
Introduction Background intuitR Experiment and Results Conclusion References

intuitR : A Theorem Prover for Intuitionistic
Propositional Logic

Erik Rauer

Division of Science and Mathematics
University of Minnesota, Morris

April 14, 2022

1 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Motivation
Want to write program that assigns each vertex of a planar graph
a color, such that no two adjacent vertices are the same color,
using smallest number of different colors.

Four Color Theorem
No more than 4 colors are needed to color a planar graph in this
way.

Proof gives step by step details of how to a color any graph in this
way, can write our algorithm based on the proof.
Call this a constructive proof.

2 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Motivation

Want to write program that assigns each vertex of a planar graph
a color, such that no two adjacent vertices are the same color,
using smallest number of different colors.

Four Color Theorem
No more than 4 colors are needed to color a planar graph in this
way.

Proof gives step by step details of how to a color any graph in this
way, can write our algorithm based on the proof.
Call this a constructive proof.

2 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Motivation

Want to write program that assigns each vertex of a planar graph
a color, such that no two adjacent vertices are the same color,
using smallest number of different colors.

Four Color Theorem
No more than 4 colors are needed to color a planar graph in this
way.

Proof gives step by step details of how to a color any graph in this
way, can write our algorithm based on the proof.
Call this a constructive proof.

2 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Non-Constructive Proof Example

Want to show the existence of irrational numbers a and b, such
that ab is rational.

Assume
√
2
√
2
is either rational or irrational.

⇓
Either

√
2
√
2
or

(√
2
√
2
)√

2

is rational.

But don’t know which.

3 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Non-Constructive Proof Example

Want to show the existence of irrational numbers a and b, such
that ab is rational.

Assume
√
2
√
2
is either rational or irrational.

⇓
Either

√
2
√
2
or

(√
2
√
2
)√

2

is rational.

But don’t know which.

3 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Non-Constructive Proof Example

Want to show the existence of irrational numbers a and b, such
that ab is rational.

Assume
√
2
√
2
is either rational or irrational.

⇓
Either

√
2
√
2
or

(√
2
√
2
)√

2

is rational.

But don’t know which.

3 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Intuitionistic Logic

Logic system that attempts to emulate/force constructive proofs

Same as classical logic, except it doesn’t allow:

▶ Law of Excluded Middle: p ∨ ¬p
▶ Double Negation Elimination: ¬¬p ≡ p

4 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Intuitionistic Propositional Logic (IPL)

Propositional logic form of intuitionistic logic, i.e. no quantifiers
(∀ and ∃)

Only ∧,∨,¬,→,⊥,⊤

Difficult to determine IPL-validity, so use IPL-provers like intuitR
by Fiorentini (2021) or intuit by Claessen and Rosén (2015)

5 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Outline

Introduction

Background
Kripke Semantics and Models
SAT Solvers

intuitR
Clausification Procedure
Logic Rules
proveR Algorithm

Experiment and Results
Experiment
Results

Conclusion

6 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

Outline

Introduction

Background
Kripke Semantics and Models
SAT Solvers

intuitR
Clausification Procedure
Logic Rules
proveR Algorithm

Experiment and Results
Experiment
Results

Conclusion

7 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

How to decide if a formula α is IPL-valid?

Kripke Models

(W , δ,≤, r)

▶ W set of worlds

▶ δ mapping from W to set of
propositional variables

▶ ≤ ordering of worlds such
that for all k ≤ k ′,
δ(k) ⊆ δ(k ′)

▶ r minimum world

Figure: Visual Representation of a
Kripke Model

8 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

How to decide if a formula α is IPL-valid?

Kripke Models

(W , δ,≤, r)

▶ W set of worlds

▶ δ mapping from W to set of
propositional variables

▶ ≤ ordering of worlds such
that for all k ≤ k ′,
δ(k) ⊆ δ(k ′)

▶ r minimum world

Figure: Visual Representation of a
Kripke Model

8 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

How to decide if a formula α is IPL-valid?

