
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Jadyn Sondrol

Possible Attacks on Match-In-Database Fingerprint
Authentication

Jadyn Sondrol
sondr037@morris.umn.edu

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
Biometrics are used to help keep users’ data private. There
are many different biometric systems, all dealing with a
unique attribute of a user, such as fingerprint, face, retina,
iris and voice recognition. Fingerprint biometric systems,
specifically match-in-database, have universally become the
most implemented biometric system. To make these systems
more secure, threat models are used to identify potential
attacks and ways to mitigate them. This paper introduces
a threat model for match-in-database fingerprint authenti-
cation systems. It also describes some of the most frequent
attacks these systems come across and some possible miti-
gation efforts that can be adapted to keep the systems more
secure.

Keywords: biometrics, match-in-database, template, minu-
tia, FAR, FRR, threat model, spoofing attack, denial-of-service
attack, replay attack, trojan horse attack

1 Introduction
According to the Global Markets Insights, the global biomet-
ric market is anticipated to exceed 70 billion dollars by the
year 2027[1]. Since biometrics are used in banking compa-
nies, law enforcement, and in the vast majority of mobile
phones, about 80% of US citizens have used some kind of
biometric technology. Biometrics help to secure a user’s in-
formation by recognizing that user via one or more of their
unique features, such as fingerprint, retina, or facial scans.
Biometrics use an individual’s unique attribute, and because
of that there is a new risk of that attribute being stolen and
used elsewhere. For example, creating an artificial copy of
one’s fingerprint would allow an intruder to access any in-
formation on one’s phone. That is why biometric systems
need to be very secure.

This paper discusses security of fingerprint-based authen-
tication. In section 2 we describe all of the modules of match-
in-database fingerprint authentication and the processes be-
hind it. Section 3 introduces a threat model that is used to
find a system’s susceptibility to any attacks or breaches. Fi-
nally, section 4 details what the most common attacks are
and explains the mitigation methods that should be imple-
mented to prevent these attacks. Because match-in-database
fingerprint authentication is widely used, there is a need for
a threat model. This threat model is used to describe all of

Figure 1.Match-in-database biometric system model. The
input finger describes the enrollment phase and the live
finger describes the authentication phase [5]

the most frequent attacks made on this system, categorize
them by threat level, and provide somemitigation techniques.
All of the attacks listed (Spoofing, Denial-of-Service, Replay,
and Trojan Horse) can be prevented by numerous mitigation
efforts which are implemented into the current systems.

2 Fingerprint Authentication
Biometric systems can be generally classified into two cat-
egories, match-in-database and match-on-device systems.
The match-in-database, or MiD, fingerprint authentication
system is the most popular biometric system. As shown in
Figure 1,MiD systems use a remote database to store a user’s
encrypted template. A template is a digital portrayal of a



Possible Attacks on Match-In-Database Fingerprint Authentication

Figure 2. Characteristic features of a fingerprint [7]

fingerprint. Then when a user scans their finger, the feature
enhancement module extracts distinct patterns in the finger-
print to generate another template. The template is sent to
the remote database where it is compared to other stored
encrypted templates. This is unlike the match-on-device sys-
tems where the templates are compared on the device itself.
Fingerprint authentication occurs in two distinct phases.

The first is the enrollment phase, where an individual and
their fingerprint are first introduced to the system, as shown
in Figure 1 under the input finger. This is when a user puts
their finger on a sensor located on an input device. Various
techniques of image enhancement are then used to improve
the image’s quality.
Image enhancement is used because both environmental

and physical factors can decrease the quality of the image.
The physical factors may include sweat, a finger wound, the
amount of force applied to the scanner, etc. Environmental
factors like temperature, humidity, and the durability of the
scanner also play a role in the quality of the image.
The characteristic features of a fingerprint, such as the

ridges (dark lines), and valleys (white spaces), are unique
to every individual in the world. Fingerprints are made up
of lakes, ridge bifurcations, ridge endings, etc. as shown in
Figure 2, but what it really comes down to is the minutiae. A
minutia is a small characteristic feature of a fingerprint used
for authentication. Most commonly a bifurcation, the point
where the ridge ends and it splits in two or bifurcates, is used
[4, 5]. The feature extraction module then finds the minutiae
from the fingerprint and highlights them, as shown in Figure
3 on the right, so they can be used later in the comparison
module.
A template is a recording of the minutiae and is consis-

tent between readings of the fingerprint. For example, in the
minutiae based approach, the coordinates of all the bifurca-
tions are stored in a template. A template is then generated
and encoded (turned into binary strings) for transition into
the template database, where it is stored until authentication
or identification occurs.

