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Abstract
Pareto fronts offer insight into the best found solutions of a
given problem. Several algorithms have been developed to
help maintain a well-distributed Pareto front and therefore
offer a wide variety of solutions. However, in real-world prob-
lems, the Pareto front isn’t necessarily a continuous surface
and may contain holes and/or discontinuous lines. These ir-
regular areas on the Pareto front are considered gaps. These
gaps can either be natural or artificial. In their research,
Pellicer, Escudero, Alzueta, and Deb suggest a three-step
procedure to find, validate, and fill these gaps. First, they
developed an algorithm to generate gap points. Second, they
developed an equation that checks the validity of the gap
points. Lastly, a focused algorithm looks for points around
the validated gap points to determine if they are natural or ar-
tificial. This procedure was used on several test problems that
range from two-to-five objectives, including a five-objective
real-world problem in the steel industry.

Keywords: Gap Validation, Pareto front, NSGA, R-NSGA,
Evolutionary Multi-Objective Optimization (EMO), Evolu-
tionary Many-Objective Optimization (EMaO)

1 Introduction
There are problems that require you to optimize more than
one objective. For example, while creating a school system,
a decision needs to be made on how much will be spent on
schools in order to provide a short transportation time for
students. The two objectives in this problem are to minimize
school construction cost and to minimize the average student
transit time. On one hand, you could build only one school
to limit costs but therefore cause students to have a higher
average travel time. On the other hand, you could have a
higher cost and build many schools so students have a low
average travel time. Then, there are solutions in-between
these two extremes. A visual of these points can be seen in
figure 1(a). Algorithms are used to find solutions to these
problems. While solutions are being generated, it’s impor-
tant to find as many points (potential solutions) as possible
to have a wide variety of good solutions. The best found
solutions are considered part of the Pareto front.

While attempting to find the best points, gaps can appear.
A gap is considered as an area on the Pareto front where

the algorithm failed to find a point. In the school example,
you can imagine a figure such as 1(b). In this figure, there
is a visible gap in the Pareto front. These gaps need to be
validated to ensure they’re in an empty area on the Pareto
front. Gaps are then classified as either natural or artificial.
For the purposes of this paper, a gap is considered natural
if a point is unable to be found inside of the gap after a sec-
ondary search by a more focused algorithm. If this secondary
algorithm successfully found a point in the gap, we consider
the gap artificial.

This paper focuses on finding gaps and filling them when
possible to provide a wider variety of optimized points. In
section 2, I give the background information and terminology
needed to understand evolutionary computation. In section 3,
I explain the four evolutionary algorithms that are used in
Pellicer et al. In section 4, I elaborate on the method devel-
oped by Pellicer et al. In section 5, I summarize the results
found by Pellicer et al. Finally, in section 6, I explain fur-
ther possible improvements to this methodology and the
real-world applications used by Ergezer [3]. [4]

2 Background
2.1 Pareto Front
The Pareto front is the set of points that are non-dominated
or incomparable to all other points on the graph [5]. A point
𝑝1 dominates 𝑝2 if all values in 𝑝1 ≥ 𝑝2. Each value corre-
sponds to an objective, meaning a two-objective problem
would be a 2D point. Therefore, a non-dominated point 𝑝
dominates all other points it can be compared to. Incompara-
ble suggests that you are unable to compare some points to
others and therefore you cannot determine which is better.
An example of a Pareto front can be seen in figure 1(a). In
this figure, the Pareto front is composed on points A-H. Ad-
ditionally, points K and N are not in the Pareto front because
points C-E optimized the objectives in a more efficient way.
Points A-H are also considered Pareto-optimal.

2.2 Evolutionary Computation
Evolutionary Computation (EC) is the process of solving a
problem using guided search and simulated biological evolu-
tion. An individual is a single potential solution. In Pellicer
et al[4], individuals are a vector of numbers. Each number



Filling Gaps on the Pareto Front in Multi- and Many-Objective Optimization

(a) An example Pareto front for the
school example.

