## Possible Attacks on Match-in-Database Fingerprint Authentication

 $\bullet \bullet \bullet$ 

By: Jadyn Sondrol

#### Introduction

#### **Biometrics**

Global Biometric market will exceed 70 billion by 2027

80% of Americans have used biometrics

- □ What are they?
- □ Used For?
- ☐ Types?



Source: Gait Recognition (2018)

## **Fingerprint Fun Facts**

#### Unique to everyone

- ➤ Identical twins
- ➢ Formed from struggle in the womb
- ➢ Friction ridges

#### Loss of fingerprints

- ➢ Gene mutation
  - 4 families
- Bricklayers, lime workers, chemo drugs
- ➢ Burning off
- ➤ Will grow back
- Animals have them too
  - > Apes, Chimpanzees, Koalas





## Possible Attacks on Match-In-Database Fingerprint Authentication Outline

- **Fingerprint Authentication** How it works/ modules Threshold variants Threat Model Proposed model Types of Attacks Spoofing Denial-Of-Service Replay Trojan Horse
- Conclusion



Source: PECB Insights (2018)

#### Match-in-Database Fingerprint Authentication System

- ✤ MiD Fingerprint Authentication
  - > Uses a remote database to store template
  - Template: digital representation of a fingerprint that has been encrypted
- Input Finger = Enrollment
- Live Finger = Authentication
- Verification vs. Identification
  - ➢ Fingerprint matches claimed registered user
  - > Unknown identity



#### Fingerprint Acquisition/ Image Enhancement

- Physical Factors
  - ≻ Sweat
  - > Pressure
  - ≻ Cut

#### Environmental Factors

- ≻ Humidity
- ➤ Temperature
- > Durability



#### Feature Extraction/ Template Generation

- Characteristic Features
  - Ridges/ Valleys
- ✤ Minutia

|   | Termination       |
|---|-------------------|
| A | Bifurcation       |
| þ | Lake              |
|   | Independent ridge |
| - | Point or island   |
|   | Spur              |
| Z | Crossover         |

Binary Strings

•

•

00010111

Source: Characteristic Features (2014)

## **Comparison Module**

- ✤ Threshold
- ✤ False Acceptance Rate (FAR)
- ✤ False Rejection Rate (FRR)
- Equal Error Rate (EER)



#### Outline

|              | gerprint Authenticati |
|--------------|-----------------------|
|              |                       |
|              |                       |
| Threat Model |                       |
|              | Proposed model        |
|              |                       |
|              |                       |
|              |                       |
|              |                       |
|              |                       |
|              |                       |



Source: PECB Insights (2018)

#### Threat Model

- Process of identifying, and prioritizing potential security threats
- Diagram the system
- Identify where threats could occur (Attack Points: 16)
- ✤ Threat Level
- Mitigation techniques



Proposed by: Security Analysis (2020)

#### Outline

Types of Attacks Spoofing Denial-Of-Service Replay Trojan Horse 



Source: PECB Insights (2018)

## Types Of Attacks

- Direct: Attack to the scanner or cash dispenser itself
  AP 1, 2, 16
- Indirect: Attack to a component within the system



#### Spoofing Attack

- Direct attack
- ✤ AP 1
- Provides false
  biometric data



## Spoofing Attack- spoofing methods

#### Cooperative

- > Direct Mold
- Non- Cooperative
- ✤ Latent Fingerprint
  - ≻ Invisible
  - Powder, Brush, Tape
- Fingerprint Reactivation
  - $\succ$  From scanner itself
  - Heavy breathing, water filled bag, graphite powder
- Cadaver
  - Enrolled user dead
- Fingerprint Synthesis
  - $\succ$  From template
  - Need access to database





#### Spoofing Attack- Anti-spoof methods -Hardware

#### Costly

- ✤ Add another problem
  - Leak confidential info through patterns of electromagnetic waves
  - > Power consumption



## Spoofing Attack- Anti-spoof methods -Software

- Static
  - Pore-based
    - Quantity
    - Distribution
    - High resolution
  - > Perspiration
    - Shading
    - Depends on pressure applied
  - ≻ Texture
    - Coarseness
    - Multi-resolution texture analysis
  - Commonly used together
- Dynamic
  - > Snapshots
  - > Perspiration
  - Ridge Distortion



