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Abstract
As conversational AI, such as the Amazon Alexa, Apple Siri,
and Microsoft Cortana, become more prominent in the daily
life of the individual, complications may occur as develop-
ment of better AI takes place. One such problem that an ev-
eryday user of a conversational AI will have, is formulating a
command in such a way for the conversational AI to perform
the desired action. This friction between the user and the
conversational AI can grow over time, and any friction be-
tween a product and a customer is unwanted. To reduce this
friction, one approach involves absorbing Markov chains to
group similar commands to the correct one and sending the
result to the user. Another approach is to use query rewrit-
ing combined with stored feedback data of the individual
to accurately interpret what action the user intends for the
conversational AI to perform. In this paper, an explanation of
both methods will further increase understanding on the sub-
ject and help to determine which method is more successful
in reducing user friction.

Keywords: friction rate, conversational AI, Markov chains,
query rewrite

1 Introduction
The problem presented in this paper is that conversational AI
systems, like the Amazon Alexa, do not always understand
the user’s query. This causes the AI to give an incorrect or un-
wanted response, which leads to unwanted friction between
the user and the AI. Two different approaches to reducing
user friction are using Markov chains to absorb user input
towards the correct output, and query rewriting to get the
intended response. The research this paper describes focuses
on the Amazon Alexa AI agent, and while the ideas and con-
cepts can be applicable to other AI, from this point on when
discussing AI we will be referring to the Amazon Alexa. Af-
ter going through some necessary background information,
we will discuss two alternatives to reducing friction between
a user and an AI, and the results of both options.

2 Background
In this section, we will explore topics that are relevant to
conceptually understand the solutions offered in this paper.

2.1 System Overview
Most conversational AI operate with a conventional spoken
dialogue system. A conventional spoken dialogue system
contains five components: Automatic Speech Recognition
(ASR), Natural Language Understanding (NLU), dialogue
management (DM), a natural language generation system
(NLG), and a text-to-speech system (TTS). When an indi-
vidual interacts with the conversational AI, the audio goes
through the ASR and gets converted into text. This text, or
query, is passed through the NLU component and then the
DM component, which extracts the user’s intent. This inter-
pretation of the user’s query is called an NLU hypothesis,
and helps determine what action to take in response. The
action to perform is decided through the NLG component,
and finally the TTS generates the audio response, which is
sent to the device to complete that instance of interaction.
An example image of what this system looks like can be seen
in Figure 1 [5].

2.2 Feedback-Based Self-Learning using Absorbing
Markov Chains

Markov Chains is a system of states where two states are
connected by the probability to move from one state directly
to the other. An example of what a Markov chain could rep-
resent is a baby, and what possible states the baby could be
in. Some states that the baby could be in would be eating,
sleeping, crying, or playing. A Markov Chain would not only
show all the possible states, but would also express the prob-
ability of travelling from the current state to another state.
In the baby example, the Markov Chain would be able to tell
us the probability of the baby that’s crying to move straight
to playing without sleeping or eating. Markov Chains are
used in a variety of applications. They are used in economics
to predict market crashes and lengths of time between reces-
sions and expansion. Markov Chains are also applicable in
many of the sciences, like biology or physics or chemistry,
and also in music software. [3]
Absorbing Markov Chains are Markov Chains that have

one or more states where it is impossible to transition out of
said state. States such as these are labelled absorbing states.
Transient States are states in a Markov Chain that have

two important properties. The first property is that they can
be reached in a finite number of steps. The other property,
which distinguishes them from absorbing states, is that once
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Figure 1. Process of a conversational AI responding to user input [4]

in a transient state, it is possible to leave again. Once a tran-
sient state is reached, and one transitions from it to another
state, it is extremely unlikely to return back to that transient
state.
Absorbing States are states in a Markov Chain that are

impossible to leave. While there needs to be a positive prob-
ability chance of reaching said state, once in an absorbing
state, there is no leaving, and while a Markov Chain can
continue to process, it will remain in the absorbing state.
Friction Rate is the likelihood of an automated system re-

sponse causing friction with the user. When the user inputs
an utterance or query, the Alexa system creates an output
response based on the inputted utterance, along with contex-
tual clues, such as if the Alexa is playing music or not. If the
response is not what the user expects, then it will have a high
friction rate. Friction can be caused by a variety of issues,
such as not interpreting the utterance correctly (Alexa hears
"Play maj and dragons" instead of "Play imagine dragons"),
or a user not using an exact command ("Don’t play this song"
could mean "Skip this song" or "Take this song off the playlist").
Calculating the friction rate is helpful to determine if the
response the system has come up with is in accordance with
what the user intended, or if the system should scrap it and
attempt a different response. [4]

