
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Audrey Le Meur

Approaches to Broadening Participation with AP
Computer Science Principles

Audrey Le Meur
lemeu001@umn.edu

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
The Advanced Placement Computer Science Principles (AP
CSP) course framework was created with the intention of
broadening participation in computing. Research has pro-
duced mixed results on whether or not the framework suc-
ceeds in that goal. Given that teachers have significant free-
dom in how they choose to teach the AP CSP content, stu-
dents can have a variety of experiences that may or may not
impact their continued participation in CS. In this paper, I
compare four different approaches to the AP CSP framework
by examining their impact on AP exam scores, self-efficacy
and confidence, belongingness and identity, and persistence
and interest, to examine how these approaches might impact
those traditionally underrepresented in CS. I also discuss how
social and curricular interventions may differ in outcomes.

Keywords: computer science education, K-12 education, broad-
ening participation

1 Introduction
The Advanced Placement Computer Science Principles (AP
CSP) framework and exam was introduced in 2016 to serve
more diverse populations than the older Computer Science A
(AP CSA) framework [14]. Specifically, the College Board
sought to create a course that would cover broader CS con-
cepts, aimed towards students who are not intending to
major in CS and students who are traditionally underrepre-
sented in computing. In contrast to AP CSA, which focuses
on programming and algorithmic thinking, AP CSP expands
the curriculum to include the study of computational solution
design, abstraction, code analysis, computing innovations,
and responsible computing [3].

Research has produced mixed results on whether AP CSP
achieves its goal in broadening participation in computing.
The College Board found that students who had taken AP
CSP were more likely to have majored in CS in college than
students who had not taken AP CSP [24]. This result also
held up among female, Black, Hispanic, and first-generation
students respectively. That said, Sax et al. found that students
who took an AP CSP course were less likely to want to
major in or have a career in CS than students who took AP
CSA [19]. These students were also less confident in their
computing abilities. It is therefore unclear whether the AP

CSP framework itself contributes to future participation for
those traditionally underrepresented in CS.
Since AP CSP is only a framework, teachers have signif-

icant freedom to choose how they teach the content. This
paper looks at specific approaches that teachers can take to
make an AP CSP course more accessible to diverse audiences.

2 Background
To evaluate the outcomes of a particular AP CSP approach in
relation to the other approaches, it can be helpful to look at
the results of individual studies using a shared set of criteria.
Since the different studies do not all use the exact same
criteria, but often report similar results, I aggregate them
into four criteria: exam results, self-efficacy and confidence,
belongingness and identity, and persistence and interest.

2.1 Exam Results
The College Board evaluates AP CSP students based on two
assessments: a multiple-choice exam and a project called
the “Create performance task.” The multiple-choice exam
consists of 70 questions over 120 minutes which counts for
70% of the student’s final score. For the “Create performance
task,” Students develop code either independently or with
others before individually making a video to explain and
demonstrate their project and completing written prompts.
Students are allotted at least twelve hours in class to complete
the “Create performance task.” The project counts for the
remaining 30% of the student’s score [2]. The resulting score
is on a scale from 1 to 5, where a 3 is considered passing the
exam and the student may be awarded college credit [3].

2.2 Self-efficacy and Confidence
Bandura defines self-efficacy as “people’s beliefs about their
capabilities to produce designated levels of performance that
exercise influence over events that affect their lives [4].” In
computer science education research, we look at people’s be-
liefs in their ability to complete tasks that require a computer
or that require computational thinking [5, 20].

In contrast with self-efficacy, confidence is defined much
more loosely. Hoegh evaluates “students’ confidence in their
own ability to learn computer science skills”, but doesn’t
provide a firm definition for confidence [10]. In this case, we
can consider confidence to be synonymous with the strength

Approaches to Broadening Participation with AP Computer Science Principles

of self-efficacy, which Compeau defines as the confidence an
individual has in their ability to complete a task [5]. There-
fore, a student’s confidence in their computer science skills
is the strength of their computer science self-efficacy.

