Reducing Friction between Users and Conversational AI using Markov Chains

 $\bullet \bullet \bullet$

Nik Bailey

• What is a conversational AI?

• What challenges come from conversational AI?

- What challenges come from conversational AI?
 - Play Imagine Dragons play maj and dragons

- What challenges come from conversational AI?
 - Play Imagine Dragons play maj and dragons
 - Play Shallow by Lady Gaga play shadow by lady gaga

- What challenges come from conversational AI?
 - Play Imagine Dragons play maj and dragons
 - Play Shallow by Lady Gaga play shadow by lady gaga
 - Don't ever play that song again formal command is "Thumbs down this song"

- What challenges come from conversational AI?
 - Play Imagine Dragons play maj and dragons
 - Play Shallow by Lady Gaga play shadow by lady gaga
 - Don't ever play that song again formal command is "Thumbs down this song"
 - Turn the volume to half formal command is "Volume five"

Problem: Friction

- Common way to reduce friction is to manually fix cases using rules and finite state transducers (FST)
 - Not scalable
 - Prone to error
 - Defective over time
- Another way is to identify frictions and ask annotaters to come up with correct form of query and then update the Alexa system
 - Not scalable
 - Expensive & time consuming
- Objective of research

Outline

Background Information

- Friction & Friction rate
- Markov Chains
- AI system overview

• Building the Markov Chain

- $\circ \quad {\rm Markov} \ {\rm Chain} \ {\rm in} \ {\rm AI} \ {\rm system}$
- Dataset
- Parts of the Markov Chain

• Experimentation & Results

- Offline Analysis
- Online Analysis

Background Information

• Friction & Friction Rate

• Markov Chains

• Conversational AI System overview

Friction & Friction Rate

• Friction - User dissatisfaction from AI response

- Friction Rate- Likelihood of causing friction between user and the AI
 - Computed by aggregating across utterances
 - Result of pre-trained neural model that leverages a user's utterance, the corresponding Alexa's response, and contextual signals to detect friction for every user-Alexa interaction exchange

Markov Chains

• Transient States

• Absorbing States

• Edges between states

- Automatic Speech Recognition (ASR)
- Natural Language Understanding (NLU)
- Dialogue Management (DM)
- Natural Language Generator (NLG)
- Text to Speech (TTS)

- Automatic Speech Recognition (ASR)
- Natural Language Understanding (NLU)
- Dialogue Management (DM)
- Natural Language Generator (NLG)
- Text to Speech (TTS)

- Automatic Speech Recognition (ASR)
- Natural Language Understanding (NLU)
- Dialogue Management (DM)
- Natural Language Generator (NLG)
- Text to Speech (TTS)

- Automatic Speech Recognition (ASR)
- Natural Language Understanding (NLU)
- Dialogue Management (DM)
- Natural Language Generator (NLG)
- Text to Speech (TTS)

- Generally an Alexa system consists of:
 - Automatic Speech Recognition (ASR)
 - Natural Language Understanding (NLU)
 - Dialogue Management (DM)
 - Natural Language Generator (NLG)
 - Text to Speech (TTS)

Outline

- Background Information
 - \circ Friction & Friction rate
 - Markov Chains
 - AI system overview

• Building the Markov Chain

- Markov Chain in AI system
- Dataset
- Markov Chain Attributes

• Experimentation & Results

- Offline Analysis
- Online Analysis

Markov Chain in the Al System

Markov Chain in the Al System

Markov Chain in the Al System

Voice Command

Audio

Response

- Encapsulates access to high-performance low-latency database
- Markov model takes in Alexa log data daily to learn user reformulations (offline)

Response

NLG

TTS

Dataset

• 3 month time period

• Millions of random users

- Sorted by user-device pair, then by individual conversations
 - Each individual session is a conversation between a user and their Alexa
 - Each session represented as a successive chain of utterances
 - Conversations separated by time delay > 45 sec

Markov Chain Attributes

• Utterance & Interpretation Space

• Transient States

Absorbing States

• Creating highest probability of success

Utterance & Interpretation Space

- Utterance space *U* has sparse connection
 - Hard to connect similar sessions together
 - High degree of semantic and structural variance makes generalization difficult