2.3 Self-Learning Query Rewrite System
Neural networks are systems that are created to be structured
and act similar to the human brain, where repeated activation
of certain neural paths leads to learning. These networks are
made up of different node layers. These layers include an
input layer, an output layer, and one or more hidden layers.
Each node, or ‘neuron’, connects to another node and has
a set weight and threshold value. A node is activated if the
output goes over the set threshold value, and the data is
sent on to the next layer in the neural network. The more
layers there are, the better the neural networks can refine
information they get and the better they are to make accurate
predictions, or accurate output, from the inputted data. [1]
Deep learning is a neural network with three or more

layers. [2]
Hidden embedding is a layer inside a neural network. This

layer is essential to letting the system process input informa-
tion data efficiently, and also to learn about the relationships
between inputs. The way this works is that it when given an

input, it converts from having multiple dimensions to ideally
one dimension. Think of it was points on a two dimensional
graph. Instead of listing the points by their coordinates, we
give each point a number, and if we want to refer to the
point we refer to it by its given number. It seems unneces-
sary when there are only two dimensions present, but is
extremely useful with multiple dimensions, and hundreds or
thousands of data points.

Gradient Boosted Decision Trees (GBDT) are used to solve
prediction problems. GBDT approaches a problem in a way
that simplifies the objective and by doing so also reduces the
number of iterations needed to obtain an optimal solution.
A GBDT is a decision tree that is constructed to correct any
errors of previous trees. The first decision tree is used, and
the predicted results are compared to the actual, real world
results. Any errors there are recorded, and a new decision
tree is made, with adjustments made to help make it more
accurate. This process is continued until the tree is always
correct or if the error range is sufficiently small enough to
be used.

Information Retrieval (IR) model extracts information out
of different features of a query to learn more about what
the query is about. For this research, there are the main
types of IR features: text features, document features, and
query-document features. Text features captures any differ-
ences between the original query and the rewrite. Document
features provide information relative to the historical inter-
action of the NLU hypothesis, such as how many queries
led to this NLU hypothesis, and the historical friction rate
of each of those queries. Query-document features contain
information about the relevance of the query such as the
number of queries. [5]
Deep Structured Semantic Model (DSSM) is a deep neural

network (DNN) modeling technique for representing text
strings in a semantic space, and models similarities between
two text strings. DSSM is used in a variety of applications, in-
cluding web search ranking and information retrieval, ques-
tion answering, ad selection and ad relevance, image cap-
tioning, and machine translation.

3 Feedback-Based Self-Learning using
Absorbing Markov Chains

This section describes research that focuses on the method of
using absorbing Markov Chains to reduce friction between



Nik F. Bailey

conversational AI and their users. When a query, or utter-
ance is inputted to the system, instead of moving on to the
NLU after going the the ASR, the utterance is sent to the
reformulation engine, which uses Markov chains determine
if a rewrite is necessary. That result is sent to the TTS to
produce the output. The reformulation engine uses an online
database to store the user data, which is updated regularly
from recent Alexa log data. That log data is compared to
the original utterance, testing the friction rates of utterance,
and the one with the highest friction rate is prevented from
uploading to the database. [4]

3.1 Dataset
The dataset is constructed from three months of Alexa log
data from millions of users, to get a randomized collection
of utterance data. That randomized data is then partitioned
and sorted into groups of finite sets of successive utterances.
These sets are then divided further into sessions, where divi-
sions are made between utterances with a set time delay of
forty-five seconds between them. This helps break the data
into individual interactions between the user and their Alexa-
enabled device. Because of the use of anonymous data, there
is a wide variety of results from similar utterances. Note that
interjecting utterances, utterances from the user that inter-
rupt the current intent or stop the interaction before getting
to the intent, are removed. Therefore, each session can be
described as a linear directed chain of successive utterances.
[4]