Figure 3. Data stored in minutiae based templates before
encryption [9]

The authentication phase is when the user is verified or
identified, as shown in Figure 1 under the live finger. Fin-
gerprint verification is checking if a user is who they say
they are, meaning to verify that the fingerprint matches the
registered user they claim to be. Fingerprint identification
is matching the live finger template to a template stored in
the input finger template database. This means that the tem-
plate is compared to all of the other templates in the remote
database [2]. However in practical uses the templates can
be sorted in various different ways in order to lessen the
amount of comparisons.
There are three different ways to store the data in the

template to use for comparison. The first is the minutiae
based approach. This approach stores the x and y coordinates
of all the minutiae, the direction of the minutiae angle, and
the minutiae type, which is usually a bifurcation. The pattern
based approach preserves the pattern of the ridge structure,
meaning whether the fingerprint is an arch, loop, whorl, etc.
The last is the image based approach. It stores the unaltered
impression of the fingerprint from the scanner. The most
commonly used approach is minutiae based.

For the minutiae based approach the image of the finger-
print is binarized (converted into black and white) by tracing
the ridges of the finger. This image is then thinned so that
the each ridge is exactly one pixel wide [5, 6]. The minu-
tiae locations are extracted, then encoded (converted into
binary strings), and stored in the template to be used for
comparison.

The comparison module then checks to see if the live fin-
ger template matches with a template in the database. A
match is perceived if the similarity score surpasses a certain
threshold. This threshold differs from system to system de-
pending on level of security necessary. The set threshold is
based on the false accept rate (FAR) and the false reject rate
(FRR).

The false accept rate states the chance that the system
will accept an intruder or non-user. The FAR is calculated by
taking the number of non-users that had a similarity score
over the threshold divided by the number of true negatives



Jadyn Sondrol

Figure 4. Modified threat model of match-in-database fingerprint authentication [5]

and false positives added together. True negatives are the
amount of non-users that were not allowed into the system,
and false positives were the amount of non-users that were
allowed access into the system.
The false reject rate determines the probability that a

system will deny a registered user. The FRR is calculated by
taking the number of registered users that had a similarity
score under the threshold divided by the total number of true
positives and false negatives added together. True positives
are the amount of users who were able to get into the system
and false negatives are the amount of users who were not
able to get into the system.
Each system’s threshold differs as the level of security

differs. A high degree of security would cause a high FRR
and a low FAR. Conversely a lower degree of security would
cause a low FRR and a high FAR. Both the FAR and FRR are
measured on a scale from 0 to 1. There is some give and
take between this relationship. Having a high FAR would
guarantee that no false users could enter, but in turn it would
also not allow many real users to gain access either. Similarly
having a very low FRR would allow all registered users to
get in, but would also let many non-users in as well.

3 Threat Model
Threat models are used to show where and how a system is
vulnerable. To create a threat model the biometric system is
examined step by step in order to find its susceptibility to
any attacks or breaches.

The first step is to diagram the system being designed. Us-
ing this design, potential weak spots in the system can be dis-
covered. These weak spots are where potential attacks could
occur within the system. Specific attacks will be matched to
these attack points in which they could occur. These attacks
will be categorized by threat level, either high, moderate, or
low, depending on the ease of the attack. The threat model
will also list any mitigation methods that would prevent
these attacks from being successful.

These models are best created continuously as it can help
detect problems before they actually occur. Overall, threat
models are systematic and structured so that they can detect
threats in the software development cycle. There are many
different threat models for fingerprint authentication. The
one we are going to describe was proposed by Joshi, Mazum-
dar, Dey. [5] and then modified slightly for simplicity.

