Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	

intuitR: A Theorem Prover for Intuitionistic Propositional Logic

Erik Rauer

Division of Science and Mathematics University of Minnesota, Morris

April 14, 2022

イロト 不得 トイヨト イヨト 二日

1/31

Introduction ●0000	Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	

Motivation

Want to write program that assigns each vertex of a planar graph a color, such that no two adjacent vertices are the same color, using smallest number of different colors.

Introduction •0000	Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	

Motivation

Want to write program that assigns each vertex of a planar graph a color, such that no two adjacent vertices are the same color, using smallest number of different colors.

Four Color Theorem

No more than 4 colors are needed to color a planar graph in this way.

Introduction ●0000	Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	

Motivation

Want to write program that assigns each vertex of a planar graph a color, such that no two adjacent vertices are the same color, using smallest number of different colors.

Four Color Theorem

No more than 4 colors are needed to color a planar graph in this way.

Proof gives step by step details of how to a color any graph in this way, can write our algorithm based on the proof. Call this a *constructive proof*.

Non-Constructive Proof Example

Want to show the existence of irrational numbers a and b, such that a^b is rational.

Non-Constructive Proof Example

Want to show the existence of irrational numbers a and b, such that a^b is rational.

Assume $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.

Non-Constructive Proof Example

Want to show the existence of irrational numbers a and b, such that a^b is rational.

Assume $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.

But don't know which.

Introduction	Background			
00000	00000	000 00 00000	00 00	

Intuitionistic Logic

Logic system that attempts to emulate/force constructive proofs

Same as classical logic, except it doesn't allow:

- Law of Excluded Middle: $p \lor \neg p$
- ▶ Double Negation Elimination: $\neg \neg p \equiv p$

Intuitionistic Propositional Logic (IPL)

Propositional logic form of intuitionistic logic, i.e. no quantifiers (\forall and $\exists)$

 $\mathsf{Only}\,\,\wedge,\vee,\neg,\rightarrow,\bot,\top$

Difficult to determine IPL-validity, so use IPL-provers like *intuitR* by Fiorentini (2021) or *intuit* by Claessen and Rosén (2015)

Introduction 0000●	Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	

Outline

Introduction

Background

Kripke Semantics and Models SAT Solvers

intuitR

Clausification Procedure Logic Rules *proveR* Algorithm

Experiment and Results

Experiment Results

Conclusion

	Background ●0000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Kripke Semantics a	and Models			

Outline

Introduction

Background Kripke Semantics and Models

SAT Solvers

intuitR

Clausification Procedure Logic Rules *proveR* Algorithm

Experiment and Results

- Experiment
- Results

Conclusion

Background ○●○○○ ○○○	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
and Madala			

Kripke Models

	Background ○●○○○ ○○○	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Krinka Samantica	and Models			

Kripke Models

 (W, δ, \leq, r)

► W set of worlds

	Background ○●○○○ ○○○	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Krinke Semantics	and Models			

Kripke Models

- ► W set of worlds
- δ mapping from W to set of propositional variables

	Background 0●000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Krinke Semantics	and Models			

Kripke Models

- W set of worlds
- δ mapping from W to set of propositional variables
- \leq ordering of worlds such that for all $k \leq k'$, $\delta(k) \subseteq \delta(k')$

	Background 0●000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Krinke Semantics	and Models			

Kripke Models

- W set of worlds
- δ mapping from W to set of propositional variables
- \leq ordering of worlds such that for all $k \leq k'$, $\delta(k) \subseteq \delta(k')$
- *r* minimum world

Kripke Models

 (W, δ, \leq, r)

- W set of worlds
- δ mapping from W to set of propositional variables
- \leq ordering of worlds such that for all $k \leq k'$, $\delta(k) \subseteq \delta(k')$

r minimum world

Figure: Visual Representation of a Kripke Model

	Background 00●00 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Kripke Semantics	and Models			

For $k \in W$ and logical formula α , $k \models \alpha$ based on the following rules (from Moschovakis (2021)):

1.
$$k \vDash p$$
, for every $p \in \delta(k)$

k ⊭ ⊥

	Background 00●00 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Kripke Semantics a	and Models			

For $k \in W$ and logical formula α , $k \models \alpha$ based on the following rules (from Moschovakis (2021)):