3.2 Absorbing Markov Chain
The interpretation space is made up of all the utterances that
are involvedwith the dataset. Each utterance is seen as a node
in the Markov model. In general, the interpretation space
is the set of all transient states in the Markov model. The
interpretation space is also known as the utterance space,
or the space of all utterances. In its original form, it has
extremely sparse connections between states. By using the
domain and intent classifier, along with labeled data, the
utterance space is condensed into a new interpretation space,
grouping together similar utterances to connect it the same
interpretations.
Given a session and the interpretations within it, each

interpretation is seen as a transient state and the paths that
lead to it. Each successive pair of interpretations represents
an edge on the graph. Between two connected transient
states, x and y, the probability of transitioning from state x
to state y is calculated by taking the total number of times
state y is directly linked to state x, divided by the number of
occurrences of state x throughout all sessions in the current
dataset.

The absorbing states in the Markov chain model are deter-
mined to be either failure or success. By using implicit and
explicit feedback, we can figure out the state of an absorbing

state. Explicit feedback is where the user attempts to cor-
rect the interpretation, such as trying to get the same intent
again, or when a user interjects the interaction, stopping the
attempt to get the correct intent. Implicit feedback is where
the user gives up, or abandons the session once the Alexa
fails to handle the request made. With the feedback given,
the absorbing state is assigned a failure status or a success
status, where success is defined as the absence of failure.
These states are added to the end of all sessions

The absorbing states in the Markov chain model are either
a failure, or a success. A failure state is when the outputted
response was not what the user wanted, and the user either
tried again, or gave up. A success state is when the outputted
response was what the user wanted. The absorbing states
are not naturally part of the Markov chain, and have to be
injected onto the chain
Although the dataset is extremely large, with millions of

users’ data, it is noted that most ( 97.3%) have path lengths
of 5 or less. [4] This is attributed to the fact that if a given
user utterance results in a defective output, users will try
to reformulate their utterance a few times before getting
the correct output or giving up. From this, they concluded
that the dataset contains several clustered Markov chain
structures.

3.3 Experimentation & Results
The current mainstream approach to learning tasks has
been sequence-to-sequence architectures. The Markov chain
model was compared against a long short-term memory-
based (LSTM)model to determine which approachwas better
at developing accurate rewrites.

The LSTM model, specified as a pointer-generator model,
was trained with rephrase data. The rephrase data used was
taken within a span of three months, such that the first utter-
ance was a failure, and the second utterance, or the rephrase,
was a success. This data trained the pointer-generator model
to produce the rephrase when given the faulty utterance.

Once the pointer-generator model had been trained, the re-
search team annotated over five thousand unique utterance-
rephrase pairs that were generated by the Markov chain
model. The accuracy of the Markov chain model, based on
these results, was estimated to be 93.4%, and had a calcu-
lated win-loss ratio, successful rewrites to failed rewrites, of
12.0. Using the same utterance-rephrase pairs, the pointer-
generator model resulted in a significantly lower accuracy
of 55.2%. This isn’t surprising, as the Markov chain model
has the advantage of utilizing the interpretation space to
aggregate the utterances and aggregates all the months of
data instead of just the rephrases, and also takes into account
the frequency of transitions from utterance to rephrase.

There were some benefits to using the pointer-generator
model, such as it has a higher recall and it can learn patterns
in utterances. A significant difference that put the Markov
chain model ahead of the pointer generator model is that it



Reducing Friction Between Conversational AI and the User

can identify when an utterance is successful, and will signal
to itself when to not start a rewrite. [4]
It is noted that when the Markov chain model fails, it

generally does so when the utterance is rewritten to a generic
term, such as "play" or "shufflemy songs". This happens when
the original utterance fails, and the user tries several different
approaches that end up losing information, and the utterance
eventually gets aggregated into a generic utterance. This can
be corrected by applying rules to the rewrite building, or
by inserting a learning-based ranker after the Markov chain
generation. Another common way that the Markov chain
model fails, is when the system changes the intention of the
original command by changing the song name or artist. This
commonly happens when the original utterance used to fail,
and so the user gave up and asked to play a similar song
instead, or the same song with a different artist. [4]

Launching the model online, the performance of Markov
chainmodel rewrites compared to no rewrites wasmonitored
for twoweeks. Therewas a noticeable 30% reduction in defect
rate, or user dissatisfaction. In another separate nine week
trial, as defect decreased, user engagement was going up.
The win-loss ratio was calculated after 3 months, and was
determined to be 11.8, very similar to the offline win-loss
ratio.

