
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Ashlen A. Plasek

Probing as a Technique to Understand Abstract Spaces
Ashlen A. Plasek

plase024@morris.umn.edu
Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
Machine learning models, while very powerful, have their
operation obfuscated behind millions of parameters. This
obfuscation can make deriving a human meaningful pro-
cess from a machine learning model very difficult. However,
while the intermediate states of amachine learningmodel are
similarly obfuscated, using probing, we can start to explore
looking at possible structure in those intermediate states.
Large language models are a prime example of this obfusca-
tion, and probing can begin to allow novel experimentation
to be performed.

Keywords: probing, machine learning, large languagemodel,
classifier

1 Introduction
Machine learning as a whole often involves working with
representations of data which are opaque and unintuitive.
Machine learning models are often employed to step from
one known form of information (for example, a sentence
written in natural English) to another known form of in-
formation (for example, that same sentence translated to
French) when there is no clear path between the two.
Probing, the technique outlined in Section 3, applies ma-

chine learning to aid in understanding the opaque and unin-
tuitive representations of data by finding the relationships
which underlie those representations. We will look at two
surveys of applications of machine learning to natural lan-
guage processing which make use of probing to explore the
efficacy of the particular models used for embedding. Then
we will look at a meta-analysis which exposes some of the
methodological issues in using probing to make quantitative
statements about particular structures existing in internal
representations of data. Finally, we will look at ways prob-
ing can be utilized to perform experiments on complex or
opaque systems.

2 Background
2.1 Linear Algebra
An ordered collection of numbers can be called a vector. The
number of elements comprising a vector is known as the di-
mensionality of that vector. For example, it is quite common
to work with two-element vectors to represent points on a
plane, a two-dimensional object. Similarly, a three-element
or a three-dimensional vector can be used to represent points

in three-dimensional space. We can analogously extend this
idea to higher dimensions. Discussing the space of possible
vectors of a given dimensionality using spatial analogies is a
very powerful tool. One key fact about vector spaces is that
elements within them can be added, subtracted, and scaled
up or down, just as their two or three dimensional analogs
(Equation 1). 

1
4
−5

 + 2

3
−8
3

 =

7

−12
1

 (1)

Linearity is a property of a mathematical transformation
which satisfies two useful properties. Specifically, the result
of summing the inputs and then applying the transformation
is the same as applying the transformation to the inputs and
then summing (Equation 2), and scaling the input will scale
the output by the same amount (Equation 3).

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) (2)

𝑓 (𝑎𝑥) = 𝑎𝑓 (𝑥) (3)
Transformations which take in a vector of a particular di-

mensionality and produce a vector of another dimensionality
can also be linear. In this case, there is a useful property that
linearity gives, it is possible to deduce information about the
input vector space from the results of applying the transfor-
mation to a few key vectors. This will be useful whenever a
potentially opaque vector space must be operated on (start-
ing in Section 3). Finally, matrix multiplication provides a
useful representation of linear transformation between vec-
tors of potentially varying dimensionalities.

2.2 Machine Learning
Any machine learning model can be viewed as a transforma-
tion which, informed by a set of parameters, takes an input
and produces an output. Such an abstract representation is
not always useful, and a couple of concrete examples will be
used throughout this paper. However, taking this abstract
view allows us to describe the training process in a simi-
larly abstract manner, giving a necessary perspective for
understanding probing.

The process of training a machine learning model entails
taking a collection of inputs and a matching collection of
the expected outputs for each input, as a whole, referred to
as the data or data set. The data set will then be split into



Probing as a Technique to Understand Abstract Spaces

two subcollections, one will be used to train the model, and
the other to evaluate its performance after training. To train
the model, an input-output pair is selected from the training
data-set, and the transformation is applied to the input. The
resulting output is then compared with the expected output,
and their difference is used to modify the parameters of the
model. This is then repeated until a sufficient training period
has elapsed or a certain accuracy is met. After training, the
model can be tested by taking input-output pairs from the
evaluation set, and the transformation given by the trained
set of parameters is applied to the input. The resulting output
is compared with the expected output, and the difference is
evaluated in some way. A function called a loss function is
used to take this difference and produce a numerical value
representing the severity of the error [3].