1.
$$k \vDash p$$
, for every $p \in \delta(k)$

2. *k* ⊭ ⊥

3.
$$k \models P \land Q$$
, if $k \models P$ and $k \models Q$

4. $k \vDash P \lor Q$, if $k \vDash P$ or $k \vDash Q$

	Background 00●00 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Kripke Semantics a	and Models			

For $k \in W$ and logical formula α , $k \models \alpha$ based on the following rules (from Moschovakis (2021)):

1.
$$k \vDash p$$
, for every $p \in \delta(k)$

2. *k* ⊭ ⊥

3.
$$k \models P \land Q$$
, if $k \models P$ and $k \models Q$

4. $k \models P \lor Q$, if $k \models P$ or $k \models Q$

5.
$$k \models \neg P$$
, if for all $k' \ge k, k' \nvDash P$

	Background 00●00 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Kripke Semantics a	and Models			

For $k \in W$ and logical formula α , $k \models \alpha$ based on the following rules (from Moschovakis (2021)):

1.
$$k \vDash p$$
, for every $p \in \delta(k)$

k ⊭ ⊥

3.
$$k \models P \land Q$$
, if $k \models P$ and $k \models Q$

4. $k \vDash P \lor Q$, if $k \vDash P$ or $k \vDash Q$

5.
$$k \models \neg P$$
, if for all $k' \ge k, k' \nvDash P$

6. $k \vDash P \rightarrow Q$, if for every $k' \ge k$, if $k' \vDash P$, then $k' \vDash Q$

Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
and Models			

Determining IPL-validity

A formula α is IPL-valid iff for every kripke model with root r, $r \models \alpha$.

Call a kripke model where the root $r \nvDash \alpha$ a *countermodel* for α

	Background 0000● 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Kripke Semantics ar	nd Models			

Example

Countermodel for
$$p \lor \neg p$$
:

$$(\{k, k'\}, \delta, \leq, k), \text{ where}$$

$$\delta(k) = \emptyset$$

$$\delta(k') = \{p\}$$

$$k < k'$$

Figure: Visual representation of Kripke Countermodel for $p \lor \neg p$

	Background ○○○○○ ●○○	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
SAT Solvers				

Outline

Introduction

Background

Kripke Semantics and Models SAT Solvers

intuitR

Clausification Procedure Logic Rules *proveR* Algorithm

Experiment and Results

- Experiment
- Results

Conclusion

	Background ○○○○○ ○●○	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
SAT Solvers				

SAT solver

Program that solves the *Boolean Satisfiability Problem*: Given a propositional formula α is there an assignment of variables, such that α is true?

	Background ○○○○○ ○●○	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
SAT Solvers				

SAT solver

Program that solves the *Boolean Satisfiability Problem*: Given a propositional formula α is there an assignment of variables, such that α is true?

When in form $\alpha \rightarrow p$, can reinterpret as "Does α being true make p true?" or "Does α prove p classically?"

	Background ○○○○○ ○○●	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
SAT Solvers				

- newSolver()
 - Create a new SAT solver

	Background ○○○○○ ○○●	intuitR 000 00 00000	Experiment and Results 00 00	
SAT Solvers				

- newSolver()
 - Create a new SAT solver
- addClause(s, ρ)
 - Add clause ρ to SAT solver's existing clauses R(s)

	Background ○○○○○ ○○●	intuitR 000 00 00000	Experiment and Results 00 00	
SAT Solvers				

- newSolver()
 - Create a new SAT solver
- addClause(s, ρ)
 - Add clause ρ to SAT solver's existing clauses R(s)
- ▶ satProve(s, A, g)
 - Use SAT solver s to prove g based on the clauses R(s) that have already been added and the set of propositional variables A that are assumed to be true

	Background ○○○○○ ○○●	intuitR 000 00 00000	Experiment and Results 00 00	
SAT Solvers				

- newSolver()
 - Create a new SAT solver
- addClause(s, ρ)
 - Add clause ρ to SAT solver's existing clauses R(s)
- ▶ satProve(s, A, g)
 - Use SAT solver s to prove g based on the clauses R(s) that have already been added and the set of propositional variables A that are assumed to be true
 - Returns:
 - YES(A'), if R(s) and $A' \subseteq A$ being true makes g true

	Background ○○○○○ ○○●	intuitR 000 00 00000	Experiment and Results 00 00	
SAT Solvers				