(b) An example of a Pareto front with
a gap.

Figure 1. Solutions for the school construction example.
Points A-H are part of the Pareto front.

represents the value assigned to an objective through a se-
ries of trade-offs. These values are not combined together.
Rather, they serve as a way to measure which points are non-
dominated. A population is a group of these individuals. Each
generation has its own population and generations progress
until the algorithm has gone through as many generations
as specified by the user. Offspring are created by applying
crossover: combining properties of two individuals to each
other to create a new individual, and mutation: changing
part of a single individual with a new random value. [6]

2.3 Evolutionary Multi- and Many-Objective
Optimization

Evolutionary multi-objective optimization (EMO) and many-
objective optimization (EMaO) involve running an evolu-
tionary algorithm on a set of objectives that you would like
to optimize. Multi-objective means there are 2-3 objectives
whereas many-objective is for more than three objectives.
Pellicer et al [4] utilize two types of algorithms, an algo-
rithm that performs a broad search in the problem space and
a focused algorithm and focuses on a specified part of the
problem space. These algorithms are outlined in section 3.
An example of an EMO problem is the school example men-
tioned in section 1. In this example, you can imagine all of
the points this algorithm generates to be plotted on a 2D
plane where one axis is the cost spent on schools and the
other axis is the travel time for students. The main idea is
that these evolutionary algorithms will generate these points
on the plane. Among these points you can find the Pareto
front.

2.4 Gaps: Natural vs. Artificial
Gaps can be classified as one of two things: natural or artifi-
cial. Before a gap can be classified, it needs to be validated.
A gap being validated means that it is a gap in the Pareto
front and is deemed insufficiently searched. Once a gap is
validated, it can be natural or artificial.

A gap is considered natural when the focused search algo-
rithm was unable to fill the gap. Gaps that are classified as
natural implies there are real discontinuities in the problem
and there are spaces in the problem space where a solution is
impossible. Additionally, when the focused search algorithm
does fill the gap, the gap is considered artificial and the broad
search algorithm simply didn’t search that area of the Pareto
front thoroughly enough. Classifying a gap point as artifi-
cial means that additional points were found on the Pareto
front and therefore gives more Pareto-optimal solutions to
choose from. Therefore, we prefer gaps to be artificial since
it exposes us to more Pareto-optimal solutions.

3 Four EMO/EMaO Algorithms
Pellicer et al [4] utilize four different EMO/EMaO algorithms
to accomplish different tasks. This section introduces the
four EMO/EMaO algorithms used in their research: NSGA-II,
NSGA-III, R-NSGA-II, and R-NSGA-III.

3.1 NSGA Variants
Non-dominated sorting genetic algorithm (NSGA) has two
variants used in Pellicer et al [4]: NSGA-II and NSGA-III.
NSGA-II is used for multi-objective optimization and NSGA-
III is used for many-objective optimization. These algorithms
provide a broad search for the problem. In other words, they
search the entire problem space and return a set of solutions
that approximate the Pareto front. NSGA algorithms pro-
vide well-distributed points. However, gaps can still remain,
which need a different algorithm to focus on that specific
area around the gap point.

3.2 R-NSGA Variants
Reference point-based non-dominated sorting genetic algo-
rithm (R-NSGA) also has two variants that were used in
Pellicer et al [4]: R-NSGA-II and R-NSGA-III. R-NSGA-II
is used for multi-objective optimization and R-NSGA-III is
used for many-objective optimization. Instead of searching
the entire problem space, these algorithms apply a focused
search. This means that they excel at finding points in a
concentrated location. This is done by using reference points.
Reference points are one or more points supplied by the user
that act as a marker as to where the user wants to find addi-
tional points. An example of a reference point can be seen
in figure 2. In this figure, R-NSGA prefers the grey circles
over the black “x"’s due to them being closer to the reference
point. Pellicer et al [4] inserts these reference points in the
vicinity of validated gap points in order to apply a focused
search around them. Therefore, a new set of Pareto front
points are returned. These new points will hopefully help
fill the previously mentioned gaps.
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Figure 2. An example of how reference points are used [1].

