Full Body Technologies Supporting Motor and Sensory Development in Children

Natasha Zebrev

Division of Science and Mathematics University of Minnesota, Morris Spring 2022

Introduction

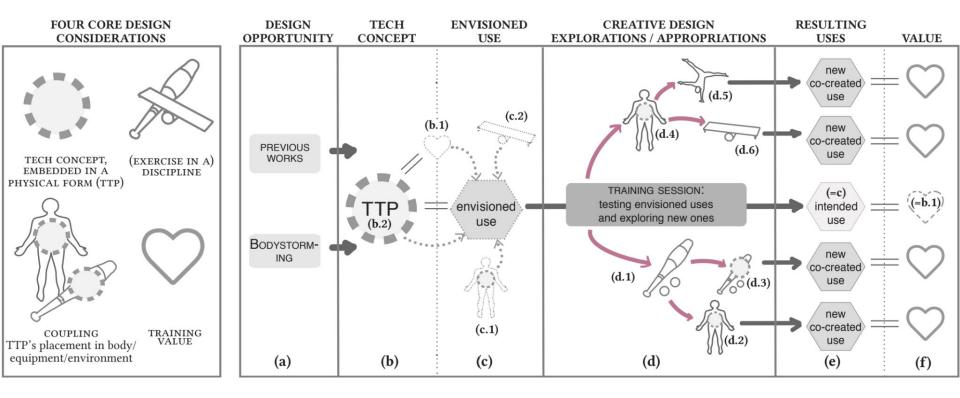
What is a Full Body Technology and why is it useful?

- Benefits of using full body technologies in training
- Using co-design techniques to develop and implement full body technologies

Background

- Co-Design
- Somatosensory Technology: Training Technology Probes
- Bodystorming/Embodiment

Circus Training


- Technologies
- Results

• Theater Training

- Co-Design Methods
- Results
- Conclusion

Background

Co-Design

Overview of the Co-Design process. Taken from Vidal et al., 2020

Somatosensory Technology: Training **Technology Probes** (TTP)

Somatosensory technologies are full body technologies designed to target motor and sensory skills.

- Training Technology Probes (TTPs) are a subset of somatosensory technologies
- Used to stimulate motor and sensory development
- Improves understanding of body movement

Bodystorming and Embodiment

Bodystorming and Embodiment

- Body awareness
 - Creates stronger awareness and understanding during movement
- Promotes connection between body and surroundings
- Promotes connection between body and mind
- Using physical experience to connect the senses

Full Body Technologies in Circus Training

Study Set Up

- Six week circus training camp
- Seven children ages 9-12
- Four researchers, three instructors
- Two hour sessions—30 minutes of warm-up, 1 hour of training, 30 minutes of reflection
- Feedback received from participants, instructors, and videos taken during training sessions

Requirements of Design

- SAFE Framework
- Versatility
- Interesting and engaging for users and those around them

Technologies

FrontBalance and TopBalance TTPs

- Adafruit Circuit Playground Board (CPB)
- LEDs and Sound for visual and auditory stimuli

FrontBalance TTP

Taken from Segura et al., 2019

TopBalance TTP

Taken from Segura et al., 2019

Blower TTP

- LEDs and Sounds provide stimuli
- Microphone is used to measure breathing

Blower TTP

Taken from Segura et al., 2019

Participants using the Blower TTP during training. Taken from Segura et al., 2019

Laser TTP

- Does NOT use a CPB
- Provides visual stimulus

Laser TTP

Taken from Segura et al., 2019

Participant using the Laser TTP during training. Taken from Vidal et al., 2020

Results

Participant using the FrontBalance TTP during training. Taken from Vidal et al., 2020.

Participant using the Blower TTP during training. Taken from Vidal et al., 2020.

Full Body Interaction Technologies in Theater Training

Study Set Up

- Three part study each with a group of 12 children
- Each part implements a specific part of the co-design method used
- Two researchers and two instructors in each part
- Feedback provided by participants, instructors, videos and pictures taken during the training sessions, and interactions with the prototype

Requirements for techniques

- Must engage the children with their environment
- Must encourage interaction between mind and body
- Chose the Thinking for Embodied Co-Design technique (Think4EmCoDe)

Co-Design Methods

Full Body Interaction Co-Design Method (FUBImethod)

There are five steps:

- Defining context: Part 1
- Awakening body awareness: Part 1
- 3. Translating embodied awareness: Part 2
- 4. Prototyping the embodied experience: Part 2 (Only researchers and game designers)
- 5. Understanding the embodied experience: Part 3

Think4EmCoDe

Has ten standards or goals:

Degree of Achievement: Design Goals	High	Middle	Low
Play Practice	X		
Emergence	X		
Contingency		X	
Playful Engagement	X		
Social Dialogue	X		
Embodied Memory	X		
Developmental Scaffold	X		
Reflective Imagery	X		
Embodied Awareness		X	
Situated Relationality		X	

Analysis of the Signifying Space Technique following the FUBImethod standards. Based on Shaper and Pares, 2021

Results

Signifying Space Technique

- Embodied memory: stronger understanding and recollection
 embodiment
- The camera improved understanding of scenes and locations

Degree of Achievement: Design Goals	High	Middle	Low
Play Practice	X		
Emergence	X		
Contingency		X	
Playful Engagement	X		
Social Dialogue	X		
Embodied Memory	X		
Developmental Scaffold	X		
Reflective Imagery	X		
Embodied Awareness		X	
Situated Relationality		X	

Analysis of the Signifying Space Technique following the FUBImethod standards. Based on Shaper and Pares, 2021

Body Shadows Technique

- Performed very well for embodiment and embodied understanding
- Improved the connection between mind and body
- Promoted significant interactions with surroundings

The initial planning and acting out of the BodyShadows technique. Taken from Shaper and Pares, 2021

Conclusion

Goal:

Stimulate motor and sensory development through the implementation of technologies during regular practice.

Results:

Needs:

- Versatility: allows children to explore their creativity
- Repetition is key
- An environment that allows children to feel equal and confident

Drawbacks:

 Children who are recurring participants can cause the new participants to feel at a disadvantage

Questions?

References

- Cuiying Wu. 2020. The Application of Somatosensory Technology in Cooperative Play.
- Elena Márquez Segura, Laia Turmo Vidal, Luis Parrilla Bel, and Annika Waern. 2019.
 Circus, Play and Technology Probes: Training Body Awareness and Control with Children.
- Elena Márquez Segura, Laia Turmo Vidal, Luis Parrilla Bel, and Annika Waern. 2019. Using Training Technology Probes in Bodystorming for Physical Training.
- Laia Turmo Vidal, Elena Márquez Segura, Luis Parrilla Bel, and Annika Waern. 2020.
 Training Body Awareness and Control with Technology Probes: A Portfolio of Co-Creative Uses to Support Children with Motor Challenges.
- Marie-Monique Schaper and Narcis Pares. 2021. Co-Design Techniques for and with Children Based on Physical Theatre Practice to Promote Embodied Awareness.