Kripke Models

(W , δ,≤, r)

▶ W set of worlds

▶ δ mapping from W to set of
propositional variables

▶ ≤ ordering of worlds such
that for all k ≤ k ′,
δ(k) ⊆ δ(k ′)

▶ r minimum world

Figure: Visual Representation of a
Kripke Model

8 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

How to decide if a formula α is IPL-valid?

Kripke Models

(W , δ,≤, r)

▶ W set of worlds

▶ δ mapping from W to set of
propositional variables

▶ ≤ ordering of worlds such
that for all k ≤ k ′,
δ(k) ⊆ δ(k ′)

▶ r minimum world

Figure: Visual Representation of a
Kripke Model

8 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

How to decide if a formula α is IPL-valid?

Kripke Models

(W , δ,≤, r)

▶ W set of worlds

▶ δ mapping from W to set of
propositional variables

▶ ≤ ordering of worlds such
that for all k ≤ k ′,
δ(k) ⊆ δ(k ′)

▶ r minimum world

Figure: Visual Representation of a
Kripke Model

8 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

How to decide if a formula α is IPL-valid?

Kripke Models

(W , δ,≤, r)

▶ W set of worlds

▶ δ mapping from W to set of
propositional variables

▶ ≤ ordering of worlds such
that for all k ≤ k ′,
δ(k) ⊆ δ(k ′)

▶ r minimum world

Figure: Visual Representation of a
Kripke Model

8 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

Forcing

For k ∈ W and logical formula α, k ⊨ α based on the following
rules (from Moschovakis (2021)):

1. k ⊨ p, for every p ∈ δ(k)

2. k ⊭ ⊥

3. k ⊨ P ∧ Q, if k ⊨ P and k ⊨ Q

4. k ⊨ P ∨ Q, if k ⊨ P or k ⊨ Q

5. k ⊨ ¬P, if for all k ′ ≥ k , k ′ ⊭ P

6. k ⊨ P → Q, if for every k ′ ≥ k , if k ′ ⊨ P, then k ′ ⊨ Q

9 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

Forcing

For k ∈ W and logical formula α, k ⊨ α based on the following
rules (from Moschovakis (2021)):

1. k ⊨ p, for every p ∈ δ(k)

2. k ⊭ ⊥
3. k ⊨ P ∧ Q, if k ⊨ P and k ⊨ Q

4. k ⊨ P ∨ Q, if k ⊨ P or k ⊨ Q

5. k ⊨ ¬P, if for all k ′ ≥ k , k ′ ⊭ P

6. k ⊨ P → Q, if for every k ′ ≥ k , if k ′ ⊨ P, then k ′ ⊨ Q

9 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

Forcing

For k ∈ W and logical formula α, k ⊨ α based on the following
rules (from Moschovakis (2021)):

1. k ⊨ p, for every p ∈ δ(k)

2. k ⊭ ⊥
3. k ⊨ P ∧ Q, if k ⊨ P and k ⊨ Q

4. k ⊨ P ∨ Q, if k ⊨ P or k ⊨ Q

5. k ⊨ ¬P, if for all k ′ ≥ k , k ′ ⊭ P

6. k ⊨ P → Q, if for every k ′ ≥ k , if k ′ ⊨ P, then k ′ ⊨ Q

9 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

Forcing

For k ∈ W and logical formula α, k ⊨ α based on the following
rules (from Moschovakis (2021)):

1. k ⊨ p, for every p ∈ δ(k)

2. k ⊭ ⊥
3. k ⊨ P ∧ Q, if k ⊨ P and k ⊨ Q

4. k ⊨ P ∨ Q, if k ⊨ P or k ⊨ Q

5. k ⊨ ¬P, if for all k ′ ≥ k , k ′ ⊭ P

6. k ⊨ P → Q, if for every k ′ ≥ k , if k ′ ⊨ P, then k ′ ⊨ Q

9 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

Determining IPL-validity

A formula α is IPL-valid iff for every kripke model with root r ,
r ⊨ α.