4 Methodology
This section outlines the importance of the R-NSGA variants
and how they are used to fill gaps in the Pareto front by
Pellicer et al [4]. The procedure is broken down into three
steps:

1. Generate a near Pareto-optimal solution using either
NSGA-II or NSGA-III.

2. Use an algorithm to detect potential gaps inside of the
Pareto front and validate them.

3. If gaps are validated in the previous step, run either R-
NSGA-II or R-NSGA-III around the gap point(s) found
in the previous step to search for additional points
on the Pareto front. Reference points are selected as
various points on/around the gap point(s).

4.1 Generating a Near Pareto-optimal Solution
In order to find gaps on the Pareto front, you need a Pareto
front to search. This is done by generating near Pareto-
optimal solutions using NSGA-II and NSGA-III on the test
problems described in section 5.

4.2 Gap Finding Algorithm
Before we can apply the R-NSGA algorithms to gaps, we
need a way to identify gaps. In other words, we need to
know where the densest areas are on the Pareto front so
we can check the empty areas. Algorithm 1 outlines the
algorithm Pellicer et al [4] created to find potential gaps and
validate them.

This algorithm takes a set of non-dominated points, 𝑁𝐷 ,
and an integer, 𝑔, representing the number of gap points you
want to find. A gap point is considered a point where there
are no NSGA Pareto front points close to it. Once the optimal
number of clusters (groups) is found, we initialize 𝑘𝑛𝑒𝑖𝑔ℎ =

min(𝑀,𝑛𝑐𝑙𝑢𝑠𝑡 ) − 1. Here, 𝑀 is the number of objectives in
the problem and 𝑛𝑐𝑙𝑢𝑠𝑡 is the optimal number of clusters
found by the clustering technique. This is the number of gaps
associated with each cluster [4]. For example, in figure 3(a),
it was determined that there are five clusters (𝑛𝑐𝑙𝑢𝑠𝑡 = 5).
However, there are only two objectives (𝑀 = 2). Therefore,
𝑘𝑛𝑒𝑖𝑔ℎ = 1. In other words, each cluster is determined to have

one neighbor and therefore one potential gap with it. This
is supported by figure 3(a) where there is visually one gap
associated with each side-by-side pairing.(

𝑛𝑐𝑙𝑢𝑠𝑡
2

)
is the total number of pairs between clusters. This

notation is defined below:(
𝑛𝑐𝑙𝑢𝑠𝑡

2

)
=

𝑛𝑐𝑙𝑢𝑠𝑡 !
2!(𝑛𝑐𝑙𝑢𝑠𝑡 − 2)!

For example, in figure 3(a), we found 𝑛𝑐𝑙𝑢𝑠𝑡 = 5. Therefore,
we find that

(5
2
)
= 10. This means that there are 10 total

combinations of clusters and we want to check a maximum
of 10 times.
After the clusters are organized in descending order, the

most isolated cluster being first, a gap point needs to be
generated based on the selected cluster 𝑗 and its closest
𝑘𝑛𝑒𝑖𝑔ℎ neighbors. The gap point is made by averaging the
medoid of cluster 𝑗 and its 𝑘𝑛𝑒𝑖𝑔ℎ neighbors. A medoid of
a cluster is defined as the point that keeps dissimilarities
between all points in the cluster to a minimum.

4.3 Validating and Classifying Gaps
Once potential gap points have been found, they need to be
validated and then be classified as natural or artificial. Recall
that a gap being natural means that a point did not fill the
gap. In contrast, an artificial gap is one that was filled by
using an R-NSGA algorithm.

