
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Erik Rauer

intuitR: A Theorem Prover for Intuitionistic
Propositional Logic

Erik Rauer
rauer007@morris.umn.edu

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
A constructive proof proves the existence of a mathematical
object by giving the steps necessary to construct said object.
Proofs of this type can be interpreted as an algorithm for
creating such an object. Intuitionistic Propositional Logic (IPL)
is a propositional logic system wherein all valid proofs are
constructive. intuitR is a theorem prover for IPL, that is, it
determines whether a given formula is valid in IPL or not. In
this paper, we describe how intuitR determines the validity
of a formula and review its performance. When compared
on a benchmark set of problems, intuitR was determined to
solve more problems and to be of comparable speed or better
than other IPL-provers.

Keywords: theorem provers, intuitionistic logic, automated
deduction, SAT solvers

1 Introduction
Imagine your task is to write a program which takes a planar
graph (i.e. a graph whose edges do not overlap) as the input
and which outputs the same graph with each vertex assigned
a color such that no two adjacent vertices have the same color.
You want this coloring to use as few colors as possible and
you want to be confident that the output satisfies the criteria
given. After doing some research you come across the Four
Color Theorem, which states that at most four colors are
necessary to color a planar graph as described.While reading
the proof of this theorem, you realize that it gives a step-by-
step process with which you can properly color any planar
graph using only four colors. So, you write your program
based on this process.
A proof such as the one described above, where the ex-

istence of some mathematical object is proved by explicitly
showing how to construct said object, is called a construc-
tive proof. As implied in the Four Color Theorem example,
a constructive proof of a property can be interpreted as an
algorithm for creating an object with said property. While
it might not necessarily be the most efficient, such an algo-
rithm has been mathematically shown to provide the desired
output. This equivalence between constructive proofs and
algorithms was formalised as the Curry-Howard correspon-
dence [6].

As an alternate example, consider trying to prove the exis-
tence of irrational numbers 𝑎 and 𝑏, such that 𝑎𝑏 is rational.
A non-constructive proof might be as follows: Assume that
√
2
√
2 is either rational or irrational. If it is rational, let 𝑎 =

√
2

and 𝑏 =
√
2 and the proof is complete. If it is irrational, let

𝑎 =
√
2
√
2 and let 𝑏 =

√
2. Then 𝑎𝑏 =

(√
2
√
2
)√2

=
√
22 = 2,

which is rational, so the proof is complete. This proof is non-

constructive since we never actually show whether
√
2
√
2 is

rational or irrational, we just show that no matter which of
these two situations is the case, a pair of irrational numbers
that fits the given criteria can be found.
Intuitionistic Logic is a system of logic in which all valid

proofs are constructive. Intuitionistic logic is the same as
classical logic, except that it does not allow the Law of Ex-
cluded Middle 𝑝 ∨ ¬𝑝 , or the Law of Double Negation Elim-
ination ¬¬𝑝 ≡ 𝑝 [7]. Notice that in the non-constructive
example above, the first step is to apply 𝑝 ∨ ¬𝑝 , where

𝑝 =

(√
2
√
2
is rational

)
, making the proof invalid in intuition-

istic logic. Intuitionistic Propositional Logic (IPL) is the propo-
sitional form of intuitionisitic logic. IPL uses the same logical
symbols as classical propositional logic, namely conjunction
∧, disjunction ∨, implication→, true ⊤, and false ⊥. We also
include negation ¬, where ¬𝑃 is considered shorthand for
𝑃 → ⊥. Note that IPL is a propositional logic, so it does not
include the quantifiers ∀ and ∃.

For a given logical formula 𝛼 , we say that 𝛼 is provable or
valid in a system of logic, if the axioms of said system can be
used to derive 𝛼 . If 𝛼 can not be derived from these axioms,
it is considered unprovable or not valid. A theorem prover is a
program that, when given a formula 𝛼 , determines whether
it is valid or not. intuitR is a theorem prover for Intuitionistic
Propositional Logic, which was created by Fiorentini [4]. It is
based on another theorem prover, intuit, which was created
by Claessen and Rosén [2]. Both intuit and intuitR take a
given propositional formula 𝛼 as input and return whether
or not 𝛼 is valid in intuitionistic propositional logic (IPL-
valid) or not. Theorem provers of this type are also called
IPL-provers.
In this paper, we discuss intuitR and how it works in de-

tail. To start, Section 2 will introduce SAT solvers (2.1) and



intuitR: A Theorem Prover for Intuitionistic Propositional Logic

Kripke Semantics (2.2), two necessary background concepts
that intuitR heavily relies upon. Section 3 explains the intu-
itR prover itself. This includes the clausification procedure
which converts the formula into a special form for intuitR
to use, the two key logic rules intuitR is based on, and the
proveR algorithm itself, which determines the validity of the
given formula. Finally, intuitR’s speed and ability to correctly
solve IPL-validity problems is compared to other IPL provers,
including intuit. The methods and results of this comparison
are detailed in Section 4.