4 Self-Learning Query Rewrite System
The User Feedback Search based Query Rewrite (UFS-QR)
system takes a query that is inputted into the system by the
user, and determines if a rewrite should be triggered. If so, a
rewrite is created and eventually sent to the NLU, restoring
the flow of data and giving the user a response to their query.
Any bad rewrites are disabled from continuing through the
system. What makes a bad rewrite is the comparison of
the friction rates of the rewrite and the original query; the
one with the predicted higher friction rate is disabled from
continuing. The UFS-QR system contains an index, a retrieval
layer, and a ranking layer. The index is constructed from
an offline process, the retrieval layer performs a nearest
neighbor search, and the ranking layer ranks the rewrite
candidates, returning the top rewrite as the final rewrite.
Each of these parts of the system will be described in this
paper. [5]

4.1 Indexing
The UFS-QR index is made up of a global index and a per-
sonalized index. The global index has rewrite candidates
for all user interactions, and is generated from anonymized
interactions between users and the conversational AI. The
global index is sorted by the intended purpose of each query.
Queries with the same intent are grouped together. So for
queries whose intent is to play a specific song, such as "Play
Bad Blood by Taylor Swift", they are grouped together based
on that intent. [5]

The personalized index is constructed similarly to the
global index, but is unique to the individual user. Taking
from the individual interaction history, this index is vital as
the context to a query may change based on the individual.
An example of this is that a user could say "Turn on the moon
light", and while for one user that could mean to turn on a
lamp named "The moon", but for other users that could be a
shorthand way of asking to play "Moonlight Sonata" [5]. The
personalized index is made up of successful queries from the
user within a thirty day time period, and is updated daily.

4.2 Retrieval Layer
Candidate rewrites for the query are scored using a neural
network scoring function. If the potential rewrite scores well
enough, it is added to an index of rewrite candidates. Using
a system of query embedding, the query embedding is close
to its related rewrites. A k-nearest-neighbor (kNN) index is
used to quickly grab the top K rewrites. Here, K is all the
rewrite candidates in the space. To promote the diversity of
retrieved rewrite candidates, a query is passed on to a deep
neural network (DNN) and a convolutional neural network
(CNN) encoder.

The rewrite candidates are sorted by each encoder, and
the results are interleaved. If a rewrite candidates is already
in the list, the duplicate is removed. Once all candidates are
interleaved, then starting from the top, we take the top K
candidates, or in the case there are less than K candidates,
the whole list. This improves coverage of candidates, as du-
plicates don’t take up a spot on the list that a distinct rewrite
candidate could take. These final candidates are given to the
ranking layer. [5]

4.3 Ranking Layer
The ranking layer takes the query and the top K candidates
from the retrieval layer. The ranking layer has twomain com-
ponents: a neural feature extractor, and a Gradient Boosted
Decision Tree (GBDT). This allows for flexibility to add more
semantic information, gives the model extendability to add
various features on a global and personal level, and helps
with generalization of data.

The Neural Feature Extractor acts as a deep learningmodel
that provides hidden embedding as features for GBDT. Through
the neural feature extractor, a ranking score is determined
for the rewrites. Each query has a positive rewrite and a neg-
ative rewrite, where the positive rewrite will have a higher
ranking score than the negative rewrite. Once the neural
feature extractor model is trained, the features are extracted
to be used within the GBDT models.

Along with the features extracted from the neural feature
extractor, a group of conventional IR features are also ex-
tracted. All features are then concatenated together to form
an input to the GBDT model. The GBDT model ranks the
rewrites by which helps to reduce user friction the most, the
most helpful ones going to the top. [5]
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4.4 Rewrite Selection
For a global UFS-QR search, the top one returned rewrite
from the ranking layer is used and replaces the original query
in the conversational AI system.
For a personalized UFS-QR search, the goal is to find the

most similar query from the individual user’s personalized
index. This is done by using the retrieval and ranking model,
selecting the top one rewrite. Once both the global and per-
sonalized UFS-QR return a rewrite candidate, the personal-
ized rewrite candidate is prioritized, to provide any person-
alization of query rewriting. [5]