4.3.1 Gap Validation. After potential gap points have
been found, there needs to be a way to validate if they are
gaps. This is done with equation 1:

𝑑𝐺−𝐸𝑀𝑂 =

1
𝐾

∑𝐾
𝑖=𝑖 (min𝑁𝑗=1 ∥𝐺𝑖 − 𝐹 𝑗 ∥2)

1
𝑁

∑𝑁
𝑖=1 (min𝑁𝑗=1 ∥𝐹𝑖 − 𝐹 𝑗 ∥2)

(1)

Equation 1 calculates 𝑑𝐺−𝐸𝑀𝑂 . The numerator averages
the distance between each potential gap point in the set
𝐾𝑑 (𝐺𝑖 , 𝑖 = 1, . . . , 𝐾) and the Pareto front point (𝐹 𝑗 , 𝑗 =

1, . . . , 𝑁 ) closest to each potential gap point.𝐾 is the number
of gap points inside of 𝐾𝑑 and N is the number of points in
the set of original Pareto front points, 𝑁𝐷 . The denomina-
tor calculates the average distance the Pareto front points
are from each other. If 𝑑𝐺−𝐸𝑀𝑂 > 1, then the distance be-
tween the gap point(s) and the Pareto front points is greater
than the distance the Pareto front points are from each other.
Therefore, the gap is valid. An example of validated gaps
can be seen in figure 3(b), where there are visibly three gap
points. On the other hand, when 𝑑𝐺−𝐸𝑀𝑂 < 1, it means the
gap point(s) are closer to the Pareto front points than the
Pareto front points are from each other, meaning the gap
isn’t valid. An invalid gap shows that that location does not
need to be searched further and is sufficiently filled. [4]

4.3.2 Is the Gap Natural? Now that the algorithm has
validated gaps, R-NSGAwill be run and gaps can be classified
as natural or artificial. This is determined by equation 2:
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Algorithm 1: Gap point identification (based on Pel-
licer et al [4]).
Input :Set of non-dominated points 𝑁𝐷 , number of

desired gap points 𝑔.
Output :Set of gap points up to size 𝑔.

1 𝐾𝑑 is initialized to an empty set of gap points;
2 Calculate the optimal number of clusters 𝑛𝑐𝑙𝑢𝑠𝑡 for

𝑁𝐷 and run a clustering algorithm on 𝑁𝐷 .
3 Define 𝑘𝑛𝑒𝑖𝑔ℎ = min(𝑀,𝑛𝑐𝑙𝑢𝑠𝑡 ) − 1, which determines

how many gaps between clusters there are. Recall
that𝑀 is the number of objectives the problem has;

4 while 𝑔 gap points have not been found and
(
𝑛𝑐𝑙𝑢𝑠𝑡

2
)

loops haven’t been checked, do
5 For each pair of clusters, calculate the distance

between the two closest points of the pair;
6 Evaluate the average distance that each cluster is

from the 𝑘𝑛𝑒𝑖𝑔ℎ closest clusters to it;
7 Sort clusters is descending order so the most

isolated cluster is first;
8 Select cluster 𝑗 as the most isolated cluster;
9 do
10 Calculate a gap point as the average of the

medoids for 𝑗 and its 𝑘𝑛𝑒𝑖𝑔ℎ closest clusters;
11 if gap point is validated (see section 4.3.1) and

doesn’t already exist in 𝐾𝑑 then
12 Add cluster 𝑗 into 𝐾𝑑 and create a new

cluster for 𝑗 ;
13 Go to line 4;
14 else
15 Choose the next sorted cluster as 𝑗 ;
16 Go to line 10;
17 end
18 while Gap point 𝑗 has not been validated;
19 end

𝑑𝑅−𝐺 =
1
𝑅

𝑅∑︁
𝑖=1

min𝐾𝑗=1 ∥𝑅𝐹𝑖 −𝐺 𝑗 ∥2
min𝑁𝑗=1 ∥𝑅𝐹𝑖 − 𝐹 𝑗 ∥2

(2)

