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Autonomous Vehicles (AVs)

● Utilize numerous sensors to drive 
(cameras, sonar, GPS, etc.)

● Various levels
● Rising popularity
● Utilize LiDAR (Light Detection and 

Ranging) for 3D perception of 
environment
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Waymo Driverless Taxi

Honda’s Level 3 Self-Driving car
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LiDAR (Light Detection and Ranging) 

● LiDAR fires lasers into surroundings to measure distance from potential 
objects 

● Generates 3D point cloud through firing lasers at various angles 
● Segmentation step of LiDAR separates point cloud into regions

○ Regions are labeled with classes (grass, vehicle, road, etc.) by neural network
● Vulnerable to adversarial attacks 
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Neural Networks-Framework

● Consist of up to millions of interconnected nodes
● Organized into layers with data flowing one-way 
● A node’s incoming connections issued weight values
● Data value flowing through node is multiplied by weight
● Product is compared to threshold value
● Sent to outgoing connections or stopped
● Convolutional Neural Network (CNN)
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https://editor.analyticsvidhya.com/uploads/25366Convolutional_Neural_Network_to_identify_the_image_of_a_bird.png


Neural Networks-Training

● Weight and threshold values are randomized 
● Input data is fed into net
● Data is multiplied and transformed while flowing through layers
● Weight and threshold values repeatedly adjusted 
● Complete when input data with specific labels consistently produces similar 

outputs
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Adversarial Examples

● Maliciously created inputs 
● Indistinguishable to human eye
● Intention of fooling machine learning models 
● Goal is to result in misclassification of given input
● M(x’)≠y or M(x’)=y’ 
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https://pytorch.org/tutorials/_images/fgsm_panda_image.png
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LiDAR Data Processing 
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Pre-Processing

● Raw data points transformed into coordinate system
● ROI filters out irrelevant data points 
● Filtered point cloud is mapped to 512 x 512 cells
● Eight features are created for each cell
● This generates feature matrix (8 x 512 x 512)  
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DNN-based Segmentation

● Feature matrix is used as input for convolutional neural network (CNN)
● CNN produce output of five metrics (5 x 512 x 512)
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Post-Processing

● Connected graph is created from output metrics for object cluster 
candidates

● Candidates filtered by average positiveness
● Bounding box constructed from object cluster candidate’s dimensions
● Individual frames of processed results are connected to generate tracked 

objects
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Attack Scenarios
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Vehicle Hiding Attack

● Driving environment consists of car parked in place
● Adversarial objects added to make car disappear from LiDAR perception 

system of victim AV
● Effects
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Road Surface Changing Attack

● Driving environment consists of an open road
● Adversarial objects added to make LiDAR perception system of victim AV 

perceive road as some undrivable surface
● Effects
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Adversarial Location 
Generation
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Attack Framework

● Find optimized locations for adversarial objects
○ Mimic victim AV driving patterns to collect 3D point cloud data
○ Initialize adversarial objects as random point clusters 
○ Add random clusters to original point cloud
○ Optimize cluster center location through loss function

● Place adversarial objects at these locations
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Variables of Loss
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Semantic Loss

● Associated measurement of semantic misleading method
● Goal of semantic misleading is to make semantic features of reference 

point clouds and adversarial point clouds similar 
● Global features (large-scale structures)
● Feature extractor used to extract semantic features of point clouds 
● Semantic loss is measurement of this similarity 
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Segmentation Loss

● Measurement of distance between target label and predicted (actual) label
● Target points not misclassified -> positive loss value
● Smaller confidence means larger positive values
● Sum of these values
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Occlusion Loss

● Unique from the other two loss variables
● Created to prevent adversarial clusters from being obstructed by other 

real-world objects
● Value is zero if not blocked
● High loss values for blocked clusters 
● Sum of these values
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Total Loss Function

● 𝐿t = 𝐿seg + 𝛼𝐿sem + 𝛽𝐿occ
● Alpha and beta are predefined hyper-parameters
● Seek to minimize
● 𝐿t’  is the gradient of the loss function
● Indicates how small perturbations change the loss
● Minimizing this allows for finding of optimal values tolerable to 

perturbations
● Resistant to location errors 
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White-Box Attack 

● We know the semantic segmentation model used in the victim AV’s LiDAR 
perception system 

● Locations of adversarial objects need to be reasonable
● This is done through bounding boxes
● Locations of constrained adversarial clusters can be derived through 

optimization algorithm: 
● Adam Optimizer is used to find optimized value of (pk1, pk2, pk3)
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Attack Execution
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Setup 

● Attack is detailed in Adversarial Attacks against LiDAR Semantic 
Segmentation in Autonomous Driving

● Use 5 different point cloud segmentation models on public dataset 
SemanticKITTI attack : PointNet, PointNet++, PointASNL , Cylinder 3D, 
SqueezeSeg

● Data collected through LiDAR-mounted (Ouster OS1-64) vehicle for 
real-world attack

● Collected on two campus roads and three parking lots
● Data manually labeled 
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Results
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SemanticKITTI

● 20 random scenes containing 5 consecutive point cloud frames
● Adversarial point clusters added to scenes
● Alpha, beta, and eta hyper-parameters set to 0.1, 1, 0.1
● Adam Optimizer set to 0.1
● After locations are derived, adversarial point clusters are replaced 100 times 

and results recorded
● Average is found for attack success rate  
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Real-World Attacks



Vehicle Hiding Attack 
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Road Surface Changing Attack 
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Conclusion
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Conclusion
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● High success rates in adversarial attacks
● Vulnerability of LiDAR



Questions?
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