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Abstract

This paper focuses on the Machine Translation quality of
Low Resource Languages (LRL) in contrast to that of High
Resource Languages (HRL), both of which are loosely cate-
gorized by the size of their respective corpora (data sets of
sentence pairs and individual text). This paper also surveys
techniques used for improving machine translation for LRL,
those of which include Back Translation and Data Augmen-
tation. Neural Machine Translation (NMT) architectures for
supervised, semi supervised, and unsupervised models and
their respective techniques are examined as well.

Keywords: Machine Translation, Low Resource Languages,
High Resource Languages, Natural Language Processing

1 Introduction

There are currently over 7,000 languages spoken on Earth as
of 2023 [10]. This variance of spoken languages necessitates
the application of automatic translation technology to fa-
cilitate international commerce, migration, communication,
and diplomacy. For multilingual countries like India and In-
donesia, the proliferation of fast, economical, and accurate
Machine Translation (MT) has profoundly deep cultural and
economic implications as it could further erase the language
barriers between separate cultural identities.

Ideally, the quality of this technology would be similar
regardless of the language pairs that are being used for the
translation model. However, due to social and economic
reasons, a majority of world languages are inhibited by sub-
optimal automatic translation.

This is the quality disparity issue of Low Resource and
High Resource Languages (LRL & HRL). There is no concrete
methodology that exists to categorize languages into HRLs
and LRLs. However, Table 1 provides a good general guide to
how languages resource levels are distinguished. Statistical
Machine Translation (SMT), not covered extensively in this
paper, and Neural Machine Translation (NMT), explained in
Section 2.1, require massive data sets of parallel corpora to
be trained on to support the complexities of these languages’
grammatical structures and the probabilistic models of SMT
and NMT.

BLEU Scores with Varying Amounts of Training Data

—e— Phrase-Based with Big LM
= Phrase-Based
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Figure 1. The proportional relationship between BLEU
scores and training data [7]

Parallel data is labeled data that consists of novels, social
media, television, and radio broadcasts that constitute au-
thentic text for a language’s corpus [11] and are aggregated
as sentence pairings within a corpus. This is different from
monolingual data which, as the name implies, is unlabeled
data from a particular language (an untranslated social me-
dia post in Tamil or a text document containing War and
Peace in its original Russian version). Figure 1 illustrates how
the amount of training data available for language pairing
schemes can influence the accuracy of the subsequent trans-
lation. The amount of training data used for NMT and for
encoding words in each language (known as Word Embed-
dings) show how that data can influence translation quality
(measured by a standard of translation quality known as the
BLEU score [2])

The translation quality for a given pair of languages is
proportional to the size of the parallel corpora for that pair.
Western European languages, such as French and English,
possess a considerably larger corpora for the use of training
than African languages, such as Swabhili, regardless of the
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Class | Description Examples # Langs

0 Have exceptionally limited resources, and have rarely been considered | Solvene, Sinhala | 2,191
in language technologies.

1 Have some unlabeled data; however, collecting labeled data is challeng- | Nepali, Telugu 222
ing

2 A small set of labeled datasets has been collected, and language support | Zulu, Irish 19
communities are there to support the language.

3 Has a strong web presence, and a cultural community that backs it. | Afrikaans, Urdu | 28
Have been highly benefited by unsupervised pre-training

4 Have a large amount of unlabeled data, and lesser, but still a significant | Russian, Hindi 18
amount of labeled data. Have dedicated NLP communities researching
these languages.

5 Have a dominant online presence. There have been massive investments | English, Japanese | 7
in the development of resources and technologies

Table 1. Language classifications[6]

number of native speakers. For example, the most promi-
nent publicly available English-Spanish parallel corpus from
the online collection OPUS ParaCrawl v9 has 5.0G English
tokens (words in the English context) and 5.4G Spanish to-
kens, whereas the most prominent publicly available English-
Swahili parallel corpus WikiMatrix has only 4.4M English
tokens to 1.0G Swabhili tokens [1].