Call a kripke model where the root r ⊭ α a countermodel for α

10 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Kripke Semantics and Models

Example

Countermodel for p ∨ ¬p:

({k, k ′}, δ,≤, k), where

▶ δ(k) = ∅
▶ δ(k ′) = {p}
▶ k < k ′

Figure: Visual representation of
Kripke Countermodel for p ∨ ¬p

11 / 31



Introduction Background intuitR Experiment and Results Conclusion References

SAT Solvers

Outline

Introduction

Background
Kripke Semantics and Models
SAT Solvers

intuitR
Clausification Procedure
Logic Rules
proveR Algorithm

Experiment and Results
Experiment
Results

Conclusion

12 / 31



Introduction Background intuitR Experiment and Results Conclusion References

SAT Solvers

SAT solver

Program that solves the Boolean Satisfiability Problem:
Given a propositional formula α is there an assignment of
variables, such that α is true?

When in form α → p, can reinterpret as “Does α being true make
p true?” or “Does α prove p classically?”

13 / 31



Introduction Background intuitR Experiment and Results Conclusion References

SAT Solvers

SAT solver

Program that solves the Boolean Satisfiability Problem:
Given a propositional formula α is there an assignment of
variables, such that α is true?

When in form α → p, can reinterpret as “Does α being true make
p true?” or “Does α prove p classically?”

13 / 31



Introduction Background intuitR Experiment and Results Conclusion References

SAT Solvers

Methods Required for intuitR

▶ newSolver()
▶ Create a new SAT solver

▶ addClause(s, ρ)
▶ Add clause ρ to SAT solver’s existing clauses R(s)

▶ satProve(s, A, g)
▶ Use SAT solver s to prove g based on the clauses R(s) that

have already been added and the set of propositional variables
A that are assumed to be true

▶ Returns:
▶ YES(A′), if R(s) and A′ ⊆ A being true makes g true
▶ NO(M), if R(s) and the set of propositional variables M ⊇ A

are both true, but g is false

14 / 31



Introduction Background intuitR Experiment and Results Conclusion References

SAT Solvers

Methods Required for intuitR

▶ newSolver()
▶ Create a new SAT solver

▶ addClause(s, ρ)
▶ Add clause ρ to SAT solver’s existing clauses R(s)

▶ satProve(s, A, g)
▶ Use SAT solver s to prove g based on the clauses R(s) that

have already been added and the set of propositional variables
A that are assumed to be true

▶ Returns:
▶ YES(A′), if R(s) and A′ ⊆ A being true makes g true
▶ NO(M), if R(s) and the set of propositional variables M ⊇ A

are both true, but g is false

14 / 31



Introduction Background intuitR Experiment and Results Conclusion References

SAT Solvers

Methods Required for intuitR

▶ newSolver()
▶ Create a new SAT solver

▶ addClause(s, ρ)
▶ Add clause ρ to SAT solver’s existing clauses R(s)

▶ satProve(s, A, g)
▶ Use SAT solver s to prove g based on the clauses R(s) that

have already been added and the set of propositional variables
A that are assumed to be true

▶ Returns:
▶ YES(A′), if R(s) and A′ ⊆ A being true makes g true
▶ NO(M), if R(s) and the set of propositional variables M ⊇ A

are both true, but g is false

14 / 31



Introduction Background intuitR Experiment and Results Conclusion References

SAT Solvers

Methods Required for intuitR

▶ newSolver()
▶ Create a new SAT solver

▶ addClause(s, ρ)
▶ Add clause ρ to SAT solver’s existing clauses R(s)

▶ satProve(s, A, g)
▶ Use SAT solver s to prove g based on the clauses R(s) that

have already been added and the set of propositional variables
A that are assumed to be true