2.2.1 Linear Classifiers. To be more precise about how
a transformation takes place, we will examine linear classi-
fiers. Like all machine learning models, the linear classifier
applies a transformation to an input and produces an output.
In the case of a linear classifier, the transformation can be
represented as the linear transformation given by a matrix
of an appropriate size to take the input vector space to the
output vector space. The values comprising the matrix are
the parameters of the model, and applying the transforma-
tion is applying matrix multiplication to the input vector to
produce the output vector.
As the name suggests, a common application of a linear

classifier is to take a set of inputs and determine which of a
series of categories best describes that set of parameters. This
is often expressed as giving each entry in the output vector
a category, and whichever entry is the greatest determines
the classification produced by the model.

2.2.2 Neural Networks. The usefulness of matrix mul-
tiplication does not stop with linear classifiers, and there
are a number of modifications which can be made to pro-
duce a more complex machine learning model. The first key
modification that can be made is to augment the transfor-
mation to introduce non-linearity. While this removes the
ability to reason as easily about the relationships between
subsets of the input vector space and the output vector space,
it is often more useful to have more complex (non-linear)
regions represented in the output space. To achieve this, a
variety of non-linear functions (called activation functions)
can be applied to each component of the output vector to
introduce non-linearity. Some activation functions can pre-
serve linearity as much as possible, others are discontinuous,
whereas others are smooth, continuous functions such as
the ubiquitous sigmoid curve (Figure 1).
By introducing non-linearity, composing multiple trans-

formations becomes a useful prospect. Whereas with ma-
trix multiplication, where successive applications of trans-
formations can be represented by a single transformation

−4 −2 0 2 4

0

0.2

0.4

0.6

0.8

1

Figure 1. An example of a sigmoid curve

(and therefore a single matrix multiplication); adding non-
linearity makes the composition more complex. This use
case makes composing many layers of matrix multiplica-
tion followed by the application of an activation function
a powerful tool for constructing more complex models. In
addition to increasing the complexity of the regions which
the model can operate on. Increasing the number of parame-
ters can increase training speed by allowing more potential
representations of a given region.

2.2.3 Internal State and Large LanguageModels. While
a full exploration of how Large Language Models work and
the various ways they can be implemented and trained is
beyond this paper’s scope, some features are necessary to
address. The most important is that most large language
models take their input as a stream of fragments of text and
generate one fragment of their output at a time (for example,
a word or phrase). This is done by using an internal state
used to keep track of information about where the model
is in the output being generated [8]. While not necessarily
representative of any given model, this can be understood
as allowing some of the inputs to a neural network to be a
portion of the outputs from the previous step. This creates
a feedback loop, allowing the model to possess information
about where in the output stream it is. The portion of the
output given as input would be the internal state. Just like all
of the other information passed through machine learning
models, the internal state is a vector living in a vector space.

3 Word Embeddings
Natural language processing is a subset of computer science
which is concerned with interpreting, transforming, and out-
putting natural language. Natural languages such as English
or French can be contrasted against structured languages
such as the programming languages C or Haskell in that
natural languages have a far less rigid structure and are far



Ashlen A. Plasek



118 v
101 e
99 c
116 t
111 o
114 r
0
...

0


Figure 2. ASCII-based embedding of the word “vector”

more difficult to parse using a concrete grammar. Due to this
lack of rigidity, natural language processing is an excellent
application of machine learning, specifically because pairs of
inputs and expected outputs can be used to train the model
instead of developing a complex grammar to attempt to parse
natural languages.

3.1 Words as Vectors
To apply machine learning to problems in natural language
processing, the inputs and outputs must be converted into a
vector representation. For example, in machine translation,
a string of text must be processed into another string of text
in another language. Thus, a process for converting a string
of text, in this case a word, into a vector to represent that
word is needed. We will examine three methods of doing
this, a very simple method based on character encodings, an
effective but inefficient technique using one dimension per
word, and finally, a simplified version of a popular technique
used in the field.

3.1.1 Character Encoding. If a word were to be inter-
preted only as a sequence of numbers representing each
character, one possible solution would be to simply use the
character encoding of text to produce each value in a vector.
Figure 2 shows the word “vector” in a vector representation.
There are a number of problems with this representation.
The most apparent problem in choosing a dimensionality for
the input and output vectors. The dimensionality will place
a cap on the number of characters allowed in the input. But
the more pressing problem is in thinking of these embed-
dings as points living in a space, very dissimilar words could
have very similar representations. For example, “brand” and
“bread” are very similar in vector space but represent very
different concepts.

