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Abstract
This paper addresses the challenge of keeping up with the
ever-increasing graphical complexity of video games and in-
troduces a deep-learning approach to mitigating it. As games
get more and more demanding in terms of their graphics,
it becomes increasingly difficult to maintain high-quality
images while also ensuring good performance. This is where
deep learning super sampling (DLSS) comes in. The paper
explains howDLSS works, including the use of convolutional
autoencoder neural networks and various other techniques
and technologies. It also covers how the network is trained
and optimized, as well as how it incorporates temporal an-
tialiasing and frame generation techniques to enhance the
final image quality. We will also discuss the effectiveness of
these techniques as well as compare their performance to
running at native resolutions.
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1 Introduction
Video games are a popular form of entertainment that require
high computational power and graphical fidelity to deliver
immersive and realistic experiences. However, achieving
both high performance and high quality in video games is
challenging due to the trade-off between video resolution
and frame rate.

Video resolution refers to the number of pixels that make
up an image on a screen, while frame rate refers to the num-
ber of images displayed per second (frames per second, or
fps). Higher resolutions provide sharper and more detailed
images, but they also demand more processing power from
the graphics processing unit (GPU), which can lower the
frame rate. Lower frame rates can cause stuttering or lag-
ging effects that impair player performance and enjoyment.
Conversely, higher frame rates provide smoother and

more responsive gameplay experiences, especially in fast-
paced action games where split-second reactions can be cru-
cial for winning or losing. However, increasing the frame
rate often requires reducing the resolution or lowering the
graphical settings of a game, which can degrade its visual
quality and appeal.

In recent history, increases in graphical processing power
have advanced at a slower pace compared to the introduction
of more and more demanding graphical effects and resolu-
tions. This has called for a different way of dealing with
this issue rather than simply increasing graphical processing
power — super-resolution (SR).

SR is a technique where a game is rendered at a lower res-
olution, then upscaled using a neural network, anti-aliased,
and presented to the user at a higher resolution, with low to
negligible effects on image quality [4]. A great example of
SR is the widely-used Deep Learning Super Sampling (DLSS)
technique developed by NVIDIA,whose techniques and tech-
nologies are covered in this paper.

2 Background
Before getting into DLSS, we will first discuss how games
are rendered. While the curved edges of real-life objects are
relatively smooth until you get down to the atomic level, any
object rendered in-game is composed of a large but finite
number of vertices — later converted to a series of triangles,
that are combined to create the illusion of a smooth surface
[5]. This brings us to the Graphics Rendering Pipeline, a series
of steps a graphics system takes to render a 3D object to a
2D screen [14]. These steps are carried out not on the CPU,
but rather on the Graphics Processing Unit (GPU) — a piece of
hardware that does calculations in a highly parallel manner,
unlike the limited parallelization of a CPU.

The series of raw vertices are first passed through the Ver-
tex Processor (see Figure 1), which takes a series of primitives
(defined as inputs to the pipeline built from vertices and can
be triangles, lines, or points) and places their coordinates in
the 3D space. The transformed vertices and primitives are
then passed through what is called a rasterizer. A rasterizer
converts the primitives into a series of fragments, which are
3D representations of 2D pixels. So, if we have two separate
fragments overlapping each other, the fragment closer to
the camera (a smaller delta between the z coordinate of the
camera and the fragment) will get rendered.
These fragments are then passed on to the fragment pro-

cessor, which calculates the final color of the fragments given
the input parameters (lighting, texture information, etc.). Fi-
nally, these fragments undergo output merging, where the
fragments are converted into a 2D grid of pixels.
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Figure 1. Steps in the Graphics Rendering Pipeline [3]

This brings us to a phenomenon known as aliasing. Alias-
ing is an undesirable visual artifact that occurs when an
image is displayed or sampled at a resolution lower than
what is required to accurately represent the original image,
resulting in distortion and/or pixelation. In Figure 2, The
pixels form a stair-like pattern along the edges of the line,
creating a jagged appearance. This effect reduces the per-
ceived quality and realism of the graphics.

Figure 2. Aliasing [10]

Possible ways to counter aliasing are to increase the res-
olution (which would make the checkerboard-like pattern
small and negligible) or by employing a technique known
as anti-aliasing [4], which we will discuss in more detail in
Section 3.2 - both of which require more processing power
on the client computer. Higher resolutions in particular can
require significantly more processing power to render. A res-
olution of 3840x2160 (4K), which is getting more and more
popular recently, requires four times the processing power
compared to the more conventional resolution of 1920x1080
(1080p).