2 Background
In this section, we introduce the important background con-
cepts needed to understand intuitR. This includes SAT solvers,
a tool used to determine the validity of formulas in classi-
cal logic, and Kripke semantics, which are a formal way to
determine whether a formula is IPL-valid or not.

2.1 SAT Solvers
The key factor that differentiates intuit and intuitR from
other IPL-provers is the use of satisfiability (SAT) solvers.
A satisfiability solver is an algorithm which solves the

Boolean Satisfiability Problem (SAT): Given a propositional
formula 𝛼 , is there an assignment of the propositional vari-
ables in 𝛼 to either 𝑇𝑅𝑈𝐸 or 𝐹𝐴𝐿𝑆𝐸, such that 𝛼 is satis-
fiable (i.e. evaluates to 𝑇𝑅𝑈𝐸)? If yes, the SAT solver will
return said assignment [5]. For example, if given the formula
𝛼 = 𝑝 ∧ ¬𝑞, a SAT solver would return that 𝛼 is satisfiable
with 𝑝 = 𝑇𝑅𝑈𝐸 and 𝑞 = 𝐹𝐴𝐿𝑆𝐸.

Both intuit and intuitR use an implementation of theMINI-
SAT SAT solver [3]. However, both provers can be run using
any SAT solver, so long as it supports the following opera-
tions [4]:

newSolver()

• Create a new SAT solver
addClause(𝑠 , 𝜌)

• Add clause (a disjunction of propositional variables)
𝜌 to SAT solver’s existing clauses 𝑅(𝑠)

satProve(𝑠 , 𝐴, 𝑔)

• Use SAT solver 𝑠 to prove 𝑔 based on the clauses 𝑅(𝑠)
that have already been added and the set of proposi-
tional variables 𝐴 that are assumed to be true

• Returns:
– YES(𝐴′), if 𝑅(𝑠) and 𝐴′ ⊆ 𝐴 being true makes 𝑔

true
– NO(𝑀), if 𝑅(𝑠) and the set of propositional vari-

ables𝑀 ⊇ 𝐴 are both true, but 𝑔 is false

2.2 Kripke Semantics and Models
There are a number of different ways to determine if a given
propositional formula is IPL-valid, such as Beth’s tableaux,
Heyting Algebras, and Kripke semantics [7]. Of these, both

Figure 1. Visualization of two Kripke models. a) is a counter
model for 𝑝∨¬𝑝 as described in Section 2.2. b) is an arbitrary
example Kripke model. Bottom nodes (∅ in a and {𝑐} in b)
are the roots of the models.

intuit and intuitR rely on Kripke semantics, which work as
follows:

For any propositional formula 𝛼 , there exist a finite num-
ber of Kripke models, which will be described in detail below.
A Kripke model ^ can either force the propositional formula,
denoted^ ⊨ 𝛼 , or not force the formula, denoted^ ⊭ 𝛼 , which
will be defined below. The formula 𝛼 is IPL-valid iff for every
possible Kripke model ^ , ^ ⊨ 𝛼 . A Kripke model where ^ ⊭ 𝛼
is called a Kripke counter model for 𝛼 . So determining the
IPL-validity of 𝛼 is the same as determining whether or not
a Kripke counter model of 𝛼 can be found.
A Kripke model is a quadruple (𝑊, ≤, 𝑟 , 𝛿), where𝑊 is a

set of nodes, or worlds, and 𝛿 is a mapping from each world
to a set of propositional variables that are considered true in
that world. Additonally, ≤ is a partial ordering of the worlds
in𝑊 such that for all 𝑘, 𝑘 ′ ∈𝑊 , if 𝑘 ≤ 𝑘 ′, then 𝛿 (𝑘) ⊆ 𝛿 (𝑘 ′).
The world 𝑟 ∈𝑊 is called the root and is the minimumworld,
i.e. 𝑟 ≤ 𝑘 for every other world 𝑘 ∈ 𝑊 [7]. Kripke models
can be thought of as a tree-like graph structure, where each
world is a node in the tree containing the set of propositional
variables associated with that world. Then 𝑟 is the root of
the tree and each branch is a chain of worlds that are ≤ to
each other (see Figure 1). Note that this is not an actual tree
since the branches can merge back together.
For a Kripke model with a set of worlds𝑊 , every world

𝑘 ∈ 𝑊 can either force a propositonal formula 𝛼 , denoted
by 𝑘 ⊨ 𝛼 , or not force the formula, denoted by 𝑘 ⊭ 𝛼 . A
world𝑘 forces a propositional formula based on the following
rules [7]:

𝑘 ⊨ 𝑝, if 𝑝 ∈ 𝛿 (𝑘) (1)
𝑘 ⊭ ⊥ (2)

𝑘 ⊨ 𝑃 ∧𝑄, if 𝑘 ⊨ 𝑃 and 𝑘 ⊨ 𝑄 (3)
𝑘 ⊨ 𝑃 ∨𝑄, if 𝑘 ⊨ 𝑃 or 𝑘 ⊨ 𝑄 (4)

𝑘 ⊨ ¬𝑃, if for all 𝑘 ′ ≥ 𝑘, 𝑘 ′ ⊭ 𝑃 (5)
𝑘 ⊨ 𝑃 → 𝑄, if for every 𝑘 ′ ≥ 𝑘, if 𝑘 ′ ⊨ 𝑃, then 𝑘 ′ ⊨ 𝑄 (6)



Erik Rauer

In IPL, a Kripke model with root 𝑟 forces a propositional
formula 𝛼 iff 𝑟 ⊨ 𝛼 [7].