3.1.2 Higher Dimensionality. Take a vector with a sin-
gle dimension for every word in a language. The vector for a
givenwordwould have a 1 in the entry for itself, and a zero in
every other entry. This is demonstrated for the word vector
in Figure 3. For English, a conservative estimate places this



0 a
0 Aalenian
...

0 vectitory
1 vector
0 vectorcardiogram
...

0 zythum
0 Zyzzyva


Figure 3. Simple embedding for the word “vector”

at around 500,000 words, with around 1,300,000 distinct defi-
nitions [7]. While this is a very high dimensionality, it gives
plenty of space for a machine learning model to generate
structure within when processing such a vector. However,
this high dimensionality produces a problem: there is a clear
lack of efficiency in working with these vectors and there is
no encoding of the meaning of the original word.

3.2 Encoders and Decoders
With a simple but inefficient embedding produced, the next
problem to solve becomes reducing the number of dimen-
sions in the vector. A slightly more complex application
of machine learning makes this possible without needing
to produce the structure within the desired smaller vector
space by hand. To achieve this, construct a neural network
by composing two layers. The first layer maps a vector in
a 1.3 million dimensional space down to a vector in a 500-
dimensional space, and the second layer maps a vector in
a 500-dimensional space to a 1.3-million dimensional space.
This is shown in Figure 4.

This model can then be trained on a dataset consisting of
every word being mapped to itself. On the surface, this is
just training a machine learning model to apply the identity
function. However, if the two layers are separated, there is
a transformation which is able to compress the 1.3 million
dimensions of the input space down to just 500, and there is a
second transformation which can take the 500-dimensional
vector, and map it to a 1.3 million dimensional vector. In
other words, a word can be embedded into a 500-dimensional-
space, and then taken back out to recover the original word.

This is a very simple model to produce a word embedding,
and more complex training techniques can be employed to
impose structure onto the embedding. It is important to note,
however, that any imposed structure cannot be precisely
controlled. One method of producing a more structured em-
bedding is to provide context for the words being embedded;
such a technique may impose structure representing seman-
tic meaning of words.



Probing as a Technique to Understand Abstract Spaces

1,300,000 500 1,300,000

Figure 4. Encoder decoder pair

3.3 Probing for Performance
There is a limit to the efficiency gains in embedding words
into a lower-dimensional vector space. It is clear that a single
number could not represent all of the structure and semantic
information to be had in a word, however, it is hypothetically
possible for an encoder-decoder pair to produce such an
embedding by mapping 1,300,000 distinct regions along the
real number line to each of the possible words. Doing so
would lead to a problem similar to that encountered in the
character encoding embedding, the structure of the vector
space is not being used efficiently.

To remedy this, the notion of a property being represented
must be stated in a more precise fashion, specifically that
there are properties of the words which are not able to be
extracted reasonably from the embeddings. To test if a given
property (for example part of speech) is present in the em-
bedding, machine learning can be applied in a more novel
way. Instead of using training to produce a model, the ac-
curacy estimation is the result. If a simple model, such as
a linear classifier, is applied to an embedding, and trained
with a dataset of words tagged with their parts of speech,
the accuracy achieved via training can be used to interpret
the presence or absence of a property.
For example, if we wanted to test if the property that a

word is a noun is represented in an embedding, we could
train a linear classifier on embedded words (their vector rep-
resentations) expecting a single value, representing if that
word is a noun or not. If the linear classifier can success-
fully model such a distinction, there is some direction in the
embedded space which represents if a word is a noun.

Machine learning models are traditionally trained to com-
plete a task, and the accuracy of the model on the testing data
set is used as a predictor of the performance of the model in
the task assigned. The results of the training process in such
a case are the parameters which allow the model to perform
its task. Probing differs from this methodology by using the
accuracy of training not as an evaluation but as a measure
of how accurately a particular property is represented in the
embedded space.