2.3 Belongingness and Identity
There are several ways to measure a student’s sense of be-
longing in relation to their identity within computer science.
Belongingness is the “feeling that you fit in and there are
others like you in CS [17].” Alternatively, we can look at
students’ views of their own identity in comparison to the
identities of STEM professionals [18]. Researchers have also
examined how students see their race and/or gender as an
indicator of success in CS [6]. Each of these evaluations
generally tell us about how students’ identity impacts their
participation in CS.

2.4 Persistence and Interest
We are also interested in knowing if students will continue
pursuing CS. We can measure this two ways: persistence
(whether students want to continue studying or doing CS)
and interest (whether students are interested in CS content).
We can measure persistence by asking students if they plan
on taking more CS courses, majoring or minoring in CS in
college or having a career in CS. Measuring interest is usually
more straightforward; we can ask students how interested
they are in CS.

3 Approaches
In this paper, I distinguish between two types of approaches
to teaching AP CSP. First, a social approach is an approach in
which the researchers hope to improve outcomes by chang-
ing the way that students interact with others within the
classroom. Second, a curricular approach is an approach in
which the content of the course is designed to be appealing
and inclusive of a diverse audience. I will describe two so-
cial approaches and two curricular approaches and discuss
the methods and results of studies evaluating their efficacy.
Due to the nature of an AP framework, all studies evaluated
students using their AP exam scores.

3.1 Supporting Students through Peer Learning
Communities

One approach to broadening participation is to create so-
cial environments in which traditionally underrepresented
students feel included and supported. Peer Learning Commu-
nities can provide students with valuable relationships with
other peers, near-peers, and teachers of the same gender and
of a similar racial and/or ethnic background. The LEGACY
project provided Black female students with a culturally-
relevant, project-based preparatory curriculum for AP CSP
in the context of a Peer Learning Community (PLC) [6].

3.1.1 Methods. Escobar et al. recruited 40 young Black
women in a southern U.S. state who were enrolled in an AP
CSP course for the following school year [6]. The students
participated in a five-day long course introducing the key
concepts of the AP CSP framework taught by Black female
teachers. Students later presented a project to their peers in
another two-day session. Both sessions included social ac-
tivities and opportunities to meet Black female role-models.
During the school year, teachers and students stayed in touch
through a Moodle site where they could post questions and
connect with other students. Students also had the opportu-
nity to meet their peers and teachers in-person and virtually
to discuss AP CSP content and practice for the exam.

Students completed assessments before and after the sum-
mer portion of the program and at the end of the school year.
The researchers used a computational thinking self-efficacy
questionnaire, adapted from Weese and Feldhausen [20], to
evaluate students’ self-efficacy. They also evaluated students’
sense of identity in CS using the Gender and Racial Attitudes
Toward Computing inventory. An adaptation (called CS-PIO)
of the STEM Professional Identity Overlap (STEM-PIO) [18]
was used to further evaluate students’ sense of identity and
examine students’ persistence.

3.1.2 Results. 87.5% of students who participated in the
LEGACY PLC and took the AP exam passed. This is sig-
nificantly higher than the national average of all students,
male students, White male students, Black female students
and Black male students [6]. Exam scores were positively
correlated with attending more PLC sessions. Students saw
increases in self-efficacy for algorithmic thinking and control
flow both throughout the summer and the school year, but
saw no difference in their confidence in the importance of
computing or in their ability to organize complex tasks. Stu-
dents generally had more positive attitudes about the ability
of people from all racial backgrounds and women to succeed
in CS as the program progressed. Students’ self-identification
with their personal image of a CS professional also increased
over the course of the study. Finally, 59% of students said
they intended to major or minor in CS in college.

3.2 Encouraging Cooperative Learning
Classroom management can also be a way through which
teachers can manipulate the social environment in which
their students learn. Gray et el. sought to examine how the
use of cooperative learning affects outcomes in an AP CSP
classroom [8]. Kagan and Kagan define cooperative learning
to be an instructional approachwhich follows four principles:
positive interdependence, individual accountability, equal
participation, and simultaneous interaction [12]. Positive
interdependence means students are working together “on
the same side,” while individual accountability means every
student is required to publicly and individually demonstrate

Audrey Le Meur

Table 1. Cooperative Learning Structures used in [8]

Name Description

Round
Robin [12]

Students each speak for an
equal amount of time in re-
sponse to a prompt.