As an example, consider the formula 𝛼 = 𝑝∨¬𝑝 , which we
know from the definition of intuitionistic logic to not be IPL-
valid. Now consider the Kripke model ^ = ({𝑤,𝑤 ′}, ≤,𝑤, 𝛿),
where 𝛿 (𝑤) = ∅, 𝛿 (𝑤 ′) = {𝑝}, and𝑤 < 𝑤 ′ (see Figure 1) [7].
Since 𝑤 is the root, in order for ^ ⊨ 𝛼 , it must be true that
𝑤 ⊨ 𝛼 . So from (4) above, in order for this to be the case either
𝑤 ⊨ 𝑝 or 𝑤 ⊨ ¬𝑝 . Since 𝑤 = ∅, 𝑤 ⊭ 𝑝 by (1). Additionally,
from (5) above, 𝑤 ⊨ ¬𝑝 only if both 𝑤 ⊭ 𝑝 and 𝑤 ′ ⊭ 𝑝 . But
since 𝛿 (𝑤 ′) = {𝑝}, (1) says that 𝑤 ′ ⊨ 𝑝 , making 𝑤 ⊭ ¬𝑝 . So
𝑤 ⊭ 𝛼 , making ^ a counter model for 𝛼 .

3 intuitR
This section focuses on how the intuitR theorem prover
works. To start, we describe the clausification procedure
which converts a formula into a special form for intuitR to
utilize. Next, the two logic rules intuitR is based upon are
described and we show how they can be used to determine
the IPL-validity of a formula. Finally, the proveR algorithm,
which determines the IPL-validity of a given formula, is ex-
plained.

3.1 Clausification
In order to work with a given propositional formula 𝛼 , both
intuit and intuitR require the formula to be in a special form.
This special form has the same IPL-validity as 𝛼 , it is just eas-
ier for intuit and intuitR to work with. This is done through
the clausification procedure detailed in [2] and which will be
described below. The final form of this procedure consists
of a set of flat clauses and a set of implication clauses. A flat
clause is a formula of the shape:

(𝑎1 ∧ 𝑎2 ∧ ... ∧ 𝑎𝑛) → (𝑏1 ∨ 𝑏2 ∨ ... ∨ 𝑏𝑚)
where𝑎1, ..., 𝑎𝑛 and𝑏1, ..., 𝑏𝑚 are propositional variables. Note
that when 𝑛 = 0, a flat clause simplifies to the form 𝑏1 ∨𝑏2 ∨
...∨𝑏𝑚 . An implication clause on the other hand is a formula
of the shape:

(𝑎 → 𝑏) → 𝑐

where 𝑎, 𝑏, 𝑐 are all propositional variables. Through the
clausification procedure, a propositional formula 𝛼 gets con-
verted into the form(∧

𝑅 ∧
∧

𝑋

)
→ 𝑔 (7)

where 𝑔 is a propositional variable and
∧

denotes set con-
junction, i.e.

∧
𝐴 = (𝑎1 ∧𝑎2 ∧ ...∧𝑎𝑛) for𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑛}.

Additionally, in this case and for the rest of the paper, 𝑅
will denote a set of flat clauses and 𝑋 will denote a set of
implication clauses.
The first step in the clausification of the formula 𝛼 is to

turn it into the form 𝐴 → 𝑔 where 𝑔 is a propositional
variable. If it is not already in this form, we simply introduce
a new variable 𝑔 and change it to (𝛼 → 𝑔) → 𝑔, which has
the same IPL-validity as 𝛼 [2]. From there a combination of

Figure 2. Rules used for the clausification procedure. A, B,
C are all subformulas, p is a propositional variable, and a, b,
c are newly introduced propositional variables. From [2].

the transformations in Figure 2 are applied to the subformula
𝐴 from 𝐴 → 𝑔 until the formula is in the form shown in
Equation 7. Transformations (1) and (2) are used to introduce
implications to sub-formulas, so that they may be used by
the other transformations. Transformations (3), (4), and (5)
ensure that the formula has the desired shape of primarily
flat and implication clauses. The final five transformations
“pull” sub-formulas out of the existing flat and implication
clauses by introducing new propositional variables. Finally,
we require that for each implication clause (𝑎 → 𝑏) → 𝑐 ∈ 𝑋 ,
the flat clause (𝑏 → 𝑐) is in 𝑅, where 𝑅 and 𝑋 are the sets
in Equation 7. This can be done by simply taking every
(𝑎 → 𝑏) → 𝑐 ∈ 𝑋 and adding (𝑏 → 𝑐) to 𝑅 as the final
step in the clausification procedure [2]. We call the resulting
formula a reduced-sequent, or r-sequent for short, and denote
it as 𝑅,𝑋 ⇒ 𝑔.