2.1 The Need for a New Approach
In the same period when the gaming industry has transi-
tioned to higher resolutions, there have also been newer and
more demanding effects in games due to the demand for re-
alism. This presents a problem - while advances in hardware

have been able to keep up with advances in graphical fidelity
in the past, that is simply not the case anymore. Especially if
we seek to reap the best graphical fidelity that games have
to offer as of now [4].

Recognizing this challenge, NVIDIA released a set of deep-
learning super-sampling techniques known as DLSS (Deep
Learning Super Sampling) starting in 2018. We will be look-
ing at each major version of DLSS as well as the different
techniques and improvements in each.

3 Deep Learning Super Sampling
Techniques

As previously mentioned, DLSS is a set of technologies and
techniques to upsample and enhance the image quality of
video game graphics. Different versions of DLSS use a differ-
ent combination or variations of technologies. So far, there
have been three major versions of DLSS. We will discuss the
technologies used in each version next.

3.1 DLSS 1.0
Being relatively the simplest and earliest form of DLSS, 1.0
is primarily an image upscaler that utilizes Convolutional
Auto-encoder Neural Networks.

3.1.1 Convolutional Auto-encoder Neural Networks.
A convolutional auto-encoder neural network is a type of
neural network that is great at dealing with image data. The
neural network used in DLSS features a set of nodes arranged
in layers - an input layer, a number of convolutional layers,
and an output layer. Nodes are individual computational
units that perform mathematical operations on the input
data, while layers are collections of nodes that are organized
in a specific way to extract features from the input. Each
node in a layer is connected to every node in the previous
layer, and every node in the next layer is connected to every
node in the current layer.
The main purpose of the network is to take many inputs

with desired outputs, get trained on those inputs, and pro-
duce accurate outputs for new inputs it has not yet seen. In
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Figure 3. Autoencoder Convolutional Neural Networks [12]

the context of DLSS, the trained convolutional auto-encoder
neural network is used to upscale lower-resolution images
to higher resolutions, while maintaining as much detail as
possible. Once trained, the network can be used to upscale
low-resolution frames in real-time, making it a useful tool
for applications such as video games and virtual reality.

Instead of the more typical "one-dimensional" layers, here
we have a set of two-dimensional layers that help preserve
spatial information in the input. If we were to input the pixels
in the image as an array of pixels, for example, we would
lose crucial spatial information in the reference image. This
allows it to be better suited to process image data - as it is
able to learn local patterns such as corners and edges in the
image.

The “Convolutional” part of the name refers to its use of a
mathematical operation called convolution, where a filter (a
matrix of initially random values of a certain size) is passed
over the input data and a dot product is computed between
the filter and a certain part of the input [2]. The dot product
is an arithmetic operation executed on a pair of matrices that
results in a singular numerical value. To compute the dot
product of two matrices, their corresponding components
are multiplied together and then summed up to a single value.
This dot product is then passed on to the next layer in the
network.
To accelerate these calculations, DLSS utilizes what are

called tensor cores, specialized processors that are well suited
for complex matrix multiplications at high speed. Tensor
cores significantly speed up the process of training deep
learning models due to their specialization in matrix opera-
tions.
The auto-encoder part of the name refers to the way the

network uses two processes, encoding and decoding to learn
to upscale images.
Figure 3 shows an example of this encoder-decoder net-

work. In the figure, the neural network takes in a high-
resolution image and starts the encoding process, passing
it through different convolutional layers, compressing the

image representation further at each step until it gets to the
bottleneck, the narrowest portion of the network where the
image is at its highest compression. Once it gets to the de-
coder, a symmetrical series of steps will try to reconstruct
the full-size image from the compressed representation.
There are two stages to using this neural network. One

is known as training while the other is known as inference.
The training stage of this process is run on NVIDIA’s super-
computers, where high-resolution frames are fed into the
network and outputs are compared to inputs. The aim here
is for the outputs to be as close to the inputs as much as
possible. To achieve this, the aforementioned filter values
are modified as well as values in the network called weights,
which are values that represent the strength of the connec-
tions between nodes. The network looks at the output image,
tweaks its filters and weights to get the output as close as
possible to the input image, then repeats this process over
and over again - getting better and better at recreating the
original image.
This brings us to the inference stage. Here, a pre-trained

network (more specifically, the decoder portion of the auto-
encoder) is fed lower-resolution images, which are then up-
scaled using the decoder to a final, higher-resolution image.
This is the portion of the process that is done on the client’s
computer. Since the training has already been done, the client
computer only does one pass per frame through the decoder,
making inference significantly less computationally demand-
ing than training.