Köhn made one of the early explorations into probing by
comparing the performance of five embedding algorithms
by using probing to detect the presence or absence of several
properties, including the part of speech, tense, gender, count,
and number of the word [4]. On each of these tasks, the five
embedding algorithms were evaluated on seven languages.
When performing their evaluation, Köhn used a linear

classifier for probing. Explaining that, “the feature dimen-
sionality is relatively high ... and more importantly, training
a linear classifier yields insights into the structure of the
vector space because the classifier also serves as a tool to ob-
tain a supervised clustering of the vector space”[4]. In other
words, because the region which maps to a given class can
be determined due to the linearity of the model, it becomes
possible to find patterns in the input space, potentially reveal-
ing information about the space formed by the embedded
vectors.

Among the observations made by Köhn, the dimensional-
ity of the embedded vectors was the most important factor
in improving accuracy, noting that while 200 dimensions
does offer a benefit over 100 dimensions, it is far lesser than
the increase from 10 dimensions to 100 dimensions, as such
it is possible to pair such analysis with an evaluation of
the task the embedding is being used for to find the best
dimensionality for that use case.

4 Sentence Embeddings
A similar methodology can be used to embed sentences as
vectors. The core methodology is similar and often involves
an encoder-decoder pair, but training can include modifica-
tions to encourage particular properties to be reflected in
the embedding, although there is the desire for “‘universal
embeddings’ trained once and used in a variety of applica-
tions” [2]. Such an embedding would ideally be reflective of
a vector space which encodes any useful property a sentence
embedding could maintain. Because it is impossible to enu-
merate all possible sentences which can be constructed, it
is impossible to exhaustively train an encoder-decoder pair
thoroughly enough to embed all possible properties.

4.1 Properties of Sentences
There are many such properties that can be desired in a sen-
tence embedding. Conneau’s investigation of many encoders
in the field of sentence embedding by testing their resulting



Ashlen A. Plasek

embeddings for the presence of a set of properties. These
properties are divided up into three broad categories which
approximately correspond to the difficulty in representing
a property [2]. The three categories are surface properties,
syntactic properties, and semantic properties.

4.1.1 Surface Properties. Surface properties of a sentence
are the simplest set of properties, and do not require lin-
guistic analysis to determine. For example, the length of a
sentence is a surface property. A more involved property
could be if a given word is present in the sentence. While
this requires processing what constitutes a separate word,
there is still no semantic analysis to be done [2].

4.1.2 Syntactic Properties. Syntactic properties are the
next simplest, and require some linguistic analysis to deter-
mine the structure of a sentence [2]. For example, determin-
ing if a sentence is syntactically correct. This does not imply
the sentence has meaning, however, only that words with
the right parts of speech appear in the proper order for the
sentence to be interpreted as a syntax tree. Another example
of such a property involves a tree-based representation of a
sentence, and is the height of that tree. This tree is generally
a formalization of the process of diagramming a sentence.

4.1.3 Semantic Properties. Finally, semantic properties
are the most complex and require interpretation of the mean-
ing of sentences [2]. For example, recognizing the difference
between a sentence that is syntactically correct but seman-
tically meaningless and a sentence which is semantically
meaningful as well as syntactically correct. Another exam-
ple would be determining the number of subjects of the
sentence or the verb tense of the main clause.

4.2 Probing Analysis
Conneau determined that, “performance is still far from the
human bounds ... [for determining] if a sentence is syntac-
tically or semantically anomalous”[2], however also noted
that the poor performance could be correlated with the en-
coders not being explicitly trained to determine semantic or
syntactic information. This indicates that not only is probing
capable of determining the presence or absence of a property,
it can give an approximate measure of the ability for a given
embedding to enable processing of particular properties or
types of knowledge.

5 Criticisms
In 2022, Belinkov compiled a review of the work done in
probing, specifically looking at some of the shortcomings
of probing as a technique in evaluating language models. A
number of problems are noted, including the lack of a con-
sistent baseline, the use of different models for classification
tasks, and determining if a classifier’s accuracy is a result of
correlation or causation [1].

5.1 Lack of Comparison
The lack of a baseline or a control is a particularly trou-
bling problem, as while it may appear to have a solution,
the solution introduces methodological questions. Belinkov
notes, “Some studies compare with majority baselines or
with classifiers trained on representations that are thought
to be simpler than what the original model 𝑓 produces”[1].
However, Belinkov also observes, “On the other hand,

some studies compare [performance] to skylines or upper
bounds 𝑓 , in an attempt to provide a point of comparison
for how far probing performance is from the possible perfor-
mance on the task of mapping [an embedding to a particular
feature]”[1]. In other words, using a shortfall in performance
from another example to demonstrate a lack of capability, a
metric which is difficult to interpret without a control, which
is a commonly lacking feature in probing analysis.
This reveals a meta-analysis problem as the method of

evaluation varying from one body of research to another
makes it difficult to build upon other work without replicat-
ing the baselines used to match against a control.