The purpose of this paper is to provide an overview of
NMT systems as well as survey the practiced techniques for
improving the translation quality of LRL. In Section 2, the
subject of NMT systems is elaborated upon in supervised,
semi-supervised, and unsupervised contexts, the section also
provides a cursory explanation for how Artificial Neural
Networks (ANNs) and the encoder-decoder system works.
In Section 3, the LRL techniques of Data Augmentation and
Transfer Learning are explained. Section 4 will cover how
these techniques affect the quality of translation. Lastly, Sec-
tion 5 will cover the conclusion of this survey.

2 Background

As of 2013, NMT has become the standard translation model
for Machine Translation (MT), replacing SMT [10]. This sec-
tion covers the structure of the NMT translation model for
supervised, semi supervised, and unsupervised architectures
as well as provides a cursory understanding as to how Neural
Networks operate. It also discusses instances when the NMT
model is multilingual, instead of bilingual.

NMT models can be placed into three categories: super-
vised, semi-supervised, and unsupervised. The distinctions
of these categories is dependent on the size of the data set for
the language pair. The supervised section will cover NMT for
HRLs; and the semi supervised and unsupervised sections
will cover NMT for LRLs.

2.1 ANNs, RNNs, and the Encoder-Decoder System

To provide an explanation for how NMT works, Artificial
Neural Networks (ANNs) themselves must be described in
some detail. ANNs, as the name implies, are systems of inter-
connected nodes inspired by the advanced biological neural
networks that exist in our brains. The basic structure can
be represented in Figure 3. Neurons in the human brain are
represented here with nodes that will activate and trigger
more nodes depending on whether a certain threshold is
met with the connections of all the nodes of the first layer
to nodes of the second layer. This process repeats through
an arbitrary number of "hidden layers" until it reaches the
output layer, where it should be representative of our desired
result. For example, if a picture of a human face were fed
into an ANN, then the ANN would be able to to consistently
produce an integer that denotes that person’s age. If the re-
sult is not correct, then the weights (connections) within the
ANN are adjusted/tweaked to provide a correct output for
what was inputted. This is the reason why parallel corpora
are crucial to the development of an efficient NMT, the bilin-
gual/multilingual data can serve to moderate the internal
thresholds of the ANN until it is finely tuned to the two
languages of the corpus. To reference the previous example,
training data containing one million images of human faces,
that are labeled with the person’s respective age, can be fed
through an ANN, concurrently. When this training stage
has been completed, we should have an ANN that possess
parameters (weights) that are sophisticated enough to pro-
duce an accurate age for an image introduced outside of the
training dataset.

To understand how this fits into the context of Natural
Language Processing (NLP), it helps to break the sentence
structure into its basic components, tokens (words) and gram-
mar (context). Words can be processed into small vector rep-
resentations known as Word Embeddings through an ANN
called an auto-encoder. In order for NLP to work within the
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Figure 3. An ANN [3]

context of an ANN there needs to be a way to represent
words numerically so that they can be fed into an ANN. To
do this, each word in the input sentence is represented as an
array of zeros and with a one at the index that corresponds
to the word that index represents in a vocabulary Table [8].
The auto-encoder’s function is to compress these words in
such a way that allows them to be restored/decompressed
into their original form. The training for machine translation
is essentially for the purpose of creating ANNs that can accu-
rately translate words to vectors and vectors to words. In the
case of Bilingual Machine Translation, instead of the Word
Embedding being translated back into its original language,
it is translated to a target language using a decompressor or
"decoder” trained in this target language.

This brings us to the encoder-decoder architecture that is
the standard for NMT. In Figure 2, we can see an sequence
of English words being compressed into Word Embeddings
and then being stored within a "hidden vector". The vertical
arrows represent the Word Embeddings and the horizontal
arrows represent each loop in the Recurrent Neural Network

(RNN) sequence. After looping through each ANN in the
sequence, the result is finally represented in the output layer
with a vector of fixed length and then is fed again through
an decoder which is similar in structure to the encoder but
works backwards (fixed vector to target language sentence).
When this vector-decoded sentence is compared with a hu-
man translated version of the input sentence, the weights
of the encoder-decoder ANNs can be subsequently adjusted
to better emulate the human translation. Training data is
important for this because it can improve the accuracy of
the ANN model by influencing the weight of the different
connections to produce a more accurate output.