As an example, consider applying the clausification proce-
dure to the propositional formula 𝛼 = 𝑝 ∨ ¬𝑝 . Since 𝛼 is not
in the form 𝐴 → 𝑔, we first introduce a new variable 𝑔 as de-
scribed above, resulting in the formula ((𝑝 ∨¬𝑝) → 𝑔) → 𝑔.
Next, the rules of Figure 2 are applied to the LHS of the
formula as follows:

((𝑝 ∨ ¬𝑝) → 𝑔) → 𝑔

↠((𝑝 → 𝑔) ∧ (¬𝑝 → 𝑔)) → 𝑔 (Transf. 3)
↠((𝑝 → 𝑔) ∧ ((𝑝 → ⊥) → 𝑔)) → 𝑔 (Transf. 2)

This is in the same shape as in Equation 7, with 𝑅 = {𝑝 → 𝑔}
and 𝑋 = {(𝑝 → ⊥) → 𝑔}. Finally, we add ⊥ → 𝑔 to 𝑅,
resulting in the r-sequent with 𝑅 = {𝑝 → 𝑔,⊥ → 𝑔} and
𝑋 = {(𝑝 → ⊥) → 𝑔}.

Similar to other propositional formulas, an r-sequent can
be considered IPL-valid or not IPL-valid. We say an r-sequent
𝑅,𝑋 ⇒ 𝑔 is IPL-valid if for every Kripke model (see Sec-
tion 2.2) ^ with root 𝑟 , 𝑟 ⊨ (𝑅 ∪ 𝑋 ) implies that 𝑟 ⊨ 𝑔. So if
there exists any Kripke model ^ where 𝑟 ⊨ (𝑅 ∪𝑋 ) and 𝑟 ⊭ 𝑔,
𝑅,𝑋 ⇒ 𝑔 is not IPL-valid and we call ^ a counter model.



intuitR: A Theorem Prover for Intuitionistic Propositional Logic

𝑐𝑝𝑙0 :
𝑅 ⊢𝑐 𝑔

𝑅,𝑋 ⇒ 𝑔

𝑐𝑝𝑙1 :
𝑅,𝐴 ⊢𝑐 𝑏 𝑅, 𝜑, 𝑋 ⇒ 𝑔

𝑅,𝑋 ⇒ 𝑔

(𝑎 → 𝑏) → 𝑐 ∈ 𝑋

𝐴 ⊆ 𝑉

𝜑 =
∧

(𝐴\{𝑎}) → 𝑐

Figure 3. The rules 𝑐𝑝𝑙0 and 𝑐𝑝𝑙1 from [4]. Note that 𝑅 ⊢𝑐 𝑔
and 𝑅,𝐴 ⊢𝑐 𝑏 is notation saying that 𝑅 proves 𝑔 in classical
logic and that 𝑅 and 𝐴 together prove 𝑏 in classical logic.

By performing the clausification procedure on 𝛼 we do not
change its IPL-validity, i.e. 𝛼 is IPL-valid iff the associated
r-sequent 𝑅,𝑋 ⇒ 𝑔 produced by the clausification procedure
of 𝛼 is also IPL-valid. So the issue of determining whether a
formula is IPL-valid or not can be reduced to determining
whether its associated r-sequent is IPL-valid or not [4].

3.2 Logic Rules
intuitR relies on two rules which Fiorentini [4] names 𝑐𝑝𝑙0
and 𝑐𝑝𝑙1 (see Figure 3). 𝑐𝑝𝑙0 is based on the work in [1] and
says that if a set of flat clauses 𝑅 can be used to prove a
propositional variable 𝑔 in classical logic, then the same set
of flat clauses can also be used to prove 𝑔 in IPL. If this is
the case, then for any Kripke model ^, such that ^ ⊨ 𝑅, it
must also be true that ^ ⊨ 𝑔. Thus, any r-sequent with 𝑅

as the set of flat clauses must be IPL-valid. 𝑐𝑝𝑙0 is one way
in which intuitR utilizes SAT solvers. By adding all the flat
clauses in 𝑅 to a SAT solver 𝑠 and then calling satProve(𝑠 , ∅,𝑔)
(see Section 2.1), a SAT solver can be used to determine
whether the initial condition of 𝑐𝑝𝑙0 holds. If it does, we can
apply 𝑐𝑝𝑙0 to show that an r-sequent with 𝑅 as the set of flat
clauses is IPL-valid.
𝑐𝑝𝑙1, which is discussed in detail in [4], is best understood

