Mitigating the Disparity for Machine Translation Quality for Low Resource Languages

By Jeffrey Miller

Who fares better with the same technology?

What is the issue? Why is this an issue? How is this an issue?

Low Resource and High Resource

Languages

- Monolingual and Parallel Data
- Corpora

Class	Description	Examples	# langs					
0	Have exceptionally limited resources, and have rarely been	Slovene, Sinhala	2,191 222					
1	Have some unlabelled data; however, collecting labelled data is	Nepali, Telugu						
	challenging.							
2	A small set of labeled datasets has been collected, and language Zulu, Irish support communities are there to support the language.							
3	Has a strong web presence, and a cultural community that backs Afrikaans, Urdu it. Have been highly benefited by unsupervised pre-training.							
4	Have a large amount of unlabeled data, and lesser, but still a significant amount of labelled data. have dedicated NLP communities researching these languages.							
5	Have a dominant online presence. There have been massive investments in the development of resources and technologies.	English, Japan- ese	7					

Machine Learning

- Machine Translation (MT)
- Statistical Machine Translation (SMT)
- Neural Machine Translation (NMT)

Talking Points:

- Artificial Neural Networks (ANNs) and Encoder-Decoder
- LRL techniques
 - Data Augmentation
 - Transfer Learning
- Neural Translation Machine (NMT)
 - Semi Supervised
 - Unsupervised
- Application & Results

ANNs

output layer

Encoder Structure

Low Resource Techniques

Data Augmentation

Data Augmentation:

- Parallel Corpus Mining
- Back Translation
- Word/Phrase Replacement

Transfer Learning

Transfer Learning

- "Transfering" the parameters of a high-resource pair to a low resource pair
- Transfer Learning for Multi-NMT
- Transfer Protocol
 - "Freezing"

NMT Architectures

- Semi Supervised
 - Language Model
 - Multi task learning
- Unsupervised
 - Initialization
 - Recurrent Translation

(a) (b) (c)

(a): Supervised; (b): Semi Supervised; (c): Unsupervised

Unsupervised

- Initialization
 - Word Embeddings
- Translation and Auto-encoding

Application and Results

		System	test set	all	de→en o	n-o	all	en→de o	n-o
•	Back-Translation: Tagged and Untagged WMT9 German-English Corpus	ВТ	2010 2011 2012 2013 2014 2015 2017 2018 2019	28.9 (+0.5) 25.3 (-0.3) 27.1 (+0.3) 30.3 (+0.3) 32.8 (+2.2) 33.8 (+2.4) 35.5 (+3.0) 43.9 (+4.6)	33.2 (-0.9) 29.9 (-1.0) 27.9 (-1.6) 34.7 (-1.6) 27.4 (-2.5) 22.5 (-1.9) 27.2 (-1.1) 32.0 (-1.0) 33.1 (-1.5)	27.9 (+0.7) 24.2 (-0.2) 27.0 (+0.7) 29.2 (+0.6) 36.8 (+7.0) 39.5 (+5.5) 42.8 (+7.4) 53.8 (+10.4)	21.8 (-2.3) 19.9 (-1.4) 20.4 (-1.2) 23.8 (-1.9) 25.4 (-0.5) 27.2 (-1.1) 26.4 (-0.1) 38.0 (-1.4)	24.6 (-5.7) 23.8 (-1.9) 24.5 (-4.6) 25.1 (-2.8) 23.2 (-3.3) 28.1 (-2.9) 26.3 (-3.6) 38.9 (-5.9) 31.4 (-4.8)	21.0 (-1.2) 19.0 (-1.1) 19.3 (-0.2) 23.6 (-1.7) 27.9 (+2.7) 24.7 (+1.9) 25.5 (+3.3) 35.0 (+3.8)
		T-BT	2010 2011 2012 2013 2014 2015 2017 2018 2019	29.5 (+1.1) 26.4 (+0.8) 28.1 (+1.3) 30.8 (+0.8) 32.4 (+1.8) 33.9 (+2.5) 35.5 (+3.0) 43.2 (+3.9)	$\begin{array}{c} 34.4 \ (+0.3) \\ 31.7 \ (+0.8) \\ 30.2 \ (+0.7) \\ 36.0 \ (-0.3) \\ 29.6 \ (-0.3) \\ 24.9 \ (+0.5) \\ 28.1 \ (-0.2) \\ 33.0 \ (+0.0) \\ 35.0 \ (+0.4) \end{array}$	28.4 (+1.2) 25.2 (+0.8) 27.7 (+1.4) 29.6 (+1.0) 33.8 (+4.0) 37.7 (+3.7) 41.2 (+5.8) 50.4 (+7.0)	25.0 (+0.9) 22.1 (+0.8) 22.8 (+1.2) 26.4 (+0.7) 27.9 (+2.0) 29.9 (+1.6) 28.7 (+2.2) 41.8 (+2.4)	$\begin{array}{c} 30.5 \ (+0.2) \\ 25.8 \ (+0.1) \\ 30.0 \ (+0.9) \\ 28.1 \ (+0.2) \\ 26.7 \ (+0.2) \\ 32.1 \ (+1.1) \\ 30.7 \ (+0.8) \\ 45.6 \ (+0.8) \\ 37.6 \ (+1.4) \end{array}$	23.4 (+1.2) 21.0 (+0.9) 20.9 (+1.4) 26.1 (+0.8) 29.4 (+4.2) 25.6 (+2.8) 26.0 (+3.8) 35.5 (+4.3)

References

[1]Benjamin Marie, Raphael Rubino, and Atsushi Fujita. 2020. Tagged Back-translation Revisited: Why Does It Really Work?. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, 5990–5997

[2][Six Challenges for Neural Machine Translation] (Koehn & Knowles, NGT 2017)

[3] Quinn Lanners. 2019. Neural Machine Translation.

[4]Surangika Ranathunga. 2022. Neural Machine Translation for Low Resource languages: A Survey. Comput. Surveys 55 (2022), 1-37. Issue 1.