This is how most NMT systems are generally constructed.
That being said, what is most important is understanding
how each operates with different ranges of parallel and mono-
lingual data.

2.2 Supervised NMT

Supervised NMT is a probabilistic model much like SMT,
attributing a weighted score to each subsequent translated
word to guess the correct sequence. But unlike the SMT,
it can observe the entire input sentence, word-to-word, as
opposed to breaking down into phrases. In this sense I mean
that SMT looks at the probability of a word being represented
as a part of a sentence in a particular order. As supervised
NMT models are dependent on comparatively large data
sets, it precludes the application of it to LRL. What will be
discussed in the following sections is what techniques are
employed in semi-supervised and unsupervised scenarios.

2.3 Semi supervised NMT

Semi supervised NMT models differ from Supervised NMT
in that they do not possess an abundance of parallel data
to be trained on, but do contain a considerable amount of
monolingual data. Thus the methods used for improving their
translation quality rely on the availability of monolingual
data from both languages. The main technique for using this
data includes using a language model for the decoder-side
of the architecture.
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A language model in the context of NMT is essentially
a scoring system that is implemented on the decoding side
of the architecture. While the translation (NMT) model is
trained on what parallel data exists, the language model is
trained on the monolingual data of the target language for
the decoder. There are two types of language model imple-
mentation: shallow fusion and deep fusion. As the names
imply, they are related to how fundamentally they impact
the NMT structure.

In shallow fusion the language model is not a part of the
architecture of the decoder model. It simply takes each word
after it has been converted from its vector form by the TM
ANN and then assigns priority based on its probabilistic
model to a list of potential words that fit better in the target
language. It is only used in training and is not looped into
the decoder RNN. With deep fusion, the LM is integrated
into the decoder with a RNN and is used in every subsequent
loop, or with every word embedding in the sequence that is
being processed.

The drawbacks to using a language model is that both the
NMT and language model need to be separately trained [10],
which could potentially cause a disparity within the NMT
model to form, like an under-trained language model as-
signing a poor score to a highly trained NMT’s proposed
word.

2.4 Unsupervised NMT

Generally, in the context of machine learning algorithms,
"Unsupervised" means the algorithm is learning from unla-
beled data sets. In this context, however, unsupervised NMT
are exemplified by the lack of monolingual/parallel data for
both languages. Unsupervised NMT architectures make use
of Generative Adversarial Networks (GANs), defined later
in this section, to "bridge the gap" between the monolingual
corpora of two languages. This is achieved through initializa-
tion, back translation, and the discriminative classification.

The first part of this processes involves initialization, or
creating a language map that overlays two languages over
each other, to put it simply. This is accomplished through
word-embedding schemes. Word embeddings are essentially
vector representations of words mapped to a vector space and
each language has a vector space with word embeddings in it.
The logic is that the same context must exist for all languages
as we exist in the same physical world. For example, the word
"tiger" must have a similar embedding space containing the
adjacent words "striped”, "predator”, or "feline", in the same
area relative to "tiger", no matter what language. Inversely,
if words such as "large", "gray", and "animal" are all adjacent
to one another in the vector space, the word "elephant” must
be adjacent as well. Figure 5 helps illustrate how this process
works, with English being mapped over French in the same
common space.

This initialization is then fed through an auto-encoder.
This process continually translates the source language to

the target language, and then the target language into the
source to reduce the amount of noise between translation.
A similar example would be to take an English sentence
and repeatedly translate back-and-forth to French until the
results are consistent; this is for the purpose of generating
more training data. Given that these two languages share a
vector space, translated sentences can be reconstructed by
the model regardless of the presence of substandard machine
translated sentences [10].

Finally, the system is wrapped in a generator-discriminator
frame. The way GANs work is that the generator creates
plausible "fake" translations from the source-target data and
the discriminator is tasked with detecting these fake transla-
tions. Eventually, through the iterative process, the generator
will become so adapt at creating translations that the discrim-
inator will be unable to differentiate between the samples
and the "fakes".