“backwards” since that is how it is used by intuitR. Given an r-
sequent 𝑅,𝑋 ⇒ 𝑔, 𝑐𝑝𝑙1 says that if a certain condition holds,
a new flat clause can be added to 𝑅. Doing so gives a new
r-sequent 𝑅′, 𝑋 ⇒ 𝑔. The IPL-validity of this new r-sequent
implies the IPL-validity of the original, i.e. if 𝑅′, 𝑋 ⇒ 𝑔 is
IPL-valid, then 𝑅,𝑋 ⇒ 𝑔 must also be IPL-valid. Using 𝑐𝑝𝑙1
requires an implication clause (𝑎 → 𝑏) → 𝑐 from 𝑋 . For any
such (𝑎 → 𝑏) → 𝑐 ∈ 𝑋 , if the original set of flat clauses 𝑅
and a set of propositional variables (denoted 𝐴) can together
be used to prove 𝑏 in classical logic, then a new flat clause
𝜑 can be added to 𝑅 to create 𝑅′. This new flat clause is
𝜑 =

∧(𝐴\{𝑎}) → 𝑐 .
Similar to 𝑐𝑝𝑙0, determining whether 𝜑 can be added is

done by a SAT solver. Namely, for a SAT solver 𝑠 , we add all
the flat clauses from 𝑅 to 𝑠 , before calling satSolve(𝑠 , 𝐴, 𝑏).
If the SAT solver says that the condition holds, 𝑐𝑝𝑙1 can be
applied to add the new 𝜑 to 𝑅. The problem then becomes

finding an appropriate implication clause and the correspond-
ing set of propositional variables 𝐴, so that 𝑐𝑝𝑙1 can be used.
How intuitR decides which clause and set of variables to use
is described in Section 3.3 below.

Given an r-sequent 𝑅0, 𝑋 ⇒ 𝑔, the rules 𝑐𝑝𝑙0 and 𝑐𝑝𝑙1 can
be used to determine the IPL-validity of 𝑅0, 𝑋 ⇒ 𝑔. First, we
determine whether 𝑅0 proves𝑔 classically. If it does, 𝑐𝑝𝑙0 says
that 𝑅0, 𝑋 ⇒ 𝑔 is IPL-valid. If it does not, it is not necessarily
the case that 𝑅0, 𝑋 ⇒ 𝑔 is not IPL-valid, so we attempt to use
𝑐𝑝𝑙1 “backwards” as described above. To do so, we search for
an implication clause that satisfies the condition for 𝑐𝑝𝑙1 to
be used and add the corresponding flat clause. In doing so,
we have created a new r-sequent 𝑅1, 𝑋 ⇒ 𝑔. Once again, we
check whether 𝑐𝑝𝑙0 can be used to determine the IPL-validity
of this new r-sequent. If it can, by 𝑐𝑝𝑙1, the original r-sequent
𝑅0, 𝑋 ⇒ 𝑔 must also be IPL-valid. If not, we attempt to
use 𝑐𝑝𝑙1 again to create another r-sequent 𝑅2, 𝑋 ⇒ 𝑔. This
process of checking 𝑐𝑝𝑙0 and then adding a flat clause via 𝑐𝑝𝑙1
continues until either 𝑐𝑝𝑙0 shows an r-sequent 𝑅𝑛, 𝑋 ⇒ 𝑔 is
IPL-valid, in which case the original r-sequent 𝑅0, 𝑋 ⇒ 𝑔 is
also IPL-valid, or until 𝑐𝑝𝑙1 can not be used to add a new flat
clause, in which case the original r-sequent 𝑅0, 𝑋 ⇒ 𝑔 is not
IPL-valid. One of these must eventually happen, since there
are a finite number of implication clauses in 𝑋 , so 𝑐𝑝𝑙1 can
only be used a finite number of times until it ends up only
being able to add flat clauses already in 𝑅𝑛 .

3.3 proveR Algorithm
The proveR algorithm utilizes the rules from Section 3.2 to
determine whether the input formula is IPL-valid or not. As
an input, proveR takes an r-sequent 𝑅,𝑋 ⇒ 𝑔 and outputs
Valid if the r-sequent is IPL-valid, or CountSat if it is not.

The algorithm has a nested loop structure, consisting of an
“outer loop” (Steps S1 through S6 in Figure 4) and an “inner
loop” (Steps S3-S4-S5 in Figure 4). The outer loop implements
the process of continuously checking if 𝑐𝑝𝑙0 applies and if
it does not, adding a new flat clause via 𝑐𝑝𝑙1 as described in
Section 3.2. The inner loop on the other hand, determines
which new flat clause should be added via 𝑐𝑝𝑙1. It does so by
attempting to create a Kripke counter model for the current
r-sequent (which is also a counter model for the input r-
sequent) [4].