𝑑𝑅−𝐺 is the average of a ratio. The numerator is the dis-
tance that the closest R-NSGA point (𝑅𝐹𝑖 , 𝑖 = 1, . . . , 𝑅) is
from each gap point. The denominator is the shortest dis-
tance each R-NSGA point is from an original NSGA Pareto
front point. Therefore, if 𝑑𝑅−𝐺 < 1, that means that the R-
NSGA points are (on average) closer to the gap points than
they are to the NSGA points This classifies the gap as arti-
ficial and is considered filled. Vice versa, when 𝑑𝑅−𝐺 > 1,
it means the R-NSGA points are closer to the Pareto front
points (on average) than they are to the gap points This clas-
sifies the gap as natural. A natural gap means that no point
can exist in that location of the problem space. [4]

5 Results
This section explains the test problems used by Pellicer et
al [4] and the results they found. In all of the figures provided,
such as figure 3(b), the grey dots (F-NSGA) correspond to the
original Pareto front of the given problem. This is generated
using an NSGA algorithm. Black “x"’s can correspond to
two things: a medoid or a gap point. In images containing
just the Pareto front such as figure 3(a), the black “x" cor-
responds to the medoids. In images that contain R-NSGA
points (figure 3(b)), the black“x" corresponds to gap points.
Additionally, blue bots correspond to the Pareto front points
found by R-NSGA. Red dots signify the closest R-NSGA point
to the gap point(s) (black “x").

5.1 ZDT3 Results
ZDT3 is a two-objective test problem that was created by
Zitzler et al [7]. ZDT3 has a discontinuous Pareto front as
seen in figure 3(a). Pellicer et al [4] attempts to fill these
discontinuities by using R-NSGA-II to fill validated gaps.

There are distinct breaks in the graph as seen in figure 3(a).
In this figure, f1 and f2 represent the two objectives that
ZDT3 is trying to minimize. Next, they utilized algorithm 1
to find one gap point and three gap points.

The results of equation 1 (𝑑𝐺−𝐸𝑀𝑂 ) and equation 2 (𝑑𝑅−𝐺 )
can be seen in table 1. When one gap point was being de-
tected, 𝑑𝐺−𝐸𝑀𝑂 = 2.876. Since 𝑑𝐺−𝐸𝑀𝑂 > 1, this shows that
the found gap point is farther away from its average NSGA-
II point than the average distance NSGA-II points are from
each other. Since the gap is now validated, we can run R-
NSGA-II around the gap point to try to fill it. Once R-NSGA-II
was run, 𝑑𝑅−𝐺 = 1929.522. This number is greater than 1,
which signifies the R-NSGA-II points are closer to the origi-
nal NSGA-II points than the closest R-NSGA-II point is to the
gap point. Moreover, this means that the gap is considered
to be natural. Recall that a natural gap point implies that no
point can exist in that portion of the problem space. A graph
for these results can be found in Pellicer et al [4]. In other
words, R-NSGA-II found points already found by NSGA-II
and could not find additional points in the gap provided.

Additionally, ZDT3 was tested on three gap points. These
three points are visualized on figure 3(b). The 𝑑𝐺−𝐸𝑀𝑂 value
of these three gap points was 5.316, which is over 1 and there-
fore validates the gap points. Once the R-NSGA-II points are
generated, 𝑑𝑅−𝐺 = 35.897. Since this value is greater than 1,
the R-NSGA-II points are closer to NSGA-II points than they
are from the gap points. Therefore, the gaps are considered
natural. As seen in figure 3(b), all three gap points are vis-
ibly not filled with R-NSGA-II “rediscovering" preexisting
NSGA-II points.

5.2 DTLZ2 Results
DTLZ problems were created by Deb et al [2]. DTLZ2 is
a three-objective test problem that has a quarter spherical
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(a) Pareto front generated by the
ZDT3 problem.

(b) Three gap points and the R-
NSGA-II points generated.

Figure 3. Results for ZDT3 by Pellicer et al [4].