2.5 Multilingual NMT

These are NMT systems that are designed around multiple
language pairs, as opposed to two. Google translate is an
example of a prominent multilingual NMT system. Multilin-
gual NMT (MNMT) have shown to perform better than their
bilingual counterparts [10] due to their ability to analyze the
shared relationship between multiple language groups and
the much larger data sets that those language groups need.

3 LRL Techniques

This section covers two methods for improving the accuracy
of NMT for LRL pairs: Data Augmentation, which does not
require changing the internal architecture of the NMT model,
and Transfer Learning, which does.

3.1 Data Augmentation

Data augmentation is a technique used for various NMT
architectures that synthetically increases the monolingual
and bilingual corpora for a given language to offer better
training to the NMT models. This technique, in and of it-
self, does not influence the internal structure of the transla-
tion model. There are three methods that are employed for
this technique: word replacement based augmentation, back
translation based augmentation, and parallel corpus mining.

3.1.1 Word Replacement. Word replacement is a method
that involves taking a sample collection of sentences from a
monolingual corpus and syntactically replacing the words
and phrases of that sentence to artificially generate more
sentences for the corpus. An example of this would be to
replace the word "quick” with its synonym "nimble" in the
phrase: "The quick, brown fox jumps over the lazy dog". We
could also swap the adjectives so that the sentence becomes
"The lazy fox jumps over the quick, brown dog". This method
can be accomplished through manual translation or through
training a language model, similar to the fusion method,
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Figure 4. Diagram of a data initialization [10]

either with deep or shallow fusion, seen in Section 2.3. The
amount of sentences that can be generated from the method
can help pad the monolingual corpus of languages in zero-
shot scenarios (where there is no training data of any kind).

3.1.2 Back Translation. Back Translation is a method of
Data Augmentation that involves taking a target language
monolingual corpus and using a Machine Translation model
to translate the corpus into the source language for the cre-
ation of a synthetic parallel corpus. The resulting corpus is
then subsequently filtered of all synthetic sentences contain-
ing noise (sub-standard automatic translations) to improve
the training of the NMT system. This is done through a func-
tion that compares the original source text to the text that
is "double-translated". There is an issue with this method,
however, as it assumes that there is already an MT system
that exists between the pair.

3.1.3 Parallel Corpus Mining. Parallel Corpus Mining is
the method of using comparable corpora to increase the size
of a parallel corpus. An example of this would be the use
of the same Wikipedia article in different languages for the
use of sentence-pairing. A prominent technique for mining
this information is through the use of multilingual sentence
embedding schemes. In these schemes, a similar encoder-
decoder matrix, much like the one described in Section 2.1, is
used to create multilingual sentences embeddings to be used
in extraction processes. Sentence embeddings are ways in
which a sentence can be translated to a vector that an encoder
or decoder can readily process. The extracted sentences are
then appraised of their similarity to each other and stored
in the corpus. This approach is limited however if the target
language is underrepresented in the pre-trained model.

3.2 Transfer Learning

A somewhat adhoc approach to solving the issue of poor
machine translation is the method of pivoting. Pivoting is
the simple method of using an intermediary, high-resource
language to improve the translation quality between two
languages. An example of this is would be to translate from
Hindi to English to Spanish, as opposed to just Hindi to

Spanish. While this method can work, it has a potential to
propagate translation errors between models and as both
models need to be trained, the time complexity increases [10].

Transfer Learning (TL) is a process that seeks to avoid
these issues through using a "parent” NMT model to train a
"child" NMT model by using the common, applicable knowl-
edge that the parent gained through learning. The amount
of parallel data the child model has determines whether the
transfer process will be a warm-start (sufficient training data)
or a cold start (little training data). The cold start is gener-
ally preferred [10] as it is more true to a real-life scenario.
Figure 5 shows a simplified illustration of the process, with a
source/target parent languages being used in the training of
source/target child languages. When recalling, in the previ-
ous chapter, how an NMT model can be trained, we can see
how a parent NMT’s parameters can be transferred to a child
model. There are multiple methods for how a parent model’s
parameters can be transferred to a child model. The first
involves a training a model with exclusively HRL pairs, then
fine-tuning it with a parent-child corpus, and then finally
only using child data.