#### ✤ High Risk

- Ease of creating fake fingerprint
- Not implementing antispoof methods

## **Denial-Of-Service (DOS) Attack**

- Direct
- ✤ AP 1, AP 16
- Overload the system
- Unusable for everyone



#### **Denial-Of-Service (DOS) Attack- Mitigation**

- Eye on the scanner
  - Video cameras
  - ➤ Security guards
- Rugged devices
  - Created to withstand unusual circumstances
- ✤ Low threat
  - ≻ No info
  - > Annoyance



#### **Replay Attack**

- Indirect attack
- ✤ AP 3, AP 9
- Eavesdrops on the communication channels
- ✤ Intercepts
- Resends previous user input



## **Replay Attack- Mitigation**

- Challenge/Response method
  - Query system
  - $\succ$  Transaction server
    - Different pixel value sent every time
    - Scanner and Feature Extraction
    - Have to match
- Global Clock
  - ≻ Timestamps
- Liveliness Test
  - Active = swipe
  - > Passive
    - Texture, pore distribution, ridge distortion
- ✤ Medium Threat Level
  - Challenging to gain access to the channel
  - $\succ$  Get all the info



## Trojan Horse Attack

- Indirect
- ✤ AP 4, AP 11
- Trojan embedded
- Activated
  - > Modify, copy, delete



## Trojan Horse- Mitigation

#### Trusted Biometric System (TBS)

- Mutual Authentication
  - Both sides of channel verify each other at the same time
- Increase computation power & time
- Code Signing
  - > Each module's digital signature
- Hardware
  - ≻ Tamper resistant
  - Communication channels
- ✤ Medium Threat Level
  - Hard to introduce Trojan
  - ➢ Easy to modify software



#### Conclusion



Spoofing Attack

Replay Attack

#### Trojan Horse Attack

DOS Attack

#### **Increase in biometrics - Threshold**

- ✤ Biometrics are increasing
- ✤ With more users
  - ➢ 0.1% FAR currently
    - 1 out of 1000
    - FBI: 6,000 out of 6 million
    - US pop: 332,000 out of 332 million ■



# Questions?

#### References

Biometrics: Definition, use cases, latest news. https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/inspired/biometrics

Saad Bin Ahmed, Muhammad Imran Razzak, and Bandar Alhaqbani. 2016. The Minutiae Based Latent Fingerprint Recognition System. In Proceedings of the International Conference on Internet of Things and Cloud Computing (Cambridge, United Kingdom) (ICC '16). Association for Computing Machinery, New York, NY, USA, Article 49, 9 pages. <u>https://doi.org/10.1145/2896387.2896434</u>

Heeseung Choi, Raechoong Kang, Kyungtaek Choi, and Jaihie Kim. 2007. Aliveness Detection of Fingerprints using Multiple Static Features. World Academy of Science, Engineering and Technology 2 (01-2007).

Markus Dürmuth, David Oswald, and Niklas Pastewka. 2016. Side-Channel Attacks on Fingerprint Matching Algorithms. In Proceedings of the 6th International Workshop on Trustworthy Embedded Devices (Vienna, Austria) (TrustED '16). Association for Computing Machinery, New York, NY, USA, 3–13.

https://doi.org/10.1145/2995289.2995294

Mahesh Joshi, Bodhisatwa Mazumdar, and Somnath Dey. 2020. comprehensive security analysis of match-in-database fingerprint biometric system. Pattern Recognition Letters 138 (2020), 247–266. <u>https://doi.org/10.1016/j.patrec.2020.07.024</u>

K. K. H. Karunathilake, A. R. M. Shahan, M. N. M. Shamry, M. W. D. S. De Silva, Amila Senarathne, and Kanishka Yapa. 2021. A steganography-based fingerprint authentication mechanism to counter fake physical biometrics and trojan horse attacks. In 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). 0286–0292. <u>https://doi.org/10.1109/IEMCON53756.2021.9623240</u>

Ram Prakash Sharma and Somnath Dey. 2019. Fingerprint Liveness Detection Using Local Quality Features. Vis. Comput. 35, 10 (oct 2019), 1393–1410. <u>https://doi.org/10.1007/s00371-018-01618-x</u>

Wioletta Wójtowicz. 2014. A Fingerprint-Based Digital Images Watermarking for Identity Authentication. Annales UMCS, Informatica 14 (10 2014). https://doi.org/10.2478/umcsinfo-2014-0008