3.1 Proposed model
This threat model shows 16 probable attack points (labelled
AP) at 7 components. In Figure 4, the lines between the
modules show the communication channels where the in-
formation is sent from one module to another. The boxes
represent the components of the system. The components
match the steps of the match-in-database system model (Fig-
ure 1) with the attack points added. The proposed model is
very thorough and shows 16 probable attack points with over
30 different attacks described. In this paper we will describe
a few of the most common attacks and how to try to mitigate
them.



Possible Attacks on Match-In-Database Fingerprint Authentication

Figure 5. Spoofing methods used for creating fabricated
fingerprints [5]

4 Types of Attacks
Biometric attacks are classified into direct and indirect at-
tacks. Direct attacks describe the attacks to the scanner or
cash dispenser itself. In a direct attack an intruder may try
to introduce a forged biometric template to the input sensor.
This attack requires no knowledge of the biometric system
itself. However indirect attacks involve gaining access to a
component of the system and providing forged data at some
internal step of authentication. These attackers need to have
precise information (about the modules themselves) in order
to execute an indirect attack.

4.1 Spoofing attack
In the first attack point from Figure 4, a spoofing attack
could occur. In a spoofing attack is a direct attack in which
an attacker would present false biometric data while claiming
to be an enrolled user. Spoofing may be the simplest way to
gain access to the system. An attacker doesn’t need to know
any information about any of the encryption or comparison
components within the system. There are various ways to
create a fabricated fingerprint, as shown in Figure 5.

In the cooperative method, an enrolled user helps to pro-
duce a fabricated fingerprint. The enrolled user shares an
imprint of their own fingerprint with the intruder. Then the
intruder uses this imprint to manufacture a direct mold using
a type of plaster. This direct mold will allow anyone to enter
the system.
The non-cooperative method is more difficult as the in-

truder must first get the imprint of an enrolled user on their
own. This is most frequently achieved by the intruder gath-
ering an impression of a user from a different place such as
a door, table, etc.
A latent fingerprint is an invisible impression of a finger-

print made by the oil secretion of a user’s fingers. An attacker
can revive a latent fingerprint from a user using cyanoacry-
late glue or powder in order to make the imprint visible. By
using powder and a brush someone can get the impression of
the fingerprint and then transfer it to a clear substance, such
as tape, to get the imprint. The attacker could then place

the tape on their finger and present it to the scanner to gain
entry.
Fingerprint reactivation techniques take the impression

of a latent fingerprint from the surface of the sensor and
then revive it so that it can be used again. These techniques
include putting a water filled plastic bag, sweeping with
graphite powder, or even breathing over the input scanner
to produce a usable fingerprint to resubmit into the system.
Then the attacker would add some pressure to the scanner,
such as a clothed finger, to allow the sensor to read the print.

An intruder can create an artificial fingerprint by using a
dead fingerprint of a cadaver. This would only be possible if
an enrolled user had died. Fingerprint Synthesis attempts to
reconstruct a fingerprint from a stored template. This would
require access to the template database in order to acquire
a stored template. A hill-climbing attack could assist this
technique. An attacker would need to know the similarity
score and then input a fingerprint. The image would then be
modified slightly over and over until it achieves a reasonable
similarity score and is accepted into the system.
Although anti-spoof methods can be either hardware or

software based, the hardware implementation can be costly
due to needing new hardware components for the input
scanner. These new additions will allow the system to use
fingerprint properties such as skin resistance, temperature, or
electrical conductivity, in order to determine if a fingerprint
is real or fake. Adding these new parts create a new problem:
confidential informationmay be revealed through patterns of
electromagnetic waves or power consumption. Therefore the
software-based approach is more preferred. Software-based
approaches can be either static, using only one snapshot or
dynamic, using multiple snapshots.
The static method is pore-based, perspiration-based or

uses texture properties. There are many unique pore-based
techniques, such as determining the quantity of pores on a
finger, using the distance and spacing between the pores, or
seeing the pore distribution. A fake fingerprint is claimed
to have fewer pores due to the different falsification steps.
High resolution is needed to accurately find the pores within
a fingerprint [3].