Even though this method is generally successful, the par-
ent side often needs to be fine-tuned before the child can uti-
lize it. If the parent is not trained, then this is called "freezing"
the parent [10]. There are numerous approaches to freezing
that can entail freezing none, a part, or all of the hidden
layers of a parent NMT to get the desired result [10].

SO ey - TANGE e Train NMT Model
'-“-‘_‘_./."-_"H.._‘_‘
Train NMT Model

Parent
Maodal

SOUFGBC Ly - TANgets,

“\-—-,‘_...-"'_"‘--..._

Figure 5. Diagram of a simple transfer protocol [10]
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4 Application/Results

To demonstrate the effectiveness of LRL techniques, Fig-
ure 2 shows an example of an application of using a Back
Translation (BT) Data Augmentation method for a signifi-
cant improvement to the initial BLEU scores, which measure
translation accuracy. The methodology that is being tested
here is the effectiveness of using BT data with noise and
using BT data that tags the potentially noisy data. The data
below shows the increase the BLEU scores, which are a met-
ric for determining the accuracy for machine translations,
for both English-French and English-German translations
in comparison to the original model. While this testing uses
HRLs such and English and French the researchers deliber-
ately choose to limit the corpus of the two to 200K words
for the purpose of modeling a low resource environment [9].
Non-tagged BT systems are shown to have no notable im-
pact on the BLEU scores. However, when a special tag is
added to back-translated data (T-BT) so that the model can
differentiate, there is a noticeable increase in score with the
2018 German to English test set producing a 10.4 increase in
the number of BLEU points.

The two rows in Figure 6 denoted by BT (untagged) and
T-BT (tagged) represent the impact on BLEU scores in their
data sets when they were applied. The numbers in paren-
theses shows the difference in BLEU score from not using
the BT at all and the blue/red color coding indicates the im-
provement/deterioration of BLEU scores, respectively. The
columns "de — en" and "en — de" represent the transla-
tion task. The sub-columns are the different types of data
that were being used for training. The column "o" denotes
training data that is from articles, movies, TV shows, and
other media that extracted for translation. The column "n-o"
is training data that has been hand-translated for the ex-
press purpose of back-translation, and is generally simpler
in syntactic structure. The column "all" represent the average
improvement in BLEU scores of the two. The same applies
to the lower table, which shows the translation task between
French and English. This table suggests to us that tagging
back-translated data prevents the deterioration that is seen
in the "o" column of both language pairs.

This shows the merit of tagged back translation as a method
that can improve the translation quality of NMT. Here are
other papers that provide results that show the effective-
ness of other techniques: Language Models [5] and Transfer
Learning [4].

5 Conclusion

Differences in translation quality are still prevalent in NLP
technology even as it continues to play a larger role in inter-
national communication. However, this paper has surveyed
there are a few prominent methods of translation to bridge
this gap. Data Augmentation, a method that influences the
data directly, and Transfer Learning, a method that involves

System  test set de—ven en—de
all o n-o all o n-o

2010 | 289 (+0.5) 33.2(-0.9) 279 (+0.7) 21.8(-2.3) 24.6(-5.7) 21.0 (-1.2)
2011 25.3(-0.3) 299(-1.0) 242(-02) 199 (-1.4)  238(-1.9) 19.0 (-1.1)
2012 | 27.1 (+0.3) 27.9(-1.6) 27.0 (+0.7) 204 (-1.2)  24.5(-4.6) 19.3 (-0.2)
2013 | 30.3 (+0.3) 34.7(-1.6) 29.2 (+0.6) 23.8(-1.9) 25.1(-2.8) 23.6 (-1.7)
BT 2014 | 32.8 (+2.2) 27.4(-2.5) [368(+7.0) 254 (-0.5) 23.2(3.3) 27.9 (+2.7)
2015 | 338 (+24) 22.5(-1.9) | 395 (+5.5) 272 (-1.1) 28.1(-2.9) 24.7 (+1.9)
2017 | 35.5 (+3.0) 27.2(-1.1) | 428 (+7.4) 264 (-0.1)  26.3(-3.6) 25.5 (+3.3)
2018 | 43.9 (+4.6) 32.0(-1.0) 38.0(-1.4) 38.9(5.9) 35.0 (+3.8)