▶ Returns:
▶ YES(A′), if R(s) and A′ ⊆ A being true makes g true

▶ NO(M), if R(s) and the set of propositional variables M ⊇ A
are both true, but g is false

14 / 31



Introduction Background intuitR Experiment and Results Conclusion References

SAT Solvers

Methods Required for intuitR

▶ newSolver()
▶ Create a new SAT solver

▶ addClause(s, ρ)
▶ Add clause ρ to SAT solver’s existing clauses R(s)

▶ satProve(s, A, g)
▶ Use SAT solver s to prove g based on the clauses R(s) that

have already been added and the set of propositional variables
A that are assumed to be true

▶ Returns:
▶ YES(A′), if R(s) and A′ ⊆ A being true makes g true
▶ NO(M), if R(s) and the set of propositional variables M ⊇ A

are both true, but g is false

14 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Clausification Procedure

Outline

Introduction

Background
Kripke Semantics and Models
SAT Solvers

intuitR
Clausification Procedure
Logic Rules
proveR Algorithm

Experiment and Results
Experiment
Results

Conclusion

15 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Clausification Procedure

Goal

Convert formula to an r-sequent, denoted R,X ⇒ g :

(
∧
R ∧

∧
X ) → g

where:

▶ R a set of flat clauses: (a1∧ a2∧ ...∧ an) → (b1∨b2∨ ...∨bm)

▶ X a set of implication clauses: (a → b) → c

▶ for each (a → b) → c ∈ X , b → c ∈ R

▶ g a propositional variable

16 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Clausification Procedure

Goal

Convert formula to an r-sequent, denoted R,X ⇒ g :

(
∧
R ∧

∧
X ) → g

where:

▶ R a set of flat clauses: (a1∧ a2∧ ...∧ an) → (b1∨b2∨ ...∨bm)

▶ X a set of implication clauses: (a → b) → c

▶ for each (a → b) → c ∈ X , b → c ∈ R

▶ g a propositional variable

16 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Clausification Procedure

Goal

Convert formula to an r-sequent, denoted R,X ⇒ g :

(
∧
R ∧

∧
X ) → g

where:

▶ R a set of flat clauses: (a1∧ a2∧ ...∧ an) → (b1∨b2∨ ...∨bm)

▶ X a set of implication clauses: (a → b) → c

▶ for each (a → b) → c ∈ X , b → c ∈ R

▶ g a propositional variable

16 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Clausification Procedure

Goal

Convert formula to an r-sequent, denoted R,X ⇒ g :

(
∧
R ∧

∧
X ) → g

where:

▶ R a set of flat clauses: (a1∧ a2∧ ...∧ an) → (b1∨b2∨ ...∨bm)

▶ X a set of implication clauses: (a → b) → c

▶ for each (a → b) → c ∈ X , b → c ∈ R

▶ g a propositional variable

16 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Clausification Procedure

Goal

Convert formula to an r-sequent, denoted R,X ⇒ g :

(
∧
R ∧

∧
X ) → g

where:

▶ R a set of flat clauses: (a1∧ a2∧ ...∧ an) → (b1∨b2∨ ...∨bm)

▶ X a set of implication clauses: (a → b) → c

▶ for each (a → b) → c ∈ X , b → c ∈ R

▶ g a propositional variable

16 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Clausification Procedure

Example

For p ∨ ¬p:
▶ R = {p → g ,⊥ → g}
▶ X = {(p → ⊥) → g}
▶ g = g (introduced during clausification)