In order to efficiently create an appropriate Kripke counter
model, Fiorentini defines a relation between a world𝑀 from
a set of worlds𝑊 and an implication clause (𝑎 → 𝑏) → 𝑐 .
This relation is denoted 𝑀 ▷𝑊 (𝑎 → 𝑏) → 𝑐 and is true
when [4]:

(𝑀 ⊨ 𝑎) or (𝑀 ⊨ 𝑏) or (𝑀 ⊨ 𝑐) or
(∃𝑀 ′ ∈𝑊 such that𝑀 < 𝑀 ′ and𝑀 ′ ⊨ 𝑎 but𝑀 ′ ⊭ 𝑏)

We say𝑀▷𝑊𝑋 if𝑀▷𝑊 _ for all _ ∈ 𝑋 . This relation is used in
Proposition 2 from [4], which is key in the construction of the
Kripke counter model and goes as follows: Let 𝜎 = 𝑅,𝑋 ⇒ 𝑔

be an r-sequent and let ^ = (𝑊, ≤, 𝑀0, 𝛿) be a Kripke model.



Erik Rauer

Figure 4. Flow chart of the proveR algorithm. Taken from [4]. Note that 𝑅,𝑋 ⊢𝑖 𝑔 is notation saying that the r-sequent 𝑅,𝑋 ⇒ 𝑔

is IPL-valid. Similarly, 𝑅,𝑋 ⊬𝑖 𝑔 means that 𝑅,𝑋 ⇒ 𝑔 is not IPL-valid.

Then, ^ ⊭ 𝜎 (i.e. ^ is a counter model for 𝜎) iff 𝑔 ∉ 𝑀0 and
for every 𝑀 ∈𝑊 , 𝑀 ⊨ 𝑅 and 𝑀 ▷𝑊 𝑋 . In this context, the
▷𝑊 relation is an easy way to check whether a given world
forces an implication cause.
The proveR algorithm, illustrated in Figure 4, works as

follows: Given an r-sequent 𝑅,𝑋 ⇒ 𝑔, we first construct a
new SAT solver 𝑠 and pass it all the flat clauses of 𝑅 (step
𝑆0). We then start the outer loop by setting𝑊 to ∅ (step 𝑆1).
Next, we call satProve(𝑠 ,∅,𝑔) (step 𝑆2), to check whether just
the existing flat clauses already in 𝑅 are enough to prove
𝑔 classically. If they are, by 𝑐𝑝𝑙0 they are enough to prove
𝑔 in IPL, making the r-sequent 𝑅,𝑋 ⇒ 𝑔 IPL-valid, so the
algorithm is complete and returns Valid. If not, we get a set of
propositional variables𝑀 , which make the clauses in 𝑅 true,
but make 𝑔 false. This set𝑀 is then added to𝑊 (step 𝑆3).

By adding this𝑀 to𝑊 , we have started the inner loop. In
step 𝑆4, we attempt to find a set𝑤 from𝑊 and a correspond-
ing implication clause _ = (𝑎 → 𝑏) → 𝑐 , such that𝑤 ⋫𝑊 _.
Note that since𝑊 consists of sets of propositional variables,
its elements can be interpreted as worlds in a Kripke model
(see below), allowing us to use the ▷ relation. If no such pair
can be found, we have a valid counter model and can return
CountSat. If we do find a pair that fits the desired criterion,
we call satProve(𝑠 ,𝑤 ∪ {𝑎},𝑏) (step 𝑆5). In this case, if the
call to the SAT solver returns No, we are given a new set of
propositional variables 𝑀 that make the clauses in 𝑅 true,
but make 𝑏 false. This set𝑀 is also added to𝑊 , restarting the
inner loop. On the other hand, if we do find a set of proposi-
tional variables 𝐴, we have met the conditions necessary to
apply 𝑐𝑝𝑙1. So, using 𝜑 =

∧(𝐴\{𝑎}) → 𝑐 , we can use 𝑐𝑝𝑙1 as
described in Section 3.2 to add a new flat clause to 𝑅, giving
a new r-sequent (step 𝑆6). From there, we restart the outer
loop by resetting 𝑊 back to the empty set and checking
whether 𝑐𝑝𝑙0 can be applied to the new r-sequent.

