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Introduction



Autonomous Vehicles (AVs)

e Utilize numerous sensors to drive
(cameras, sonar, GPS, etc.)

e Various levels

e Rising popularity _ _,

e Utilize LiIDAR (Light Detection and o ns: ') @~
Ranging) for 3D perception of IRk | Daai ol e | Tl
enVi ronm ent LEVEL 3 LEVEL 4 LEVEL 5

0 J;é’do

These cars handle “dynamic driving These cars are officially driverless These cars can operate entirely on
tasks” but might still need intervention. in certain environments. their own without any driver presence.
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Honda’s Level 3 Self-Driving car

Hornda
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Waymo Driverless Taxi



https://www.aljazeera.com/wp-content/uploads/2022/12/2022-12-13-Waymo-Test-3.jpg?resize=1800%2C1676
https://japan-forward.com/wp-content/uploads/2021/03/HONDA-AUTONOMOUS_LEGEND-009-scaled.jpg

LiDAR (Light Detection and Ranging)

e LiDAR fires lasers into surroundings to measure distance from potential
objects
e Generates 3D point cloud through firing lasers at various angles

e Segmentation step of LiDAR separates point cloud into regions
o Regions are labeled with classes (grass, vehicle, road, etc.) by neural network

e Vulnerable to adversarial attacks






https://s3-prod.autonews.com/s3fs-public/OEM06_310269985_AR_-1_XBTYTHYOMPQZ.jpg



https://docs.google.com/file/d/1gVNCWwFxl5SAHgOC21_rKGIgGUtivZL3/preview
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Background



Neural Networks-Framework

Consist of up to millions of interconnected nodes
Organized into layers with data flowing one-way

A node’s incoming connections issued weight values
Data value flowing through node is multiplied by weight
Product is compared to threshold value
Sent to outgoing connections or stopped
Convolutional Neural Network (CNN)
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https://editor.analyticsvidhya.com/uploads/25366Convolutional_Neural_Network_to_identify_the_image_of_a_bird.png

Neural Networks-Training

Weight and threshold values are randomized

Input data is fed into net

Data is multiplied and transformed while flowing through layers

Weight and threshold values repeatedly adjusted

Complete when input data with specific labels consistently produces similar
outputs
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Adversarial Examples

Maliciously created inputs
Indistinguishable to human eye
Intention of fooling machine learning models
Goal is to result in misclassification of given input
M(x)zy or M(x')=y’

T +
esign(VJ (6, z,y))

sign(VzJ (6, x,y))

“nematode”
57.7% confidence 8.2% confidence 99.3 % confidence



https://pytorch.org/tutorials/_images/fgsm_panda_image.png
https://pytorch.org/tutorials/_images/fgsm_panda_image.png
https://pytorch.org/tutorials/_images/fgsm_panda_image.png

Original Image

Original Segmentation Output

Adversarial Noise

Adversarial Image

Adversarial Segmentation Output

16


https://www.researchgate.net/publication/358114298/figure/fig2/AS:11431281099289035@1669249094251/The-impact-of-adversarial-attacks-in-an-application-related-to-AVs-such-as-segmentation.ppm

L1DAR Data Processing



Pre-Processing

ROI filters out irrelevant data points

Eight features are created for each cell
This generates feature matrix (8 x 512 x 512)

Transformation —» ROI filtering —» Feature generation

3D Pomt Cloud X .

Input feature matrix x A— _Model output metrics Perceived

— Pre-processing _——

Raw data points transformed into coordinate system

Filtered point cloud is mapped to 512 x 512 cells

Clustering — Box building — Tracking

(5% 512 X 512) Post- obstacles
—_— > —_—

processing
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DNN-based Segmentation

e Feature matrix is used as input for convolutional neural network (CNN)
e CNN produce output of five metrics (5 x 512 x 512)

Offset to the predicted center of the cluster the cell belongs
to.

The probability of a cell belonging to an obstacle.
The confidence score of the detection.
Object height The predicted object height.

Class probability | The probability of the cell being a part of a vehicle, pedes-
trian, etc.

Transformation —» ROl filtering — Feature generation Clustering — Box building — Tracking

3D Point Cloud X Y

Input feature matrix x _ \Model output metrics Perceived

(nx4) 8 X 512 X 512) ' . (5 X 512 X 512) Post- obstacles
- Pre-processing ————————— 8 D XXVl
il 9 b processing
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u
PO St -— P ro C e S S 1 I l The probability of a cell belonging to an obstacle.
The confidence score of the detection.

e Connected graph is created from output metrics for object cluster
candidates

e Candidates filtered by average positiveness

e Bounding box constructed from object cluster candidate’s dimensions

e Individual frames of processed results are connected to generate tracked
objects

Transformation —» ROl filtering — Feature generation Clustering — Box building — Tracking

3D Point Cloud X .