Or (p → g) ∧ (⊥ → g) ∧ ((p → ⊥) → g) → g

17 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Logic Rules

Outline

Introduction

Background
Kripke Semantics and Models
SAT Solvers

intuitR
Clausification Procedure
Logic Rules
proveR Algorithm

Experiment and Results
Experiment
Results

Conclusion

18 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Logic Rules

cpl0 and cpl1

19 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Logic Rules

cpl0 and cpl1

19 / 31



Introduction Background intuitR Experiment and Results Conclusion References

proveR Algorithm

Outline

Introduction

Background
Kripke Semantics and Models
SAT Solvers

intuitR
Clausification Procedure
Logic Rules
proveR Algorithm

Experiment and Results
Experiment
Results

Conclusion

20 / 31



Introduction Background intuitR Experiment and Results Conclusion References

proveR Algorithm

proveR

Figure: Flowchart of the proveR algorithm

21 / 31



Introduction Background intuitR Experiment and Results Conclusion References

proveR Algorithm

Initialization

22 / 31



Introduction Background intuitR Experiment and Results Conclusion References

proveR Algorithm

Inner Loop

23 / 31



Introduction Background intuitR Experiment and Results Conclusion References

proveR Algorithm

Restart Outer Loop

24 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Experiment

Outline

Introduction

Background
Kripke Semantics and Models
SAT Solvers

intuitR
Clausification Procedure
Logic Rules
proveR Algorithm

Experiment and Results
Experiment
Results

Conclusion

25 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Experiment

Experiment

intuitR was compared to three other IPL-provers:
intuit, fCube, and intHistGC

Ran on a benchmark set of 1200 problems, split into 32 groups
498 problems were IPL-valid, 702 were not

26 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Results

Outline

Introduction

Background
Kripke Semantics and Models
SAT Solvers

intuitR
Clausification Procedure
Logic Rules
proveR Algorithm

Experiment and Results
Experiment
Results

Conclusion

27 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Results

Significant Results

Problem Set (Number of Problems) intuitR intuit fCube intHistGC
SYJ201 (50) 50 (2.259) 50 (11.494) 50 (259.776) 50 (39.466)
SYJ207 (50) 50 (2.291) 50 (109.919) 50 (138.546) 50 (1014.476)
SYJ211 (50) 50 (0.462) 50 (1.251) 50 (1.073) 50 (63.686)
SYJ212 (50) 50 (0.669) 42 (587.794) 50 (2.698) 50 (1.624)

EC (100) 100 (2.738) 100 (0.821) 100 (6.183) 100 (0.651)
negEC (100) 100 (3.614) 100 (1.116) 100 (13.733) 100 (5.807)
portia (100) 100 (32.878) 100 (22.596) 100 (3255.818) 100 (3200.135)

Total Unsolved 28 36 43 38

Total Time (For These Problems) 44.911 734.991 3677.827 4325.845

Table: Most significant results from Fiorentini (2021). Number of
problems solved, followed by the time taken to solve said problems (in
seconds). Fastest prover highlighted.

28 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Conclusion

Introduction

Background
Kripke Semantics and Models
SAT Solvers

intuitR
Clausification Procedure
Logic Rules
proveR Algorithm

Experiment and Results
Experiment
Results

Conclusion

29 / 31



Introduction Background intuitR Experiment and Results Conclusion References

Questions?

30 / 31



Introduction Background intuitR Experiment and Results Conclusion References

References

Koen Claessen and Dan Rosén. 2015. SAT Modulo Intuitionistic
Implications. In Logic for Programming, Artificial Intelligence,
and Reasoning, Martin Davis, Ansgar Fehnker, Annabelle
McIver, and Andrei Voronkov (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 622–637.

Camillo Fiorentini. 2021. Efficient SAT-based Proof Search in
Intuitionistic Propositional Logic. In Automated Deduction –
CADE 28, André Platzer and Geoff Sutcliffe (Eds.). Springer
International Publishing, Cham, 217–233.

Joan Moschovakis. 2021. Intuitionistic Logic. In The Stanford
Encyclopedia of Philosophy (Fall 2021 ed.), Edward N. Zalta
(Ed.). Metaphysics Research Lab, Stanford University.

31 / 31


	Introduction
	Background
	Kripke Semantics and Models
	SAT Solvers

	intuitR
	Clausification Procedure
	Logic Rules
	proveR Algorithm

	Experiment and Results
	Experiment
	Results

	Conclusion
	References