In DLSS 1.0, the network is trained on a per-game basis. So
after a game is nearly done with development but is not yet
released, game developers will send game data to NVIDIA,
where supercomputers are used to train the model. The mod-
els are then shipped out to consumers in the form of graphics
driver updates. This means that consumers will need to up-
date their graphics drivers to the version that is necessary
for the game to run, which is one of the cons of this iteration
of DLSS.
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In addition to being trained on regular frames, the network
is also trained on frames where the image is rotated and
flipped, color channels are randomized, noise is added, and/or
the image is zoomed in [7]. This helps train the model on
more scenarios, which can improve image quality in different
in-game contexts and situations. However, it is worth noting
that training the model in more scenarios than what is likely
to actually occur in game can result in worse results, so there
is a good balance to be reached.
In addition to current frame image data, DLSS’s neural

network utilizes motion vectors. Motion vectors are used
in video game engines to represent the motion of in-game
objects. DLSS can use these motion vectors to better predict
the the appearance of objects in motion while upscaling.

While DLSS 1.0 was a welcome addition to make demand-
ing games more accessible to the public, it was not without
its cons. Besides the aforementioned drawback of training
models on a per-game basis, 1.0 simply was not at a stage
where consumers could use it without experiencing a per-
ceptible hit to graphical fidelity. In particular, it struggled
in scenarios with fast movement or minute detail, resulting
in distracting visual artifacts that led to a mixed response
among consumers.
A big source of the limitations that DLSS 1.0 had had to

do with the fact that it was a form of image upscaling called
Single Image Super Resolution - a form of upscaling that uses a
single low-resolution image to generate a high resolution one
[15]. This means that besides motion vectors, which don’t
provide additional image detail, the only other input to the
network is a low-resolution image. In order to upscale the
low-resolution image, the network has to create information
that wasn’t there in the first place, it has to hallucinate -
a term used to describe when a neural network generates
data that are not present in the original dataset, often with
its outputs seeming false, unrealistic, or artificial. So, while
the network can make an educated guess about the missing
information, the resulting output may not always be accurate.
As a result of these factors, DLSS 2.0 was introduced as a
superior successor.

3.2 DLSS 2.0
DLSS 2.0 improved on the previous version by modifying
previous approaches and adding others. Firstly, the neural
network in this version uses data from more sources than
before. This includes not only the current frame and motion
vectors, but also temporal data such as previous frames, and
depth buffers; as well as data about exposure and brightness
of the game scene.
Secondly, DLSS 2.0 uses a model that is fully generalized.

This means that the neural network can produce high-quality
output across various games without needing to be trained
on a per-game basis. With this change, the technology can
scale more effectively to more games, while also making it

easier for game developers to release their games without
waiting for NVIDIA to train the model for each game.

Thirdly, and most importantly, DLSS 2.0 uses Multi-Frame
Super Resolution [8]. Here, the neural network is trained to
use temporal data (data from previous low-resolution frames)
in addition to the current frame to upscale the current low-
resolution frame. Due to the fact that it collects samples
from previous frames, the neural network can better restore
missing details that were lacking from the low-resolution
image without hallucinating details that weren’t there or
creating visual artifacts. In addition to this, DLSS 2.0 also
uses deep learning to do anti-aliasing in what is called Deep
Learning Anti-Aliasing (DLAA). Anti-aliasing is a technique
that aims to reduce the jagged appearance of curved edges
in images. An example of this can be seen in Figure 4.

Figure 4. Anti-aliasing [11]

DLAA uses the neural network’s ability to learn patterns
in high-resolution images to estimate how edges should look
in low-resolution images when they are smoothed out. By
doing this within the upscaling process, it creates a smoother
appearance of edges in the final upscaled image without the
need for additional post-processing steps. After inputting the
low-resolution frame into the network, the network performs
upscaling while fixing the jagged edges caused by aliasing. It
is able to do this because the network was trained on images
with much higher resolution - therefore, it is able to make
a good estimation as to how a smooth edge should look. A
comparison of a vector shape, its rasterized image, as well as
a higher resolution version of the image with and without
anti-aliasing can be seen in Figure 4.
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3.3 DLSS 3.0
Version 3.0 improves upon the previous version by intro-
ducing a new technology called optical-flow frame genera-
tion. Here, a third artificial frame is inserted between every
two ’real’ frames that smoothly transitions between the two
frames. This can result in significantly higher frame rates for
a given resolution, albeit with added latency. Latency refers
to the delay between a player’s action (such as pressing a
button on a controller or keyboard) and the corresponding
response on the screen.
Optical flow works by utilizing two consecutive frames

and motion vectors just like in 2.0, however, it also takes
advantage of optical flow field. Optical flow field refers to the
recorded velocity and orientation of the movement of indi-
vidual pixels as they shift from one frame to another. While
motion vectors come from the game engine, optical flow is
measured from rendered pixels. DLSS 3.0 takes advantage
of both to better display motion as well as do a better job of
predicting a third, intermediary frame. Figure 5 shows frame
generation without optical flow.