The perspiration-based technique uses the fact that sweat
is unevenly dispersed along the ridges of a real fingerprint.
Many spoofed fingerprints show a high level of conformity
throughout the print. A falsified print generally does not
contain any sweat pores since they are very small and hard
to include. This means the shading of the print is less varied
in a fake print. However, these features can be difficult to
read because it depends on the pressure applied by the finger
to the scanner.
Texture properties include the form, smoothness and po-

sition of the fingerprint. Variables like ridge strength and
ridge continuity are calculated to determine if a fingerprint
is real. A spoofed finger’s texture is far more coarse than
a real finger and can be measured by using a technique of



Jadyn Sondrol

multi-resolution texture analysis as well as inter-ridge fre-
quency analysis [8]. Each of the techniques alone do not
work at a consistent rate so they are most commonly used
together.
The dynamic method captures multiple snapshots of the

fingerprint within 2-5 seconds of the finger being on the
scanner. These snapshots are analyzed to acquire dynamic
features such as perspiration and ridge distortion. Perspira-
tion is caused by sweat pores on one’s finger and produces a
scan with darker sections near the pores that have given off
sweat recently. Therefore the separate snapshots would con-
tain different shading around the pores. A spoofed finger’s
snapshots would produce nearly the same image over and
over.

Ridge distortion is another dynamic method. Using multi-
ple snapshots, a real finger would move slightly or apply a
different amount of pressure on the sensor. This deformity
is analyzed by examining the snapshots at a faster rate per
frame while the finger is moving.

The risk factor for spoofing attacks is high because of the
ease of creating an artificial fingerprint. Also many commer-
cial devices do not implement anti-spoofing techniques, and
so are very hard to detect.

4.2 Denial-of-Service Attack
Attack point 2 from Figure 4, shows a possible attack on the
input device itself. This is a direct attack since the intruder
doesn’t need to know anything about the makeup of the sys-
tem itself and is attempting to damage the physical biometric
scanner. In a denial-of-service attack a malicious individual
causes a device to be unavailable to the intended users by
electronically sending numerous requests, essentially over-
loading it. If the scanner can’t take a fingerprint as an input,
the application is unable to let a user into the system.

A denial-of-service attack can also occur at attack point 16,
from Figure 4. Bombarding the biometric controlled applica-
tion with countless authentication requests will prevent the
system from being able to grant access to any enrolled user.
The system would be forced to begin exception handling,
making the biometric system unusable.

To combat this, many systems that use biometrics tend to
keep an eye on the scanner using a video camera or security
guards, so that they can observe any attempts by a user or
an intruder. They can also use rugged devices, which are
devices that perform the same as the consumer device but
are also designed to withstand any unusual conditions, to
prevent the system from being unusable.
The Denial-of-Service attack has a low threat level due

to the fact that the intruder can’t get into the system and
therefore is unable to steal any of the information within
the system. The attack simply forces the system to be inac-
cessible and is more of an annoyance if anything. There is
no valuable information an attacker can get from this attack,
so attackers are less likely to attempt this kind of attack on

the input device. However, companies still want to try to
prevent this since it causes their system to be unusable.

4.3 Replay Attack
Replay attacks could occur on the input of the feature extrac-
tion module (attack point 3) from Figure 4. Replay attacks
maliciously use a valid data input from a previous user by
repeating or delaying the attempt. A non-enrolled user will
watch (on the system itself) a user input their finger on a
scanner and is able to repeat or delay this input so that they
can enter into the system. This is an indirect attack due to
the input of the forged data to the feature extraction module.
A liveliness test can also be added to the scanner, then

the result will be forwarded onto the next module. The next
module will check if the data came from the input scanner.
This test checks to see if a user is real or fake by prompting
the user or using an algorithm to check. An active liveliness
test will simply ask the user to follow a line on the scanner,
e.g. swipe across the screen. Fingerprint action is very hard
to replicate as real fingers show uneven pressure within
the print. A passive liveliness test uses various algorithms
in order to see if is has been falsified. Similar to the static
anti-spoof methods, these algorithms will look at the pore
distribution, examine the texture and inspect the amount of
ridge distortion within a fingerprint [8].

Attack point 9, from Figure 4 is also susceptible to a replay
attack. Attack point 9 describes the communication chan-
nel between the template generation and the comparison
modules. The intruder introduces an intercepted fingerprint
template of a user into the channel. The template would then
be read as input in the comparison module.