2019 | - 33.1(-1.5) - 31.4(-4.8) -
2010 | 29.5 (+1.1) 34.4(+0.3) 28.4 (+1.2) 25.0 (+0.9) 30.5(+0.2) 234 (+1.2)
2011 264 (+0.8) 31.7(+0.8) 252 (+0.8) 22.1 (+0.8) 25.8(+0.1)  21.0 (+0.9)
2012 | 28.1 (+1.3) 30.2(+0.7) 27.7 (+1.4) 228 (+1.2) 30.0(+0.9) 209 (+1.4)
2013 | 30.8 (+0.8) 36.0(-0.3)  29.6 (+1.0) 264 (+0.7) 28.1(+0.2) 26.1 (+0.8)
T-BT 2014 | 324 (+1.8) 29.6(-0.3) = 33.8 (+4.0) 279 (+2.0) 26.7(+0.2) | 294 (+4.2)
2015 | 339 (+2.5) 24.9(+0.5) 37.7 (+3.7) 299 (+1.6) 32.1 (+1.1)  25.6 (+2.8)
2017 | 355 (+3.0) 28.1(-0.2) | 412 (+5.8) 28.7 (+2.2) 30.7(+0.8) = 26.0 (+3.8)
2018 | 432 (+3.9) 33.0(+0.0) [ S04 G7.0) | 41.8 (+24) 45.6(+0.8) | 35.5 (+4.3)

2019 | - 35.0(+0.4) - - 37.6 (+14) -

System  test set fr—en en—fr
all o n-0 all 0 n-o

2008 | 229(-1.7) 27.9(-2.6) 222(-1.5) 232(-0.2) 21.2(-3.3) 23.6 (+0.5)
2009 | 26.5(-23) 41.1(-53) 239 (-1.6) 27.7 (+1.1) 22.7 (-2.0) 284 (+1.4)
2010 | 293 (-1.4) | 27.4(-7.8) 295 (+0.5) 28.2 (-0.5) 29.8 (+2.5)
BT 2011 294 (-1.9) 293(47) 294(-1.1) 30.9 (+0.0) | 36.7 (-8.2) 293 (+2.1)
2012 | 29.7(-1.4) 343(-43) 28.6(-0.6) 284 (+1.1) 26.3(-4.1) 29.0 (+2.5)
2014 | 36.6 (+0.6) 31.4(-4.7) 403 (+5.6) 329 (-3.1) 39.6 (+6.1)
2015 | 36.2(+0.0) 40.9(-3.1) 29.8 (+3.5) 35.7(+1.7) 25.1(-4.4) | 449 (+6.5)
2008 | 245(-0.1) 295(-1.0) 23.7 (+0.0) 23.8 (+04) 25.1(+0.6) 23.5(+0.4)
2009 | 289 (+0.1) 46.4(+0.0) 25.7 (+0.2) 273 (+0.7) 251 (+0.4) 27.7(+0.7)
2010 | 31.2(+0.5) 35.1(-0.1) 29.6 (+0.6) 30.0 (+1.3) 34.1(+0.5) 289 (+1.6)
T-BT 2011 31.8 (+0.5) 33.3(-0.7) 31.4(+0.9) 31.6 (+0.7) 453 (+0.4) 28.0 (+0.8)
2012 | 31.8(+0.7) 38.3(-0.3) 30.1(+0.9) 289 (+1.6) 319 (+15) 28.1 (+1.6)
2014 | 37.3 (+1.3) 36.1(+0.0) 37.2 (+2.5) 38.2 (+2.2) 39.7(+1.5) 36.5 (+3.0)
2015 | 36.6 (+0.4) 43.2(-0.8) 279 (+1.6) 36.0 (+2.0) 30.7 (+1.2) 41.2 (+2.8)

Figure 6. Tagged and Back-Tagged Data [9]

manipulation of an NMT internal thresholds. As LRL-NMT
has made such considerable advancements, the key issue cur-
rently is understanding what NMT technique is well-fitted
for a particular data setup. Nevertheless, the ever-growing in-
crease in research publications for LRL-NMT [10] show that
there is good reason to be optimistic for better translation
standards for those who speak under-represented languages.
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