Debate Team
Carousel [9]

Students are asked to write
down their opinion on a ques-
tion. They then pass their pa-
pers around and give reasons
for and against other students’
opinions.

Jot
Thoughts [13]

Students individually brain-
storm a topic for a set amount
of time while writing their
ideas down on slips of paper
and laying them around the ta-
ble. They then processes their
ideas by discussing and rear-
ranging their slips of paper.

their learning. Additionally, students have to participate rel-
atively equally (equal participation) and must be actively
engaged for the entire duration of the activity (simultaneous
interaction).

3.2.1 Methods. Gray et al. consider pair programming to
be an example of cooperative learning in the CS specific
context [8]. Other structures are described in Table 1. Note
that Gray and al. study used other structures in their study
and these are just a few examples.
The study provided 27 teachers with a professional de-

velopment course about using collaborative learning struc-
tures in an AP CSP classroom. Teachers filled out surveys
describing how they used CL in their class. The researchers
used these surveys to calculate an "opportunity to learn col-
laboratively" (OTLC) score for each class. 6,492 students in
classes where the teacher had completed the professional de-
velopment also completed a computing self-efficacy survey
adapted from Compeau and Higgins [5].

3.2.2 Results. The students in the cooperative learning
(CL) classrooms passed the AP exam at a greater rate than
the national average (76.6% vs 72.3%). Specifically, under-
represented minority students passed the AP exam at a sig-
nificantly greater rate than the national average for that
group(66.3% vs 55%). Use of CL structures (OTLC) was only
a predictor of AP score in classrooms where the teacher had
less than three years experience teaching CS. Gray et al. also
found no significant gains in self-efficacy for students in an
AP CSP course using CL structures [8].

Figure 1. An example block of Snap! code [1].

3.3 Finding the Beauty and Joy in Computing
In line with AP CSP’s larger goal of broadening participa-
tion in CS, the designers of the Beauty and Joy of Computing
(BJC) curriculum aimed to create an environment where
students could freely develop their competence, confidence,
and creativity [7]. They made two major design choices to
support this goal: use of a visual programming language and
an emphasis on the social implications of technology. BJC
uses Snap!, a block-based programming language visually
similar to Scratch [16] which allows for more advanced pro-
gramming skills such as “recursion, higher-order functions,
complex data structures, object-oriented programming, and
lambda [7].” For example, Figure 1 shows a higher-order func-
tion implemented in Snap! which utilizes a map data struc-
ture. The visual nature of the language allows students to
focus on learning programming concepts rather than spend-
ing too much time on syntax, Further, block-based languages
have been linked with greater learning gains and interest in
CS in comparison to text-based languages [21]. Students also
learned about the social implications of technology to build
their agency within the future of computer technology [7].

3.3.1 Methods. The BJC team provided teachers in NYC
with professional development for teaching the BJC curricu-
lum [17]. These teachers taught 311 students at 24 NYC high
schools. Students completed a CS attitude survey adapted
from three previous works [10, 15, 22] both before and after
they took the course. These surveys evaluated the students’
confidence, interest, belongingness and identity in relation
to CS [17]. The researchers also received AP score data from
the NYC Department of Education on all 2,854 students in
NYC who had taken the AP CSP exam, regardless of whether
they had been taught using the BJC curriculum [17].

3.3.2 Results. Mark et al. analyzed AP scores by compar-
ing the scores of BJC students with those of non-BJC stu-
dents in NYC. In their initial analysis, 67.2% of BJC students
passed the AP exam while 72.7% of NYC students passed the
exam [17]. The researchers decided to exclude the data of
two schools that were demographically distinct from most
NYC schools. These schools had fewer students from un-
derrepresented minority groups (URG), fewer students with
individualized education plans (IEP), and fewer students in
poverty. Additionally, these schools had significantly higher

Approaches to Broadening Participation with AP Computer Science Principles

Table 2. Results of the four studies.