Problem 𝑀 𝐾𝑑 𝑑𝐺−𝐸𝑀𝑂 𝑑𝑅−𝐺

ZDT3 2 1 2.876 1969.522
2 3 5.316 35.897

DTLZ2𝑜𝑟𝑖𝑔 3 1 0.0006, 0.604, 0.540 —

DTLZ2𝑣𝑜𝑖𝑑 3 1 1.330 0.680
3 5 1.124 0.572

DTLZ7

3 1 3.706 9.511
3 3 3.322 5.324
3 5 3.510 4.750
5 1 1.044 1.145

Steel-
Industry

5 1 2.302 1.442
5 3 2.430 1.688

Table 1. Results from Pellicer et al [4]for all test problems.

Pareto front. DTLZ2 is used in two different forms in this
paper: DTLZ𝑜𝑟𝑖𝑔 and DTLZ2𝑣𝑜𝑖𝑑 [4]. DTLZ𝑜𝑟𝑖𝑔 is the origi-
nal Pareto front with no gaps. This acts as a sanity check
for algorithm 1. DTLZ2𝑣𝑜𝑖𝑑 is the Pareto front with points
intentionally removed from the center as seen in figure 4(a).
Therefore, Pellicer et al [4] expected to find artificial gaps.

DTLZ7 is a five-objective test problem that consists of
four patches in its Pareto front. Both DTLZ2 and DTLZ7 use
NSGA-III for their Pareto fronts and R-NSGA-III for filling
validated gaps.

For DTLZ2𝑜𝑟𝑖𝑔 , algorithm 1 was run three times in order to
ensure the result was correct. 𝑑𝐺−𝐸𝑀𝑂 was calculated to be
0.0006, 0.604, and 0.540 for each of the three runs. Since this
value is less than 1, the gaps were too close to the generated
NSGA-III points to be considered gaps. Therefore, the gaps
aren’t valid and R-NSGA-II was never run.
For DTLZ2𝑣𝑜𝑖𝑑 , Pellicer et al [4] chose to run their algo-

rithm twice: once to locate one gap point and the second
time to locate five gap points. For the one gap point, which
can be seen in Pellicer et al [4], 𝑑𝐺−𝐸𝑀𝑂 = 1.330, meaning
that the gap point was validated. Once R-NSGA-III points
were generated, 𝑑𝑅−𝐺 was found to be 0.680. Since 𝑑𝑅−𝐺 < 1,
the R-NSGA-III points were closer to the gap points than

(a) The Pareto front generated by
NSGA-III.

(b) Five gap points and the R-NSGA-
III points generated.

Figure 4. Results for DTLZ2𝑣𝑜𝑖𝑑 found by Pellicer et al [4].

they were to the NSGA-III points. In this case, the gap is
artificial and was able to be filled. This is important because
it shows that the original Pareto front missed Pareto-optimal
solutions.

In the case of the five gap points, which are visualized in
figure 4(b), Pellicer et al [4] found 𝑑𝐺−𝐸𝑀𝑂 = 1.124, which
means the gap points have been validated and R-NSGA-III
can be used. Then, using equation 2, 𝑑𝑅−𝐺 was found to be
0.572, meaning the R-NSGA-III points are closer to the gap
points than they are to the NSGA points. Therefore, the gaps
are artificial and were filled. Artificial gaps signify that we
found previously undiscovered points.

5.3 DTLZ7 Results
Pellicer et al [4] ran DTLZ7 as both a three-objective and a
five-objective problem. The three-objective Pareto front can
be seen in figure 5(a). The five-objective Pareto front and the
three-objective one and three gap point figures can be seen in
Pellicer et al [4]. As shown in table 1, DTLZ7 is observed with
one, three, and five gap points when it has three objectives
and one gap point when there are five objectives.
For one gap point, Pellicer et al [4] received a 𝑑𝐺−𝐸𝑀𝑂 =