A challenge/response method can be applied to the system
in order to mitigate this attack. This method examines all of
the modules within the system as one transaction. This way
a query system coming from a secured transaction sever can
be used. Once a user places their finger on the scanner, a
query is sent from the server. For example, the query could be
a random image pixel value that is sent to the input scanner
and the feature extraction module. The transaction server
will compare the two pixels, if the are the same the process
will continue. Otherwise the process will be aborted as an
attempt to bypass the modules has been detected.
This helps mitigate a replay attack because the intruder

will have access to the pixel value from the previous user’s
input. However the server will ask for a different pixel’s
value for every attempt. So the attacker will have to send
the previous pixel value to the server, therefore the pixels
will not match and the process will be terminated.

Another way to try and mitigate this attack is to add a
global clock to each module. Adding this clock would allow
each component to put a timestamp on all outgoing traf-
fic. Then the next module can verify the timestamp from
the incoming data to make sure that the information from



Possible Attacks on Match-In-Database Fingerprint Authentication

the previous module is accurate. If the verification fails, the
process will stop and throw away the current data.
Implementing a one-time password reduces the chance

of a replay attack being successful. A one-time password is
usually a set of numbers generated by a computer to add an
additional layer of security. This password will be sent to
your phone, tablet or email at the time of a log in attempt.
Then you will be prompted to type in the password to the
system itself. Making a user type in this password every time
they sign in does not allow an attacker to re-use a fingerprint
without knowing this password as well.

The replay attack has a moderate threat level due to the
fact that this attack is to the communication channels be-
tweenmodules. It is challenging for an attacker to gain access
to the channel but if they do, all of the information being
protected would be accessible.

4.4 Trojan Horse Attack
A Trojan Horse attack could occur on attack point 4 from
Figure 4, also known as the feature extraction module. A
Trojan horse attack is an indirect attack, where an imposter
embeds malware onto the system. It can be activated right
away or it can lay dormant in the system until it is activated.
Once the Trojan is triggered it can modify, copy or delete
any information from the feature extraction component. This
Trojan can create a premade feature set and send it into the
communication channel which is then sent to the template
database.
This type of attack can also transpire on attack point 11,

which is the comparison module. This module looks at two
fingerprint templates, one from the database and one from
the live finger. It produces a similarity score by comparing
the templates. The Trojan can attack either a template or the
similarity score in order to get into the system. Either of the
templates can be modified in order for the fingerprints to be
similar enough. Or the similarity score threshold could be
lowered so that almost any fingerprint would be sufficiently
alike.
To mitigate this attack a trusted biometric system (TBS)

can be implemented. A TBS uses mutual authentication,
which means that each component makes sure that the input
information really came from the previous module. There-
fore if both ends of the communication channel are verified,
then no information within the channel could be altered in
any way. This works in both directions in order to secure the
channel. If one or both of the modules are not verified, the
process will be stopped and the user will have to start the au-
thentication process all over again. Implementing this does
increase the computation power and the time it takes, but
it also severely decreases the chance a Trojan horse attack
would be successful.

Another way to prevent a Trojan horse attack would be to
add code signing or new hardware components. Code sign-
ing would be implemented into every component, so that

every output would be signed by the previous module. The
next module will first check if their input is signed by the
past component. If it has been signed the process will con-
tinue, otherwise the attempt will be discarded. Specialized
tamper-resistant hardware could be applied to the communi-
cation channels to prevent the modification of information.
However the hardware addition is very costly and therefore
less popular.
This is a moderate threat level because once a Trojan is

embedded into the system it is somewhat easy to get into the
software and modify it. However the difficult part is getting
the Trojan into the input device. Since the input scanner is
external and usually in a public setting, outside eyes, such
as a security guard, may be present to stop this addition to
the system.

5 Conclusion
Biometrics are used all over the world to protect our pri-
vate information from any malicious individual. Currently,
match-in-database fingerprint authentication is the most
widely used biometric system due to the quick and accurate
verification process. Because of its popularity, the need for
a threat model is essential. This threat model is used to de-
scribe all of the most frequent attacks made on this system,
categorize them by threat level, and provide some mitigation
techniques.
The attacks listed in this paper were from various attack

points from Figure 4. The spoofing attack uses various tech-
niques to create an artificial fingerprint and introduce it to
the biometric sensor. The denial-of-service attack simply
makes either the input scanner or the biometric controlled
application inaccessible for any valid user. A replay attacker
uses a repeated or delayed authentication attempt in order
to gain access to the system. The Trojan horse is embedded
into the system and can be activated at a later time. This
Trojan can delete, copy, or modify template data so that the
similarity score is above the set threshold and the attacker
can gain entry.
All of these attacks can be prevented by numerous mit-

igation methods which are implemented into the current
systems. Overall, lots of research has been done on biomet-
ric systems and they are found to be secure. This is why
many companies will be incorporating more biometric sys-
tems within their devices to keep users’ information private.