Approach Exam Results Self-efficacy and
Confidence

Belongingness
and Identity

Persistence and
Interest

Social Approaches
Supporting Students through Peer
Learning Communities [6] ✓ ✓1 ✓ ✓

Encouraging Cooperative Learn-
ing [8] ✓2 ✗ N/A N/A

Curricular Approaches
Finding the Beauty and Joy in Com-
puting [7, 17] ✓ ✓ ✓1 ✗

Engaging Students through Mobile
Computing [11] ✓ N/A N/A ✓13

1 Gains only seen in some measures
2 Gains only seen for students with less experienced teachers
3 Gains only seen for underrepresented minority students but not female students

pass rates in comparison to other NYC schools. Excluding
these two schools, 1,192 students from the remaining 75
schools took the AP exam. Under their new analysis, BJC
students passed the AP exam at a significantly higher rate
than non-BJC students (54.2% vs. 37.7%).
Students saw significant gains in confidence after taking

a BJC course [7]. They also saw significant gains in identity
but not in belongingness. Students did not gain interest in CS
after taking the course. Female and URG students generally
had similar differences in pre and post surveys as male and
non-URG students.

3.4 Engaging Students through Mobile Computing
The Mobile Computer Science Principles (Mobile CSP) cur-
riculum sought to engage traditionally underrepresented
students through mobile app design and programming [11].
Similarly to BJC, Mobile CSP used a visual-programming
language called App Inventor [23] to make programming
more accessible. In the first half of the course, students used
App Inventor to learn about programming and algorithms by
creating mobile applications. The second half of the course
focused on non-programming concepts, including social im-
pact. Finally, students completed their “Create performance
task” by creating a mobile app which they were encouraged
to build in a "socially useful" way. The goal was for students
to connect CSP content to their own lives through a famil-
iarity of mobile devices and allowing them to choose social
topics that were relevant to their own community.

3.4.1 Methods. 275 participating teachers received about
100 hours of professional development on how to teach Mo-
bile CSP [11]. Students in their classes completed a survey

before and after the course which asked about their attitudes
and interest in CS.

3.4.2 Results. Students that were taught the Mobile CSP
curriculum did pass the exam at a slightly higher rate than
the national average (78% vs. 74% in 2017 and 76% vs. 69% in
2018), yet, the authors did not note if this result was statisti-
cally significant [11]. Women, Hispanic/Latino, and multira-
cial students who completed Mobile CSP performed better
on the AP exam than the national average for their respec-
tive groups both years that the curriculum was administered.
Black/African American students performed better than the
national average for Black/African American students only
on the 2017 exam.
Overall, a majority of (59%) of students reported feeling

more interested in CS after taking theMobile CSP course [11].
More specifically, majorities of female (56%), Black (56%),
and Latino (66%) students expressed more interest in CS
as a result of the course. Additionally, students generally
showed a desire to continue studying CS. 64% of students
said they were interested in majoring in CS or pursuing CS as
a career and a similar proportion (62%) of underrepresented
minority students held the same view. That said, female
students expressed a desire to continue in CS at a lower rate
(48%).

4 Conclusion
4.1 Discussion
All four approaches resulted in improved AP exam scores for
at least some subset of students (See Table 2). No approach
saw improvements across all four criteria. For self-efficacy
and confidence, belongingness and identity, and persistence
and interest, there was improvement in at least one social and

Audrey Le Meur

one curricular approach. This suggests that neither social or
curricular approaches have an advantage when it comes to
improving measures that impact participation.

