background

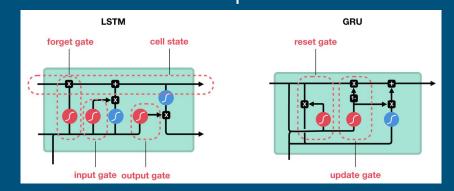
- Neural Network Overview
 - Feedforward Neural Network (FNN)
 - Recurrent Neural Network (RNN)
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Units (GRU)
- Activity Recognition
- Approach
 - Residual-RNN
- Test and Results
- Conclusion

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)

Internal mechanism: Gates (2020)

- Learns which data is important to keep or discard
- Passes relevant information to make prediction

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)


<u>LSTM</u>

• Cell state

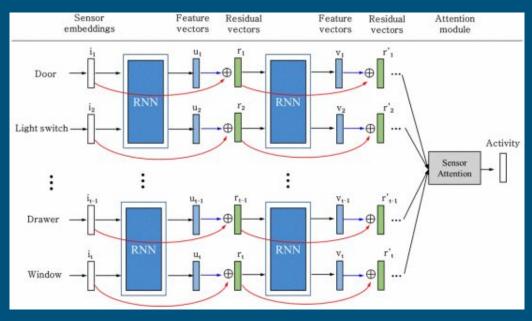
- Various gates that transfer relative information
- Forget Gate
 - Decides what information should be kept or discarded
- Input Gate
 - Updates the cell state
- Output Gate
 - Decides what the next hidden state should be

<u>GRU</u>

- Reset Gate
 - Decides which information should be kept or not
- Update Gate
 - Another gate to decide how much past information to throw away

Background

- Neural Network Overview
 - Feedforward Neural Network (FNN)
 - Recurrent Neural Network (RNN)
 - Long Short-Term Memory (LSTM)


• Activity Recognition

- Approach
- Test and Results
- Conclusion

Activity Recognition: Approach

Residual-RNN

- Sensor embedding
 - Sensor-id
- RNN
 - Gates
- Feature vectors
 - Sensor-time label
- Residual vectors
 - Short-term memory
- Attention module
 - Soft attention
 - Probability Distribution

Background

- Neural Network Overview
 - Feedforward Neural Network (FNN)
 - Recurrent Neural Network (RNN)
 - Long Short-Term Memory (LSTM)
- Activity Recognition
- Test and Results
 - Datasets
- Conclusion

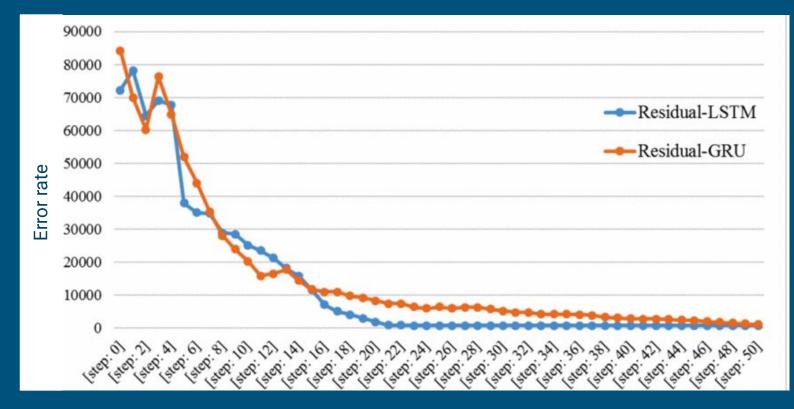
Test and Results: Datasets

- Data from MIT laboratory (2 weeks)
- One resident (user) in apartment
- Sensors were installed in objects
 - Activated when the machine works or a movement is detected
- 295 activities, 76 sensors, and 2,823 detected activation

Activity name	Toileting	Preparing dinner	Doing laundry 2003-03-29		
Date	2003-03-28	2003-03-28			
Start time	12:30:56	19:44:07	15:43:11		
End time	12:31:20	19:53:47	15:51:18 Door		
Sensor 1	Light switch	Cabinet			
Sensor 2	Toilet flush	Refrigerator	Washing machine		
Sensor n	Cabinet	Oven	Exhaust fan		

Test

• Randomly split dataset into


- <u>Training set</u> (50%)
 - Used for training the development model
- Validation set (25%)
 - Used to tune the classifier's hyperparameters
- <u>Test set</u> (25%)
 - Used to check the accuracy of the model
- Root Mean Square Error (RMSE)
 - Evaluates how far the prediction and the value are
- Get mean test errors by repeating 20 times

Result

Table of accuracy on test data

Model	10%	20%	30%	40%	50%	60%	70%	80%	90%
ANN	0.6802	0.6713	0.6708	0.6714	0.6738	0.7028	0.7076	0.7132	0.7121
LSTM	0.6803	0.6847	0.6890	0.6937	0.6982	0.7030	0.7075	0.7121	0.7120
GRU	0.6799	0.6842	0.6887	0.6932	0.6976	0.7023	0.7069	0.7115	0.7117
Residual-LSTM	0.8720	0.8777	0.8827	0.8880	0.8930	0.8971	0.9013	0.9049	0.9085
Residual-GRU	0.8652	0.8216	0.8516	0.8652	0.8652	0.8885	0.8812	0.9000	0.8952

Results

Background

- Neural Network Overview
 - Feedforward Neural Network (FNN)
 - Recurrent Neural Network (RNN)
 - Long Short-Term Memory (LSTM)
- Activity Recognition
- Test and Results
- Conclusion

Conclusion

- Park et al. developed activity recognition in an IoT environment with Residual-RNN and compared to other networks
- Park et al. successfully train and analyze the data by using neural networks
- Residual-RNN performs better with high accuracy than other networks

Acknowledgements

I would like to thank Elena Machkasova for her advice and feedback and my family and friends for their support

References

- J. Park, K. Jang and S. -B. Yang, "Deep neural networks for activity recognition with multi-sensor data in a smart home," 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), 2018, pp. 155-160, doi: 10.1109/WF-IoT.2018.8355147.
- Phi, M. (2020, June 28). Illustrated guide to LSTM's and GRU's: A step by step explanation. Medium. Retrieved April 14, 2022, from https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85 bf21

Questions?