4.5 Experimentation & Results
The training data used to train the model is from actual
user data. The data picked was held to the following crite-
ria: given two consecutive queries, the queries were spoken
within a few seconds of each other (they were part of the
same conversation), and using a friction detection model, the
first query led to friction and the second was successful. The
aim of these criteria is to grab query-rephrase pairs where
the user repeated or rephrased the original query. They also
used the ASR n-best, where the first query’s n-best queries
include the second query’s ASR 1-best. The reasoning be-
hind this is that while there may be an ASR error in the first
query’s 1-best, the correct query that the user intended is
often in the first query’s ASR n-best list. Looking at this helps
find the rephrase pairs where the first query was likely an
ASR error of the second query. User data was analyzed, and
the data that was used for training was forty million query-
rephrase pairs. Some training data examples are play ambient
mean -> play envy me, and play blues radio news -> play blue
news radio. In the first example, the rewrite corrected an
ASR error, and in the second rewrite, the query was rear-
ranged for better clarity. [5] They then obtained positive and
negative rewrites of the training data. Positive rewrites are
where the NLU hypothesis of the reference rewrite matches
the NLU hypothesis of a proposed rewrite, otherwise it is
deemed a negative rewrite. Correct rewrites are positive ex-
amples, negative rewrites are negative examples. From the
forty million pairs, about twenty million triplets of "<query,
positive_sample, negative_sample>" are sampled to train the
ranking models. [5]
For an offline evaluation, test data was created that had

a similar procedure as that of getting data for training. Im-
mediately following the time period for grabbing training
data, test data cases are randomly grabbed within the next
time period. Human annotators select the true rephrase pairs
from the data. The test cases come from the baseline model,
Markov chain model, and were specifically cases where the
Markov chain model was not able to create rewrites for that
case. For the UFS-QR system, potential rewrite pairs are
selected that fulfill the following conditions: The second ut-
terance follows the first utterance by a short time window,

and the second utterance can be observed to have a success-
ful interaction based off the determination of the friction
estimated model. Evaluation is performed on the NLU hy-
pothesis level, using Precision@N (P@N ), which measures
if at least one rewrite in the first N candidates has a NLU
hypothesis matched to the second utterance.
For the online analysis, the UFS-QR, both personalized

and global, is launched through and A/B testing setup, and
the defect rate decrease is measured.
Performance is in terms of improvement compared to

the baseline. For offline experimentation, the Markov chain
model is considered the baseline, and performance is rated
at 0%. Introducing the retrieval layer in UFS-QR received a
relative improvement of 15.1% at P@1 and 25.3% at P@10.
Inserting the retrieved candidates into the ranking neural
model received a relative improvement of 36.2%. Implement-
ing the full UFS-QR system, there was a significant relative
improvement at P@1 of 142.2%. The significant boost is attrib-
uted to the GBDT model, where the combination of semantic
comparison captured by the ranking neural models and the
feedback signal carried in the IR features where responsible
for being able to connect queries to the correct rewrite, even
when they were syntactically distant. [5]

The global and personalized UFS-QR were also tested
against each other. The global UFS-QR system is set as the
baseline, with P@1 performance reported at 0%. Personal-
ized test data contains utterances that are specific to the
individual, i.e. utterances that regard the users specific de-
vices. Global UFS-QR rarely has confident rewrites for these
test cases. Personalized UFS-QR improved the global UFS-QR
by a relative 64% at P@1. [5]

The online evaluation was done over a week, with English
speaking users in the US. Comparing the performance of
global UFS-QR rewrites against no rewrites, the defect rate
was reduced to 13%. Launching the personalized UFS-QR on
top of the global UFS-QR resulted in the defect rate being
reduced by 4%. The personalized UFS-QR also reduced user
rephrases by 4.33%. When both global and personalized UFS-
QR systems were fully launched in production, the total
number of accurate rewrites was increased by 46%.

5 Compare and Contrast
The Markov chain model reported significant improvements
when actual Amazon Alexa users used their system com-
pared to a more commonly used pointer-generator model.
This model rarely failed to produce a correct response for
the user, and when it did it was from general user queries
or because of loss of information from reiterating the same
query multiple times. The Search-Based query rewrite sys-
tem also showed to largely improve user satisfaction with the
user’s Alexa product, and also had the benefit of being able
to produce correct responses to queries the Markov model
missed.
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