Escobar et al. argued that “curriculum alone does not drive
engagement and interest among those underrepresented in
CS [6].” While the BJC curriculum did not improve inter-
est, the Mobile CSP curriculum did increase persistence for
underrepresented minority students. The Mobile CSP did
not have the same effect on female students’ persistence.
Contrary to Escobar, this suggests that the content of the
curriculum may influence students’ interest. The social na-
ture of projects within the Mobile CSP and the Peer-Learning
Communities approaches indicate that social connections
may be key to engaging female students. There seems to be
increased interest from female students when they have a
social connection between CS and their peers or their com-
munity.
It may be necessary to use multiple strategies, mixing

social approaches with curriculum, to improve outcomes
for underrepresented groups. For example, Peer Learning
Communities could be implemented with either the Mobile
CSP or BJC curriculum to improve students’ persistence and
interest.

4.2 Limitations
The variety of methods used across the studies makes it dif-
ficult to compare numerical results between studies. Each
study did their own statistical analysis using different in-
strumentation. Additionally, not all studies were conducted
during the same academic year, with the Peer-Learning Com-
munities study being conducted during the COVID-19 pan-
demic. That said, it is still possible to compare results by
looking at the general trend rather than the number.
The Mobile CSP study did not analyze whether the data

showed any statistically significant differences, which makes
knowing if the curriculum actually had a positive effect on
AP scores, interest, and persistence difficult. It would be
preferable for the authors to clarify how they did their statis-
tical analysis, so we can be more sure about the significance
of their results.
All studies were conducted within the United States so

it is unclear if these results would extend to international
educational contexts. While the Cooperative Learning and
Mobile Computing studies engaged teachers and students
across the United States, the Peer-Learning Communities
and BJC studies were concentrated in one community or
region.

4.3 Future Work
Many of these studies end when the student has completed
the AP exam. Future work could look at undergraduate stu-
dents who took the AP CSP exam and the relationship be-
tween the AP curriculum they completed and their current

CS participation.We could also examine other AP CSP curric-
ula developed commercially, such as Apple’s Develop In Swift
curriculum, Microsoft’s MakeCode curriculum, or Carnegie
Learning’s Zulama curriculum.

Acknowledgments
Special thanks to my advisor, Professor K.K. Lamberty, for
her feedback and support. I would also like to thank my
senior seminar instructor, Professor Elena Machkasova, for
guiding my peers and I through the course. Finally, thanks
to Ariel Cordes for reviewing my paper and Professor Kiel
Harell for providing me with sources.

References
[1] [n.d.]. Unit 8 lab 4: Building higher order functions.

https://bjc.edc.org/bjc-r/cur/programming/8-recursive-reporters/4-
building-higher-order-functions/2-generalizing-the-map-
pattern.html?topic=nyc_bjc%2F8-recursive-reporters.topic&
amp;course=bjc4nyc.html&novideo&noassignment

[2] 2020. AP Computer Science Principles: Course and Exam Descrip-
tion. https://apcentral.collegeboard.org/pdf/ap-computer-science-
principles-course-and-exam-description.pdf

[3] 2022. About AP scores. https://apstudents.collegeboard.org/about-
ap-scores

[4] Albert Bandura. 1994. Self-efficacy. Encyclopedia of human behavior 4
(1994), 71–81.

[5] Deborah R Compeau and Christopher A Higgins. 1995. Computer Self-
Efficacy: Development of a Measure and Initial Test. , 189-211 pages.
Issue 2.

[6] Martha Escobar, Jeff Gray, Kathleen Haynie, Mohammed A. Qazi, Yas-
meen Rawajfih, Pamela McClendon, Donnita Tucker, andWendy John-
son. 2021. Engaging Black Female Students in a Year-Long Preparatory
Experience for AP CS Principles. SIGCSE 2021 - Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education May 2020
(2021), 706–712. https://doi.org/10.1145/3408877.3432560

[7] Paul Goldenberg, June Mark, Brian Harvey, Al Cuoco, and Mary Fries.
2020. Design principles behind beauty and joy of computing. Annual
Conference on Innovation and Technology in Computer Science Educa-
tion, ITiCSE (2020), 220–226. https://doi.org/10.1145/3328778.3366794

