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Introduction
● What is a conversational AI?

● What challenges come from conversational AI?
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Introduction
● What is a conversational AI?

● What challenges come from conversational AI?
○ Play Imagine Dragons - play maj and dragons
○ Play Shallow by Lady Gaga - play shadow by lady gaga
○ Don’t ever play that song again - formal command is “Thumbs down this song”
○ Turn the volume to half - formal command is “Volume five”
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Problem: Friction
● Common way to reduce friction is to manually fix cases using rules and finite state transducers 

(FST)
○ Not scalable
○ Prone to error
○ Defective over time

● Another way is to identify frictions and ask annotaters to come up with correct form of query 
and then update the Alexa system
○ Not scalable
○ Expensive & time consuming

● Objective of research
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Outline
● Background Information

○ Friction & Friction rate
○ Markov Chains
○ AI system overview

● Building the Markov Chain
○ Markov Chain in AI system
○ Dataset
○ Parts of the Markov Chain

● Experimentation & Results
○ Offline Analysis
○ Online Analysis
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Friction & Friction Rate
● Friction - User dissatisfaction from AI response

● Friction Rate- Likelihood of causing friction between user and the AI
○ Computed by aggregating across utterances
○ Result of pre-trained neural model that leverages a user’s utterance, the corresponding Alexa’s 

response, and contextual signals to detect friction for every user-Alexa interaction exchange
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Markov Chains
● Transient States

● Absorbing States

● Edges between states
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https://brilliant.org/wiki/absorbing-markov-chains/#:~:text=A%20simple%20example%20of%20an,they%20will%20stay%20there%20forever.


AI System Overview
● Generally an Alexa system consists of:

○ Automatic Speech Recognition (ASR)
○ Natural Language Understanding (NLU)
○ Dialogue Management (DM)
○ Natural Language Generator (NLG)
○ Text to Speech (TTS)

Voice Command

Audio Response
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Markov Chain in the AI System
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Markov Chain in the AI System
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● Encapsulates access to high-performance 
low-latency database

● Markov model takes in Alexa log data 
daily to learn user reformulations (offline)



Dataset
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● 3 month time period

● Millions of random users

● Sorted by user-device pair, then by individual conversations
○ Each individual session is a conversation between a user and their Alexa
○ Each session represented as a successive chain of utterances
○ Conversations separated by time delay > 45 sec



Markov Chain Attributes
● Utterance & Interpretation Space

● Transient States

● Absorbing States

● Creating highest probability of success
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Utterance & Interpretation Space
● Utterance space U  has sparse connection

○ Hard to connect similar sessions together
○ High degree of semantic and structural variance makes generalization difficult

● Uses the domain and intent classifier from the NLU
○ Encapsulates a latent distribution over the utterance space
○ Projected into interpretation space
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https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/15102


Transient & Absorbing States
● Probability of moving from transient state x to transient state y is shown by

● Absorbing states are either a success (+) or a failure (-)
○ Use explicit and implicit feedback to determine absorbing states

■ Interjecting, canceling, or not responding to a request for clarification
○ Any feedback implies failure
○ Success is the absence of failure
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Example
“Play Despicable Me”
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Markov Model - Highest Probability of Success
● Want to create Markov chain with highest chance of success

○ Given a transient state hx , is there a transient state with that’s more likely to succeed?

● Given an hs and an ht , determine what h*
t is

○ If hs = h*
t  or hs ≠ h*

t
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Markov Model - Highest Probability of Success
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Markov Model - Highest Probability of Success
● In this example, hs ≠ h*

t
○ hs probability: 75%
○ ht probability: 100%

● Model shows there’s a reachable interpretation that when reformulated from hs 
has a better chance of success than when not doing so
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Markov Model - Highest Probability of Success
● Similar idea can be used on the utterance space

● Reformulate to get a u*
t that is more successful than us

● Self-partitioning allows the model to only target utterances that are likely to be 
defect
○ Drives self-learning nature without needing human interaction

32
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Offline Analysis - Creating Baseline Model
● Sequence-to-sequence architectures have been the foundation for many neural 

machine translation and sequence learning tasks

● Used long short-term memory based (LSTM) model to produce rewrites
○ Pointer-generator model
○ Trained with 3 months of mined rephrase data

● Used to rewrite same utterance Markov chain rewrites

34



Offline Analysis

Markov Chain Model

● 93.4% accuracy
● win/loss ratio 12.0

Pointer-Generator model
● 55.2% accuracy

35

● Annotated 5679 unique utterance-rewrite pairs generated by Markov 
model



Offline Analysis - Markov Chain Benefits
● Aggregates all 3 months of data

● Accounts the frequency of transitions, whereas the pointer-generator model only 
has unique rephrase pairs

● Uses interpretation space to further compact and aggregate utterances

● Capable of identifying if an utterance is successful, and so won’t rewrite
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Offline Analysis - Markov Chain Failures
● Rewrite is generic

○ “Play”
○ “Shuffle my songs”
○ Usually happens when first utterance isn’t successful, following utterance lose information

● Rewrite changes intention by changing song name or artist name
○ Period of time where original utterance wasn’t successful, so user asked for similar song
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Online Analysis
● A/B Testing setup - Rewrites against no rewrites

● Two week rewrite performance
○ 30% average defect rate reduction
○ Defect based on machine learning model that scores user dissatisfaction at every turn

● Nine week randomized control trial
○ As defects decreased, user engagement increased

● Win/loss ratio after 3 months - 11.8
● Monitored weekly for 15 months
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Conclusion - Fulfilling Research Objectives
● Scalable

● Updates database regularly

● Time-efficient

● Self-Learning
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Questions?
● https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/15102
● https://brilliant.org/wiki/absorbing-markov-chains/#:~:text=A%20simple%20exam

ple%20of%20an,they%20will%20stay%20there%20forever.
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