- newSolver()
 - Create a new SAT solver
- addClause(s, ρ)
 - Add clause ρ to SAT solver's existing clauses R(s)
- ▶ satProve(s, A, g)
 - Use SAT solver s to prove g based on the clauses R(s) that have already been added and the set of propositional variables A that are assumed to be true
 - Returns:
 - YES(A'), if R(s) and $A' \subseteq A$ being true makes g true
 - NO(M), if R(s) and the set of propositional variables M ⊇ A are both true, but g is false

	Background 00000 000	<i>intuitR</i> ●00 00 00000	Experiment and Results 00 00	
Clausification Procee	lure			

Outline

Introduction

Background Krinke Semantics

Kripke Semantics and Models SAT Solvers

intuitR

Clausification Procedure

Logic Rules proveR Algorithm

Experiment and Results

- Experiment
- Results

Conclusion

	Background 00000 000	<i>intuitR</i> 0●0 00 00000	Experiment and Results 00 00	
Clausification Pro-	cedure			

Convert formula to an *r*-sequent, denoted $R, X \Rightarrow g$:

 $(\bigwedge R \land \bigwedge X) \to g$

	Background 00000 000	<i>intuitR</i> 000 00000	Experiment and Results 00 00	
Clausification Pro	cedure			

Convert formula to an *r*-sequent, denoted $R, X \Rightarrow g$:

 $(\bigwedge R \land \bigwedge X) \to g$

where:

▶ *R* a set of flat clauses: $(a_1 \land a_2 \land ... \land a_n) \rightarrow (b_1 \lor b_2 \lor ... \lor b_m)$

	Background 00000 000	<i>intuitR</i> 0●0 00 00000	Experiment and Results 00 00	
Clausification Pro	cedure			

Convert formula to an *r*-sequent, denoted $R, X \Rightarrow g$:

 $(\bigwedge R \land \bigwedge X) \to g$

where:

- ▶ *R* a set of flat clauses: $(a_1 \land a_2 \land ... \land a_n) \rightarrow (b_1 \lor b_2 \lor ... \lor b_m)$
- X a set of implication clauses: $(a \rightarrow b) \rightarrow c$

	Background 00000 000	<i>intuitR</i> 000 00000	Experiment and Results 00 00	
Clausification Pro	cedure			

Convert formula to an *r-sequent*, denoted $R, X \Rightarrow g$:

 $(\bigwedge R \land \bigwedge X) \to g$

where:

- ▶ *R* a set of flat clauses: $(a_1 \land a_2 \land ... \land a_n) \rightarrow (b_1 \lor b_2 \lor ... \lor b_m)$
- X a set of implication clauses: $(a \rightarrow b) \rightarrow c$
- ▶ for each $(a \rightarrow b) \rightarrow c \in X$, $b \rightarrow c \in R$

	Background 00000 000	<i>intuitR</i> 000 00000	Experiment and Results 00 00	
Clausification Pro	cedure			

Convert formula to an *r-sequent*, denoted $R, X \Rightarrow g$:

 $(\bigwedge R \land \bigwedge X) \to g$

where:

- ▶ *R* a set of flat clauses: $(a_1 \land a_2 \land ... \land a_n) \rightarrow (b_1 \lor b_2 \lor ... \lor b_m)$
- X a set of implication clauses: $(a \rightarrow b) \rightarrow c$
- ▶ for each $(a \rightarrow b) \rightarrow c \in X$, $b \rightarrow c \in R$
- g a propositional variable

	Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Clausification Procee	lure			

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

17 / 31

Example

For
$$p \lor \neg p$$
:
 $R = \{p \to g, \bot \to g\}$
 $X = \{(p \to \bot) \to g\}$
 $g = g$ (introduced during clausification)

$$\mathsf{Or}\;(p \to g) \land (\bot \to g) \land ((p \to \bot) \to g) \to g$$

	Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Logic Rules				

Outline

Introduction

Background Kripke Semantics and Models SAT Solvers

intuitR

Clausification Procedure Logic Rules proveR Algorithm

Experiment and Results

- Experiment
- Results

Conclusion

	Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
Logic Rules				

 cpl_0 and cpl_1

$$\frac{R \vdash_{\mathbf{c}} g}{R, X \Rightarrow g} \operatorname{cpl}_0$$

	Background 00000 000	<i>intuitR</i> 000 0 0 00000	Experiment and Results 00 00	
Logic Rules				

 cpl_0 and cpl_1

$$\frac{R \vdash_{\mathbf{c}} g}{R, X \Rightarrow g} \operatorname{cpl}_0$$

$$\frac{R, A \vdash_{c} b \qquad R, \varphi, X \Rightarrow g}{R, X \Rightarrow g} \operatorname{cpl}_{1} \qquad \begin{array}{c} (a \to b) \to c \in X \\ A \subseteq V \\ \varphi = \bigwedge (A \setminus \{a\}) \to c \end{array}$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日</td>

.