[8] Jeff Gray, Owen Astrachan, Kathy Haynie, Chinma Uche, Siobhan
Cooney, Fran Trees, and Richard Kick. 2019. Infusing cooperative
learning into AP computer science principles courses to promote
engagement and diversity. SIGCSE 2019 - Proceedings of the 50th ACM
Technical Symposium on Computer Science Education (2019), 1190–1196.
https://doi.org/10.1145/3287324.3287421

[9] William Himmele and Pérsida Himmele. 2012. How to know what
students know. Educational Leadership 70, 1 (2012), 58–62. https://pdo.
ascd.org/LMSCourses/PD15OC007M/media/M2-TPTReading2.pdf

[10] Andrew Hoegh and Barbara M. Moskal. 2009. Examining science and
engineering students’ attitudes toward computer science. Proceedings
- Frontiers in Education Conference, FIE. https://doi.org/10.1109/FIE.
2009.5350836

[11] Beryl Hoffman, Ralph Morelli, and Jennifer Rosato. 2019. Student
Engagement is Key to Broadening Participation in CS. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education
(SIGCSE ’19). 1123–1129. https://doi.org/10.1145/3287324.3287438

[12] Spencer Kagan and Miguel Kagan. 2009. Kagan Cooperative Learning.
Kagan Publishing.

[13] Spencer Kagan, Miguel Kagan, and Laurie Kagan. 2015. 59 Kagan
Structures - Proven Engagement Structures. Kagan Publishing.

https://bjc.edc.org/bjc-r/cur/programming/8-recursive-reporters/4-building-higher-order-functions/2-generalizing-the-map-pattern.html?topic=nyc_bjc%2F8-recursive-reporters.topic&course=bjc4nyc.html&novideo&noassignment
https://bjc.edc.org/bjc-r/cur/programming/8-recursive-reporters/4-building-higher-order-functions/2-generalizing-the-map-pattern.html?topic=nyc_bjc%2F8-recursive-reporters.topic&course=bjc4nyc.html&novideo&noassignment
https://bjc.edc.org/bjc-r/cur/programming/8-recursive-reporters/4-building-higher-order-functions/2-generalizing-the-map-pattern.html?topic=nyc_bjc%2F8-recursive-reporters.topic&course=bjc4nyc.html&novideo&noassignment
https://bjc.edc.org/bjc-r/cur/programming/8-recursive-reporters/4-building-higher-order-functions/2-generalizing-the-map-pattern.html?topic=nyc_bjc%2F8-recursive-reporters.topic&course=bjc4nyc.html&novideo&noassignment
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf
https://apstudents.collegeboard.org/about-ap-scores
https://apstudents.collegeboard.org/about-ap-scores
https://doi.org/10.1145/3408877.3432560
https://doi.org/10.1145/3328778.3366794
https://doi.org/10.1145/3287324.3287421
https://pdo.ascd.org/LMSCourses/PD15OC007M/media/M2-TPTReading2.pdf
https://pdo.ascd.org/LMSCourses/PD15OC007M/media/M2-TPTReading2.pdf
https://doi.org/10.1109/FIE.2009.5350836
https://doi.org/10.1109/FIE.2009.5350836
https://doi.org/10.1145/3287324.3287438

Approaches to Broadening Participation with AP Computer Science Principles

[14] Richard Kick and Frances P. Trees. 2015. AP CS Principles: Engaging,
Challenging, and Rewarding. ACM Inroads 6, 1 (Feb 2015), 42–45.
https://doi.org/10.1145/2710672

[15] Clayton Lewis, Michele H. Jackson, and William M. Waite. 2010. Stu-
dent and Faculty Attitudes and Beliefs about Computer Science. Com-
mun. ACM 53, 5 (May 2010), 78–85. https://doi.org/10.1145/1735223.
1735244

[16] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and
Evelyn Eastmond. 2010. The Scratch Programming Language and
Environment. ACM Trans. Comput. Educ. 10, 4, Article 16 (Nov 2010),
15 pages. https://doi.org/10.1145/1868358.1868363