Figure 5. Frame generation with just motion vectors [6]

In Figure 5, motion vectors from the game engine indicate
that the shadow is in motion, which it technically is in rela-
tion to the game world. However, it is fixed on the screen in
relation to the in-game camera viewport. This results in a
smearing effect known as ghosting, which is undesirable. Us-
ing both optical flow and motion vectors mitigates this issue
by predicting motion for areas of the screen whose optical
flow and motion vectors show movement while reducing
movement in areas of the screen whose optical flow shows
less motion. This can be seen in Figure 6.

Figure 6. Frame generation with motion vectors and optical
flow [6]

However, since frame generation has to delay rendering a
frame while it renders an intermediary frame, added latency
is inevitable.
To help offset the added latency caused by frame gener-

ation, NVIDIA introduced Reflex, a set of technologies that
aim to reduce input latency. This is achieved by providing
game developers with a Reflex Software Development Kit
(SDK). Reflex keeps the CPU and GPU in sync to minimize
the number of pre-rendered frames that are generated by the
CPU before being rendered by the GPU. Pre-rendered frames
are frames that have been generated in advance by the CPU,
but have to wait for the GPU to render them, causing la-
tency. This is especially the case in situations where games
are run at higher resolutions and graphics settings, where
the GPU is the bottleneck. This delays user input already
processed by the CPU from being rendered on screen. Reflex
counters this by keeping the GPU and CPU in sync, getting
rid of the frame queue and consequently, the latency caused
by frames waiting to be rendered. By offsetting the latency
introduced by frame generation, players can take advantage
of even greater performance while keeping the latency to
manageable levels.

4 Results and Performance
Different versions of DLSS have had different levels of effi-
cacy, both in performance and visual fidelity. We will now
discuss how well each version does at mimicking running a
game at native resolution, as well as the performance gains
in each version. For versions after 2.0, DLSS also offers three
settings the user can toggle between — Quality, Balanced,
and Performance, with each one offering 2X, 3X and 4X up-
scaling respectively. This means that running a game at 4K
resolution on DLSS Performance settings renders the game
at 1080p (a quarter of the number of pixels compared to 4K)
and upscales it to 4K. We will be looking at the differences
between these settings.

The original DLSS noticeably improved performance with
30-40% gains in FPS (frames per second) on average [13].
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However, it was not without a significant decline in visual
fidelity. Softened textures and visual artifacts such as noise
and ghosting were very frequently seen, which caused DLSS
1.0 to have a mixed response among consumers. Figures 7
and 8 show the performance increase and fidelity decrease
respectively below.

Figure 7. Comparison of Performance in Battlefield V at 4K,
with and without DLSS[13]

In figure 8, textures on the bark of the tree on the left
are much blurrier on DLSS. Significant blurring and loss of
detail are also apparent on other objects in the scene, such
as the definition of the leaves in the bush behind the tree,
which don’t appear separated in DLSS. Objects in motion
also exhibited significant ghosting, leaving a trail behind
them.

Figure 8. Image quality comparison with native rendering
[1]

Version 2.0 addressed several of the issues present in 1.0.
There were fewer visual artifacts, and the overly soft appear-
ance of 1.0 was also minimized. The upscaler does a better
job of filling in missing detail by utilizing data from previous
frames. Performance in Quality mode was comparable to
the previous version of DLSS [1]. Switching to balanced or
performance mode offers better performance. See figure 9.

Figure 9. Image quality comparison between DLSS 1.0 and
2.0 [1]

Due to optical flow frame generation, DLSS 3.0 improves
performance even further, approaching 2 and 3X the aver-
age FPS compared to native rendering in certain games and
settings[9] while image quality remains comparable to DLSS
2.0. See figure 10.

Figure 10. DLSS 3.0 on vs off comparison in Cyberpunk 2077
at 1440p resolution [1]

5 Conclusion
The growing complexity of graphics in video games has
posed a significant challenge in achieving both high-quality
image output and optimal performance at the same time.
The conventional way of addressing this issue is to create
more powerful hardware that can keep up with the needed
processing power. However, DLSS proposes a different ap-
proach to this problem by utilizing deep learning to improve
performance and offer higher frame rates. It achieves this
by using technologies such as single and multi-frame super-
resolution, optical flow frame generation, and CPU/GPU
synchronization. As games continue to demand higher and
higher processing power, DLSS presents a way for modern
hardware to keep up with these new demands.
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