Acknowledgments
I would like to thank my advisor, Elena Machkasova, and
Dylan Cramer for all the help with the research and devel-
opment process in writing this paper.

References
[1] 2022. Biometrics: Definition, use cases, latest news. https:

//www.thalesgroup.com/en/markets/digital-identity-and-
security/government/inspired/biometrics

https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/inspired/biometrics
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/inspired/biometrics
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/inspired/biometrics


Jadyn Sondrol

[2] Saad Bin Ahmed, Muhammad Imran Razzak, and Bandar Alhaqbani.
2016. The Minutiae Based Latent Fingerprint Recognition System. In
Proceedings of the International Conference on Internet of Things and
Cloud Computing (Cambridge, United Kingdom) (ICC ’16). Association
for Computing Machinery, New York, NY, USA, Article 49, 9 pages.
https://doi.org/10.1145/2896387.2896434

[3] Heeseung Choi, Raechoong Kang, Kyungtaek Choi, and Jaihie Kim.
2007. Aliveness Detection of Fingerprints usingMultiple Static Features.
World Academy of Science, Engineering and Technology 2 (01 2007).

[4] Markus Dürmuth, David Oswald, and Niklas Pastewka. 2016. Side-
Channel Attacks on Fingerprint Matching Algorithms. In Proceedings
of the 6th International Workshop on Trustworthy Embedded Devices
(Vienna, Austria) (TrustED ’16). Association for Computing Machinery,
New York, NY, USA, 3–13. https://doi.org/10.1145/2995289.2995294

[5] Mahesh Joshi, Bodhisatwa Mazumdar, and Somnath Dey. 2020. A
comprehensive security analysis of match-in-database fingerprint
biometric system. Pattern Recognition Letters 138 (2020), 247–266.

https://doi.org/10.1016/j.patrec.2020.07.024
[6] K. K. H. Karunathilake, A. R. M. Shahan, M. N. M. Shamry, M. W. D. S.

De Silva, Amila Senarathne, and Kanishka Yapa. 2021. A steganography-
based fingerprint authentication mechanism to counter fake physical
biometrics and trojan horse attacks. In 2021 IEEE 12th Annual Informa-
tion Technology, Electronics and Mobile Communication Conference (IEM-
CON). 0286–0292. https://doi.org/10.1109/IEMCON53756.2021.9623240

[7] Esraa Naamha and Abdul Monem Rahma. 2017. Fingerprint Identifi-
cation and Verification System Based on Extraction of Unique ID. Ph. D.
Dissertation.

[8] Ram Prakash Sharma and Somnath Dey. 2019. Fingerprint Liveness
Detection Using Local Quality Features. Vis. Comput. 35, 10 (oct 2019),
1393–1410. https://doi.org/10.1007/s00371-018-01618-x

[9] Wioletta Wójtowicz. 2014. A Fingerprint-Based Digital Images Water-
marking for Identity Authentication. Annales UMCS, Informatica 14 (10
2014). https://doi.org/10.2478/umcsinfo-2014-0008

https://doi.org/10.1145/2896387.2896434
https://doi.org/10.1145/2995289.2995294
https://doi.org/10.1016/j.patrec.2020.07.024
https://doi.org/10.1109/IEMCON53756.2021.9623240
https://doi.org/10.1007/s00371-018-01618-x
https://doi.org/10.2478/umcsinfo-2014-0008

	Abstract
	1 Introduction
	2 Fingerprint Authentication
	3 Threat Model
	3.1 Proposed model

	4 Types of Attacks
	4.1 Spoofing attack
	4.2 Denial-of-Service Attack
	4.3 Replay Attack
	4.4 Trojan Horse Attack

	5 Conclusion
	Acknowledgments
	References