[17] June Mark and Kelsey Klein. 2019. Beauty and joy of computing:
2016-17 findings from an AP CS principles course. SIGCSE 2019 -
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (2019), 627–633. https://doi.org/10.1145/3287324.3287375

[18] Melissa M. McDonald, Virgil Zeigler-Hill, Jennifer K. Vrabel, and
Martha Escobar. 2019. A Single-Item Measure for Assessing STEM
Identity. Frontiers in Education 4, July (2019), 1–15. https://doi.org/
10.3389/feduc.2019.00078

[19] Linda J. Sax, Kaitlin N.S. Newhouse, Joanna Goode, Max Skorodin-
sky, Tomoko M. Nakajima, and Michelle Sendowski. 2020. Does
ap cs principles broaden participation in computing? an analysis of
apcsa and apcsp participants. Annual Conference on Innovation and

Technology in Computer Science Education, ITiCSE (2020), 542–548.
https://doi.org/10.1145/3328778.3366826

[20] Joshua Levi Weese and Russell Feldhausen. 2017. STEM Outreach:
Assessing Computational Thinking and Problem Solving. In 2017 ASEE
Annual Conference & Exposition. ASEE Conferences, Columbus, Ohio.
https://peer.asee.org/28845

[21] David Weintrop and Uri Wilensky. 2017. Comparing block-based and
text-based programming in high school computer science classrooms.
ACM Transactions on Computing Education 18, 1 (2017), 1–25. https:
//doi.org/10.1145/3089799

[22] Eric N. Wiebe, L. Williams, K. Yang, and C. Miller. 2003. Computer
Science Attitude Survey. Computer Science January 2003 (2003), 5.
arXiv:arXiv:1011.1669v3 http://www4.ncsu.edu/\simwiebe/www/
articles/prl-tr-2003-1.pdf

[23] David Wolber. 2011. App Inventor and Real-World Motivation. In
Proceedings of the 42nd ACM Technical Symposium on Computer Science
Education (Dallas, TX, USA) (SIGCSE ’11). Association for Computing
Machinery, New York, NY, USA, 601–606. https://doi.org/10.1145/
1953163.1953329

[24] JeffWyatt, Jing Feng, andMaureen Ewing. 2020. AP Computer Science
Principles and the STEM and Computer Science Pipelines. December
(2020). https://apcentral.collegeboard.org/pdf/ap-csp-and-stem-cs-
pipelines.pdf?course=ap-computer-science-principles

https://doi.org/10.1145/2710672
https://doi.org/10.1145/1735223.1735244
https://doi.org/10.1145/1735223.1735244
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/3287324.3287375
https://doi.org/10.3389/feduc.2019.00078
https://doi.org/10.3389/feduc.2019.00078
https://doi.org/10.1145/3328778.3366826
https://peer.asee.org/28845
https://doi.org/10.1145/3089799
https://doi.org/10.1145/3089799
https://arxiv.org/abs/arXiv:1011.1669v3
http://www4.ncsu.edu/$\sim $wiebe/www/articles/prl-tr-2003-1.pdf
http://www4.ncsu.edu/$\sim $wiebe/www/articles/prl-tr-2003-1.pdf
https://doi.org/10.1145/1953163.1953329
https://doi.org/10.1145/1953163.1953329
https://apcentral.collegeboard.org/pdf/ap-csp-and-stem-cs-pipelines.pdf?course=ap-computer-science-principles
https://apcentral.collegeboard.org/pdf/ap-csp-and-stem-cs-pipelines.pdf?course=ap-computer-science-principles

	Abstract
	1 Introduction
	2 Background
	2.1 Exam Results
	2.2 Self-efficacy and Confidence
	2.3 Belongingness and Identity
	2.4 Persistence and Interest

	3 Approaches
	3.1 Supporting Students through Peer Learning Communities
	3.2 Encouraging Cooperative Learning
	3.3 Finding the Beauty and Joy in Computing
	3.4 Engaging Students through Mobile Computing

	4 Conclusion
	4.1 Discussion
	4.2 Limitations
	4.3 Future Work

	Acknowledgments
	References