5.2 Choice of Model
When choosing a model to serve as a probe, researchers in-
advertently influence their results as using a more complex
model can reflect a perceived complexity of the classification
problem at hand, even when the same probing model is used
for many classifications. While broadly, Belinkov found that
different models used for probing can yield usable informa-
tion to compare the abilities of two different models, it is
still possible for performance comparisons to be negated by
such differences [1].

5.3 Correlation and Causation
The primary problem Belinkov addresses is that it is difficult
to determine if the success of a classifier is due to a genuine
causative connection between an embedding and the tested
property, or if there is simply a correlation between a prop-
erty the encoder was trained to note and the property being
tested for [1].
For example, if we wanted to determine if a particular

embedding neatly represents if a given word is plural, we
could apply a probe for that property and get a success. How-
ever, consider the property that a given word ends in an ’s’.
Because there is a high correlation in English between nouns
that end in an ’s’ and words that are plural, it is possible that
the success we observe is instead due to this correlation and
not due to a proper representation of plurality.
Belinkov goes on to note two proposed solutions. Both

involve, on some level, modifying the encoder to determine
more precisely if a property is present in an embedding.
The first is to modify the original encoder while training
the probing model, and then assess both the performance
of the probing model, and the performance of the modified



Probing as a Technique to Understand Abstract Spaces

encoder on the original task, thus allowing a causative link
to be established. The second method is more direct. By
training a linear classifier to determine a given property,
it is possible to use that classifier to remove that property
from the embedding, allowing evaluation in the absence of a
potentially interfering factor[1].
This removal is performed by determining what subset

of the embedding space is associated with the interfering
property and collapsing the embeddings under test so as to
remove any component of that property from the embed-
dings, thus removing the possibility of interference from
inference.

5.4 Other Options
It should also be noted that probing is not the only method of
evaluating the performance of NLP systems. Work done by
Google has produced a large benchmark suite for language
models which aims to provide a robust, future-proof metric
for language models [6]. However, this is a different objective
than the evaluation probing can accomplish. Probing is most
effective at evaluating the encoders used forword or sentence
embedding, and falls short when evaluating the competency
of language models as a whole.

6 Wider Applications
The method of separating correlation and causation given
by Belinkov unlocks the ability to not just understand the
space of embeddings, but to modify vectors living in the
space of embeddings. This can be with the intention of re-
moving properties as in the method proposed by Belinkov,
or to modify vectors living within that space for the sake of
experimentation.

Li et al. make use of this technique to modify the internal
state of a large language model. The researchers question
if large language models have an internal representation
of the world, focusing on the example of a language model
trained to play the game Othello. Othello is a board game
played with black and white tokens on a grid, similar to
Go in appearance but significantly simpler. The model was
trained based on a dataset of games where moves are given
in sequence. As expected, the model performs very well once
trained, achieving an error rate of 0.01% when trained on
an artificial dataset designed for training, and 5.17% when
trained on a dataset of championship games [5]
Probing is then used to determine if the model has an

internal representation of the board state. Li et al. start with
testing linear probes, but that approach produced an error
rate exceeding 20% when classifying if a given tile contains
a colored token or is empty. As such, they switch to a 2-
layer neural network with an activation function chosen
to maximize linearity. Such a model greatly improved error
rates, bringing the error rate down below 12%, with some

layers of the internal state giving error rates as low as 2 to
3% [5].
With a model trained to determine board state, and a

model which maximizes linearity, it is possible to reasonably
determine the representations of the various board positions.
In this way, it becomes possible to modify the internal repre-
sentation of the board state. Thus, the model can be tested for
its ability to produce valid moves in novel scenarios which it
could not reach through either its training data or the games
it could generate. Further, comparing the outcomes of these
experiments for the model trained on artificial data and that
trained on championship data reveals that the championship
dataset produces a model which “make[s] strategically good
moves.” [5] Li concludes by comparing the probability maps
of the next moves produced by the model pre- and post-
intervention to conclude that the large language model does
have a representation of the board state.