3.706, validating the gap. The obtained 𝑑𝑅−𝐺 was 9.511. Since
𝑑𝑅−𝐺 > 1, the gap is considered to be natural. Similarly, when
searching for three gaps, 𝑑𝐺−𝐸𝑀𝑂 = 3.322 and 𝑑𝑅−𝐺 = 5.324.
Therefore, all three gaps are considered to be natural. Finally,
with five gaps (visualized in figure 5(b)), 𝑑𝐺−𝐸𝑀𝑂 was found
to be 3.510 and 𝑑𝑅−𝐺 was found to be 4.750. Therefore, the
five gaps are also considered to be natural.
Pellicer et al [4] also tested five objectives to observe the

scalability of algorithm 1. This test was conducted with one
gap point, which resulted in 𝑑𝐺−𝐸𝑀𝑂 = 1.044. Since this is
greater than 1, the gap is validated. The graphs can be found
in Pellicer et al [4]. Then, Pellicer et al [4] utilize equation 2
to measure whether the R-NSGA-III points filled the gap.
With a 𝑑𝑅−𝐺 value of 1.145, the gap is considered natural.
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(a) Pareto front. (b) Five gap points with R-NSGA-III
points.

Figure 5. Results for DTLZ7 found by Pellicer et al [4].

5.4 Steel Industry Results
This is a real-world problem in the steel industry. This prob-
lem involves cutting slabs of steel, transforming them into
coils, and distributing the coils to the customer. The problem
contains five objectives to optimize, which are [4]:

1. Minimize the time it takes to complete the order.
2. Prioritize more important projects and ones with a

closer deadline than others.
3. The production cost of the project.
4. The cost for maintaining the equipment.
5. Minimize inconvenient schedules such as being un-

derstaffed and working on holidays.
Pellicer et al [4] searched for one gap point and three gap

points. For the singular gap point, Pellicer et al [4] found
𝑑𝐺−𝐸𝑀𝑂 to be 2.302. Once R-NSGA-III was ran, 𝑑𝑅−𝐺 = 1.442.
this means the gap is natural and was not filled. When
three gap points were located, Pellicer et al [4] found a
𝑑𝐺−𝐸𝑀𝑂 value of 2.430. Once R-NSGA-III points were gener-
ated, 𝑑𝑅−𝐺 = 1.688. Since 𝑑𝑅−𝐺 > 1, the gap wasn’t filled and
is considered to be natural. These results suggest that there
are real discontinuities in this problem and there are solu-
tions to this problem that simply aren’t feasible or possible.
All figures for this problem can be found in Pellicer et al [4].

6 Conclusion
In this paper, I outlined the research of Pellicer et al [4] and
their three-step methodology for detecting, validating, and
filling gaps on the Pareto front. Pellicer et al [4] tested this
methodology on four test problems and found interesting re-
sults. Gaps were validated and were found to be both natural
and artificial.
One area where Pellicer et al’s [4] methodology is being

applied is the development of drones carrying a slung-load.
These drones have the challenge of avoiding obstacles along
their path. A slung-load is a piece of cargo that is hang-
ing down from the drone by some form of rope. With this

new methodology, Ergezer was able to identify gaps and
conclude that the gaps were natural and could not be filled.
This allowed Ergezer to ensure he had the complete Pareto
front. [3]
Based on their current success, Pellicer et al hope to im-

prove on their current work in three aspects [4]:
1. Find multiple gap points simultaneously using a more

sophisticated algorithm.
2. Develop a way for algorithm 1 to dynamically adapt

and find the optimal number of clusters.
3. Apply this methodology to higher dimension prob-

lems to further test scalability.
Note that in each of the test problems, all of the validated

gaps were found to be natural except for DTLZ2𝑣𝑜𝑖𝑑 , where
points were intentionally removed from its Pareto front. This
highlights a big question. Are gaps in most cases indeed
natural and NSGA is a good algorithm for finding all of the
best possible points? Or, are there problems where NSGA
produces artificial gaps and R-NSGA is able to fill them?
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