- Uses the domain and intent classifier from the NLU
 - Encapsulates a latent distribution over the utterance space
 - Projected into interpretation space

Transient & Absorbing States

• Probability of moving from transient state *x* to transient state *y* is shown by

total number of times y is directly linked to x total occurrence of x aggregated across all sessions

- Absorbing states are either a success (+) or a failure (-)
 - Use explicit and implicit feedback to determine absorbing states
 - Interjecting, canceling, or not responding to a request for clarification
 - Any feedback implies failure
 - Success is the absence of failure

Example

"Play Despicable Me"

Example

"Play Despicable Me"

Example

"Play Despicable Me"

- Want to create Markov chain with highest chance of success
 - Given a transient state h_x , is there a transient state with that's more likely to succeed?

• Given an h_s and an h_t , determine what h_t^* is • If $h_s = h_t^*$ or $h_s \neq h_t^*$

- In this example, $h_s \neq h_t^*$
 - h_s probability: 75%
 - $\circ \quad h_t$ probability: 100%

• Model shows there's a reachable interpretation that when reformulated from *h_s* has a better chance of success than when not doing so

• Similar idea can be used on the utterance space

• Reformulate to get a u_{t}^{*} that is more successful than u_{s}

- Self-partitioning allows the model to only target utterances that are likely to be defect
 - Drives self-learning nature without needing human interaction

Outline

- Background Information
 - \circ Friction & Friction rate
 - Markov Chains
 - AI system overview
- Building the Markov Chain
 - Markov Chain in AI system
 - Dataset
 - Markov Chain Attributes

• Experimentation & Results

- Offline Analysis
- Online Analysis

Offline Analysis - Creating Baseline Model

• Sequence-to-sequence architectures have been the foundation for many neural machine translation and sequence learning tasks

- Used long short-term memory based (LSTM) model to produce rewrites
 - Pointer-generator model
 - \circ Trained with 3 months of mined rephrase data

• Used to rewrite same utterance Markov chain rewrites

Offline Analysis

• Annotated 5679 unique utterance-rewrite pairs generated by Markov model

Markov Chain Model

- 93.4% accuracy
- win/loss ratio 12.0

Pointer-Generator model

• 55.2% accuracy

Offline Analysis - Markov Chain Benefits

• Aggregates all 3 months of data

• Accounts the frequency of transitions, whereas the pointer-generator model only has unique rephrase pairs

• Uses interpretation space to further compact and aggregate utterances

• Capable of identifying if an utterance is successful, and so won't rewrite

Offline Analysis - Markov Chain Failures

• Rewrite is generic

- ⊃ "Play"
- "Shuffle my songs"
- Usually happens when first utterance isn't successful, following utterance lose information
- Rewrite changes intention by changing song name or artist name
 - Period of time where original utterance wasn't successful, so user asked for similar song

No.	Original utterance	Rewrite	Label
1	Play maj and dragons	Play imagine dragons	Good
2	Play shadow by lady gaga	Play shallow by lady gaga	Good
3	Play rumer	Play rumor by lee brice	Good
4	Play sirius x. m. chill	Play channel fifty three on sirius x. m.	Good
5	Play a. b. c.	Play the alphabet song	Good
6	Don't ever play that song again	Thumbs down this song	Good
7	Turn the volume to half	Volume five	Good
8	Play island ninety point five	Play island ninety eight point five	Good
9	Play swaggy playlist	Shuffle my songs	Bad
10	Play carter five by lil wayne	Play carter four by lil wayne	Bad

Online Analysis

• A/B Testing setup - Rewrites against no rewrites

- Two week rewrite performance
 - \sim 30% average defect rate reduction
 - Defect based on machine learning model that scores user dissatisfaction at every turn
- Nine week randomized control trial
 - As defects decreased, user engagement increased
- Win/loss ratio after 3 months 11.8
- Monitored weekly for 15 months

Conclusion - Fulfilling Research Objectives

• Scalable

• Updates database regularly

• Time-efficient

• Self-Learning

Questions?

- <u>https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/15102</u>
- <u>https://brilliant.org/wiki/absorbing-markov-chains/#:~:text=A%20simple%20example%20of%20an,they%20will%20stay%20there%20forever</u>.