7 Conclusion
Machine learning is a multitool, not only in its ability to
solve problems in a variety of domains, but in the results
the training process can reveal. By shifting perspective from
one of attempting to use machine learning to directly solve a
problem, but instead, to use the results of training to extract
information about the properties of embedded vectors, it
becomes possible to break down the obfuscation surrounding
the methodology with which machine learning models solve
problems. This shift in perspective, and a willingness to
apply such perspectives to problems in natural language
processing led to the development of probing.

Probing both makes it possible to investigate the structure
of a potentially opaque word or sentence embedding, but also
using those results to inform future research, and better un-
derstand the differences between embeddings. Furthermore,
by leveraging the linearity of linear classifiers, it becomes
possible to understand the structure imposed on the vector
space represented by embeddings far more effectively than
simply testing inputs to an encoder.

Finally, knowledge of the vector space embedded objects
live in makes it possible to explore that space more literally,
allowing modification of vectors in that space to be done via
an evidence-based method, thus allowing experimentation.
Applying these tools beyond embeddings, to the broader
world of large language models, it becomes possible to learn
about the internal state of a generative machine learning
model, and even potentially run experiments to determine
what form of processing is occurring within these models.

Acknowledgments
I would like to thank Peter Dolan, my adviser for this senior
seminar, for the vital feedback and all the help throughout the
process of composing this paper. I would also like to thank
Elena Machkasova, my professor, for all of her essential



Ashlen A. Plasek

feedback and help guiding me through this process. Lastly,
I would like to thank my alumni reviewer for his detailed
feedback.

References
[1] Yonatan Belinkov. 2022. Probing Classifiers: Promises, Shortcomings,

and Advances. Computational Linguistics 48, 1 (04 2022), 207–219. https:
//doi.org/10.1162/coli_a_00422 arXiv:https://direct.mit.edu/coli/article-
pdf/48/1/207/2006605/coli_a_00422.pdf

[2] Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault,
and Marco Baroni. 2018. What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics,
Melbourne, Australia, 2126–2136. https://doi.org/10.18653/v1/P18-1198

[3] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The
Elements of Statistical Learning (12th ed.). Springer, 18–19.

[4] Arne Köhn. 2015. What’s in an Embedding? Analyzing Word Em-
beddings through Multilingual Evaluation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing. As-
sociation for Computational Linguistics, Lisbon, Portugal, 2067–2073.
https://doi.org/10.18653/v1/D15-1246

[5] Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2022. Emergent World Representations:
Exploring a Sequence Model Trained on a Synthetic Task. (2022).
https://doi.org/10.48550/ARXIV.2210.13382

[6] Aarohi et al. Srivastava. 2022. Beyond the Imitation Game: Quantifying
and extrapolating the capabilities of language models. https://doi.org/
10.48550/ARXIV.2206.04615

[7] Wiktionary. 2023. Statistics — Wiktionary. https://en.wiktionary.org/
wiki/Special:Statistics. [Online; accessed 01-March-2023].

[8] Stephen Wolfram. 2023. https://writings.stephenwolfram.com/2023/
02/what-is-chatgpt-doing-and-why-does-it-work/

https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://arxiv.org/abs/https://direct.mit.edu/coli/article-pdf/48/1/207/2006605/coli_a_00422.pdf
https://arxiv.org/abs/https://direct.mit.edu/coli/article-pdf/48/1/207/2006605/coli_a_00422.pdf
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.48550/ARXIV.2210.13382
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2206.04615
https://en.wiktionary.org/wiki/Special:Statistics
https://en.wiktionary.org/wiki/Special:Statistics
https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/
https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

	Abstract
	1 Introduction
	2 Background
	2.1 Linear Algebra
	2.2 Machine Learning

	3 Word Embeddings
	3.1 Words as Vectors
	3.2 Encoders and Decoders
	3.3 Probing for Performance

	4 Sentence Embeddings
	4.1 Properties of Sentences
	4.2 Probing Analysis

	5 Criticisms
	5.1 Lack of Comparison
	5.2 Choice of Model
	5.3 Correlation and Causation
	5.4 Other Options

	6 Wider Applications
	7 Conclusion
	Acknowledgments
	References