	Background 00000 000	<i>intuitR</i> ○○○ ●○○○○	Experiment and Results 00 00	
proveR Algorithm				

Outline

Introduction

Background Kripke Semantics and Models SAT Solvers

intuitR

Clausification Procedure Logic Rules proveR Algorithm

Experiment and Results

- Experiment
- Results

Conclusion

	Background 00000 000	<i>intuitR</i> 000 00 0000	Experiment and Results 00 00	
proveR Algorithm				

proveR

Figure: Flowchart of the proveR algorithm

	Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	
proveR Algorithm				

Initialization

	Background 00000 000	<i>intuitR</i> 000 000000	Experiment and Results 00 00	
proveR Algorithm				

Inner Loop

	Background 00000 000	<i>intuitR</i> ○○○ ○○○○	Experiment and Results 00 00	
proveR Algorithm				

Restart Outer Loop

	Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results ●0 ○0	
Experiment				

Outline

Introduction

Background

Kripke Semantics and Models SAT Solvers

intuitR

Clausification Procedure Logic Rules proveR Algorithm

Experiment and Results

Experiment

Results

Conclusion

	Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results ○● ○○	
Experiment				

intuitR was compared to three other IPL-provers: *intuit, fCube,* and *intHistGC*

Ran on a benchmark set of 1200 problems, split into 32 groups 498 problems were IPL-valid, 702 were not

	Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results ○○ ●○	
Results				

Outline

Introduction

Background

Kripke Semantics and Models SAT Solvers

intuitR

Clausification Procedure Logic Rules *proveR* Algorithm

Experiment and Results

Experiment

Results

Conclusion

Background		Experiment and Results	
00000	000 00 00000	00 00	

Significant Results

Problem Set (Number of Problems)	intuitR	intuit	fCube	intHistGC
SYJ201 (50)	50 (2.259)	50 (11.494)	50 (259.776)	50 (39.466)
SYJ207 (50)	50 (2.291)	50 (109.919)	50 (138.546)	50 (1014.476)
SYJ211 (50)	50 (0.462)	50 (1.251)	50 (1.073)	50 (63.686)
SYJ212 (50)	50 (0.669)	42 (587.794)	50 (2.698)	50 (1.624)
EC (100)	100 (2.738)	100 (0.821)	100 (6.183)	100 (0.651)
negEC (100)	100 (3.614)	100 (1.116)	100 (13.733)	100 (5.807)
portia (100)	100 (32.878)	100 (22.596)	100 (3255.818)	100 (3200.135)
Total Unsolved	28	36	43	38
Total Time (For These Problems)	44.911	734.991	3677.827	4325.845

Table: Most significant results from Fiorentini (2021). Number of problems solved, followed by the time taken to solve said problems (in seconds). Fastest prover highlighted.

Background 00000 000	intuitR 000 00	Experiment and Results 00 00	Conclusion ●0	
	00000			

Conclusion

Introduction

Background

Kripke Semantics and Models SAT Solvers

intuitR

Clausification Procedure Logic Rules *proveR* Algorithm

Experiment and Results

Experiment Results

Conclusion

Background			Conclusion	
00000	000 00 00000	00 00	00	

Questions?

Background 00000 000	<i>intuitR</i> 000 00 00000	Experiment and Results 00 00	References

References

Koen Claessen and Dan Rosén. 2015. SAT Modulo Intuitionistic Implications. In *Logic for Programming, Artificial Intelligence, and Reasoning*, Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 622–637.

- Camillo Fiorentini. 2021. Efficient SAT-based Proof Search in Intuitionistic Propositional Logic. In *Automated Deduction – CADE 28*, André Platzer and Geoff Sutcliffe (Eds.). Springer International Publishing, Cham, 217–233.
- Joan Moschovakis. 2021. Intuitionistic Logic. In *The Stanford Encyclopedia of Philosophy* (Fall 2021 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab, Stanford University.