Input feature matrix x S— _Model output metrics Perceived
(nx4) 8 X 512 X 512) ‘ 3 (5 X 512 X 512) Post- obstacles
: | >

Pre-processing —

learning model processing
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Attack Scenarios



Vehicle Hiding Attack

e Driving environment consists of car parked in place

e Adversarial objects added to make car disappear from LiDAR perception
system of victim AV

e Effects

Victim AV Parked Car Victim AY  Adversarial Object  Parked Car

-dpmeemmmanisgedeensSenanis

@p (») j @D

(a) Before attack (b) After attack
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Road Surface Changing Attack

e Driving environment consists of an open road

e Adversarial objects added to make LiDAR perception system of victim AV
perceive road as some undrivable surface

o Effects

Victim AV

A ——

@D

(a) Before attack (b) After attack
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Adversarial Location
Generation



Initial random
point clusters
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Original location
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objects
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adversarial
objects at
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locations
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Attack Framework

e Find optimized locations for adversarial objects
o  Mimic victim AV driving patterns to collect 3D point cloud data
o Initialize adversarial objects as random point clusters
o Add random clusters to original point cloud
o  Optimize cluster center location through loss function

e Place adversarial objects at these locations

ol AN |

Initial random Adversarial Place
point clusters objects

adversarial
objects at
the derived
locations
Adversarial Locations of

Original location adversarial
yoint clouds generation oint clusters




Variables of L.oss



Original Point Clouds

Adversarial Point
Clusters

Adversarial Point
Clouds

Semantic Misleading

Point Cloud
Segmentation Model

Segmentation
Results

Semantic

Loss Ly

Segmentation
Loss Ly,

Occlusion
Loss L,
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Semantic L.oss

e Associated measurement of semantic misleading method

e Goal of semantic misleading is to make semantic features of reference
point clouds and adversarial point clouds similar

e Global features (large-scale structures)

e Feature extractor used to extract semantic features of point clouds

e Semantic loss is measurement of this similarity
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Segmentation Loss

Measurement of distance between target label and predicted (actual) label
Target points not misclassified -> positive loss value

Smaller confidence means larger positive values

Sum of these values
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Occlusion L.oss

e Unique from the other two loss variables

e Created to prevent adversarial clusters from being obstructed by other
real-world objects

e Value is zero if not blocked

e High loss values for blocked clusters Adversarial ehiscer v,

e Sum of these values Other points - {_
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Original Point Clouds

Adversarial Point
Clusters
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Total Loss Function

Lt =L__+alL__ +[(L
Seg sem occC
Alpha and beta are predefined hyper-parameters
Seek to minimize
L/ is the gradient of the loss function
Indicates how small perturbations change the loss
Minimizing this allows for finding of optimal values tolerable to
perturbations

e Resistant to location errors

36



White-Box Attack

e We know the semantic segmentation model used in the victim AV’s LiDAR
perception system

e Locations of adversarial objects need to be reasonable

e This is done through bounding boxes

e Locations of constrained adversarial clusters can be derived through
optimization algorithm:

e Adam Optimizer is used to find optimized value of (pk1, pk2, pk3)

37



a (Amax —Amin)
k1~

a
X2 = 2

o (Cmax = Cmin)

- (Bmax — Bmin)

. tanh(pkl) +
- tanh(ppy) +
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2
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Attack Execution



Setup

e Attack is detailed in Adversarial Attacks against LIDAR Semantic
Segmentation in Autonomous Driving

e Use 5 different point cloud segmentation models on public dataset
SemanticKITTI attack : PointNet, PointNet++, PointASNL , Cylinder 3D,
SqueezeSeg

e Data collected through LiDAR-mounted (Ouster 0S1-64) vehicle for
real-world attack

e Collected on two campus roads and three parking lots

e Data manually labeled

41



Results



SemanticKITTI

20 random scenes containing 5 consecutive point cloud frames

Adversarial point clusters added to scenes

Alpha, beta, and eta hyper-parameters setto 0.1, 1, 0.1

Adam Optimizer set to 0.1

After locations are derived, adversarial point clusters are replaced 100 times
and results recorded

e Average is found for attack success rate

43



Vehicle Hiding | Road Surface Changing
Siceseeg

Cylinder3D 72%

63%

PointASNL

Table 1: Success rates of attacks using SemanticKITTI data
on different segmentation models [7]

(a) Original segmentation result

(b) The result after attack
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Real-World Attacks



Vehicle Hiding Attack

(e) Original scene (f) Original segmentation result (g) Adding adversarial objects

(h) The result after attack
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Road Surface Changing Attack

(i) Original scene (j) Original segmentation result (k) Adding adversarial objects

(I) The result after attack

.y
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Conclusion



Conclusion

e High success rates in adversarial attacks
e Vulnerability of LiDAR
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