When proveR returns CountSat, a Kripke counter model
can fairly easily be constructed from the set𝑊 . We create
a world 𝑘𝑛 for each element 𝑤 ∈𝑊 and set the associated
𝛿 (𝑘𝑛) = 𝑤 . Then 𝑘𝑚 ≤ 𝑘𝑙 if 𝛿 (𝑘𝑚) ⊆ 𝛿 (𝑘𝑘 ). So, the first
element to be added to𝑊 , call it𝑀0, is the root of our counter
model, since by the definition of 𝑠𝑎𝑡𝑃𝑟𝑜𝑣𝑒 () (described in
Section 2.1) it must be a subset of any𝑀 returned in step 𝑆5.
From step 𝑆2, we know that this root 𝑀0 does not contain
𝑔, otherwise 𝑔 would be true and the SAT solver would not
have returned No. This also means that𝑀0 must make all of
the flat clauses in 𝑅 true. Since every other element added
to𝑊 is a superset of𝑀0, they must also make all of the flat
clauses in 𝑅 true. Thus every world makes the flat clauses
in 𝑅 true, so 𝑀0 ⊨ 𝑅. CountSat is only returned when no
_ ∈ 𝑋 and no𝑤 ∈𝑊 can be found such that𝑤 ⋫𝑊 _, or in
other words, it is returned when for every𝑤 ∈𝑊 and every
_ ∈ 𝑋 , 𝑤 ▷𝑊 _. So Proposition 2 from above applies to the
model we have constructed, making it a valid counter model
to the current r-sequent and thus the original r-sequent [4].
Note that the inner loop must eventually terminate, since
for every call in step 𝑆5 that returns the set 𝑀 , 𝑎 ∈ 𝑀 and
𝑏 ∉ 𝑀 . By adding 𝑀 to𝑊 , the pair of 𝑤 and _ selected in
that iteration can not be selected again, since doing so makes
𝑤 ▷𝑊 _ by the fourth condition of the ▷𝑊 relation.

4 Experiment and Results
In order to compare intuitR and intuit with other IPL-provers,
they were both implemented in Haskell, using the MINI-
SAT [3] SAT solver. In addition to intuit, intuitR was com-
pared to the IPL-provers fCube and intHistGC [4]. These
provers were run on a set of sample benchmark problems,
which inuit was intially tested with and are described in
detail in [2]. This set consists of a total of 1200 benchmark
problems, sorted into 32 groups. 498 of these problems are



intuitR: A Theorem Prover for Intuitionistic Propositional Logic

Problem Set (Number of Problems) intuitR intuit fCube intHistGC
SYJ201 (50) 50 (2.259) 50 (11.494) 50 (259.776) 50 (39.466)
SYJ207 (50) 50 (2.291) 50 (109.919) 50 (138.546) 50 (1014.476)
SYJ211 (50) 50 (0.462) 50 (1.251) 50 (1.073) 50 (63.686)
SYJ212 (50) 50 (0.669) 42 (587.794) 50 (2.698) 50 (1.624)
EC (100) 100 (2.738) 100 (0.821) 100 (6.183) 100 (0.651)

negEC (100) 100 (3.614) 100 (1.116) 100 (13.733) 100 (5.807)
portia (100) 100 (32.878) 100 (22.596) 100 (3255.818) 100 (3200.135)

Total Unsolved 28 36 43 38
Total Time (For These Problems) 44.911 734.991 3677.827 4325.845

Table 1. Comparison of different IPL provers on selected benchmark problem sets. Each cell contains the number of problems
each prover could solve, followed by amount of time it took to solve said problems. The fastest prover for each problem set is
in bold. Only the most relevant data from [4] is shown.

formulas that are IPL-valid and the other 702 of them are not
IPL-valid. The provers were all run on the same computer
and given a timeout of 600 seconds per problem. Both the
number of problems each prover could solve and the amount
of time it took to solve each problem were recorded.

The most relevant results of the comparison between the
four provers is shown in Table 1. As can be seen, intuitR
solved all but 28 of the benchmark problems within the 600
second timeout, which is 8 more than the next best prover
intuit was able to solve. For the benchmark problem sets
SYJ201, SYJ207, SYJ211, and SYJ212, intuitR was significantly
faster than the next best IPL-prover. Additionally, the only
problem sets where intuitR was significantly slower than
another solver are EC, negEC, and portia. Otherwise, intu-
itR was of comparable speed to the best solver (which was
usually intuit) for all of the remaining benchmark problem
sets not shown in Table 1 [4]. Despite being slower on three
problem sets, intuitR took less total time to solve all of the
benchmark problems than any of the other provers.
Fiorentini believes that intuitR is generally faster than

these other provers because intuitR only relies on two rela-
tively simple logical rules and because the counter models
intuitR generates are typically smaller than those of the other
provers. Unlike intuitR which only relies on two rules, in-
tuit relies on three, much more general rules than 𝑐𝑝𝑙0 and
𝑐𝑝𝑙1 [4]. This results in much more complicated derivations
containing lots of branches, as opposed to the more linear
structure that comes from applying 𝑐𝑝𝑙0 and 𝑐𝑝𝑙1 as described
in Section 3.2. Finding these more complicated derivations
tends to require more calls to a SAT solver, which slows
the theorem prover down. Additionally, every iteration of
the outer loop of proveR “resets” the counter model that is
being built by the inner loop, which results in intuitR usually
generating smaller counter models. Smaller counter models
means there are less worlds to check for forcing, which also
speeds the theorem prover up. Problem 2 from SYJ207 is
given as an example. For this problem, intuit called the SAT
solver 31 times and created a counter model containing 6

worlds, while the counter model generated by intuitR only
required 4 worlds and 14 calls to the SAT solver [4]. For a
more extreme example, consider problem 25 from SYJ212,
where intuit made 11,214 calls to the SAT solver and found
a counter model with 1,955 worlds, whereas intuitR only
made 45 calls and generated a counter model with only 4
worlds [4].

5 Conclusion
Intuitionistic Logic is a system of logic where all valid proofs
are constructive. intuitR is a theorem prover that takes a
propositional formula as its input and determines whether
said formula is IPL-valid or not. It does so by first converting
the formula into a special form, called an r-sequent, whose
IPL-validity can be determined by continuously applying the
two logical rules 𝑐𝑝𝑙0 and 𝑐𝑝𝑙1. intuitR does this in a double
looping structure, where every iteration of the outer loop
adds a new clause to the r-sequent by checking 𝑐𝑝𝑙0 and
applying 𝑐𝑝𝑙1. The inner loop on the other hand attempts to
find a useful clause to add while simultaneously constructing
a counter model to the r-sequent in the process. intuitR was
ran on a set of 1200 benchmark problems and its performance
was compared to three other IPL provers. It was found to
be able to solve 8 more problems than the next best solver
and to have comparable speed to the fastest solver for most
of the problem sets. There were four problem sets where
intuitR was significantly faster than the other solvers and
three where it was significantly slower.
While IPL might not necessarily have the most applica-

tions, the idea of utilizing a SAT solver to help in determining
the validity of a formula in a non-classical logic system can
be expanded to other logic systems. For example, it could
be expanded beyond just IPL to include quantifiers for first-
order intuitionistic logic. Claessen and Rosén describe how
this might be done, as well as some potential problems with
doing so in [2]. In [4], Fiorentini describes how a “reset” loop
similar to the one intuitR contains can be expanded to other
logics, giving Gödel-Dummett logic [8] as an example.



Erik Rauer

Acknowledgments
I would like to thank my advisor Professor Nic McPhee for
his valuable guidance and insight throughout the process
of writing this paper. I would also like to thank Professor
Elena Machkasova and Dr. Stephen Adams for reading and
providing feedback on previous drafts of this paper.

References
[1] Michael Barr. 1974. Toposes without points. Journal of Pure and

Applied Algebra 5, 3 (1974), 265–280. https://doi.org/10.1016/0022-
4049(74)90037-1

[2] Koen Claessen and Dan Rosén. 2015. SAT Modulo Intuitionistic Im-
plications. In Logic for Programming, Artificial Intelligence, and Rea-
soning, Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei
Voronkov (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 622–
637. https://doi.org/10.1007/978-3-662-48899-7_43

[3] Niklas Eén and Niklas Sörensson. 2004. An Extensible SAT-solver. In
Theory and Applications of Satisfiability Testing, Enrico Giunchiglia and

Armando Tacchella (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 502–518. https://doi.org/10.1007/978-3-540-24605-3_37

[4] Camillo Fiorentini. 2021. Efficient SAT-based Proof Search in Intuition-
istic Propositional Logic. In Automated Deduction – CADE 28, André
Platzer and Geoff Sutcliffe (Eds.). Springer International Publishing,
Cham, 217–233. https://doi.org/10.1007/978-3-030-79876-5_13

[5] Frank Van Harmelen, Vladimir Lifschitz, Bruce Porter, Carla P Gomes,
Henry Krautz, Ashish Sabharwal, and Bart Selman. 2010. Satisfiability
Solvers. Elsevier, 89–134.

[6] Samuel Mimram, Eric Goubault, Emmanuel Haucourt, Samuel Mimram,
and Martin Raussen. 2021. Program = proof.

[7] Joan Moschovakis. 2021. Intuitionistic Logic. In The Stanford Encyclo-
pedia of Philosophy (Fall 2021 ed.), Edward N. Zalta (Ed.). Metaphysics
Research Lab, Stanford University. https://plato.stanford.edu/entries/
logic-intuitionistic/

[8] Jan von Plato. 2003. Skolem’s Discovery of Gödel-Dummett Logic.
Studia Logica: An International Journal for Symbolic Logic 73, 1 (2003),
153–157. http://www.jstor.org/stable/20016490

https://doi.org/10.1016/0022-4049(74)90037-1
https://doi.org/10.1016/0022-4049(74)90037-1
https://doi.org/10.1007/978-3-662-48899-7_43
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-030-79876-5_13
https://plato.stanford.edu/entries/logic-intuitionistic/
https://plato.stanford.edu/entries/logic-intuitionistic/
http://www.jstor.org/stable/20016490

	Abstract
	1 Introduction
	2 Background
	2.1 SAT Solvers
	2.2 Kripke Semantics and Models

	3 intuitR
	3.1 Clausification
	3.2 Logic Rules
	3.3 proveR Algorithm

	4 Experiment and Results
	5 Conclusion
	References

