
Edge Gaming: An
Overview

Matthew Spilman

Cloud gaming

Google Stadia, Xbox Cloud Gaming, GeForce Now, and PlayStation Now.

An idea with its merits, allowing one to play a game through the cloud, making the need for a
powerful pc or computer not needed. There are a few examples you may have heard of , such as…

But how can we fix the latency issues?

But cloud gaming has an issue with latency and packet loss, causing some players to have a
disadvantage in multiplayer games, or even certain single player games.

Outline

● What is Edge Gaming?

● Cloud vs Edge
○ What are the key improvements and drawbacks of edge gaming vs cloud gaming?

● Energy Issues
○ Both have energy issues, but what kind of solutions are there that could alleviate or fix those

issues?

● Migrations
○ What are they? How can they be fixed?

MEC: Multi-access Edge Computing
MEO: MEC Orchestrator
M1 Nodes: Larger than the edge
nodes

● Edge gaming is taking aspects of edge
computing and applying it to games.

● End users connect to edge nodes
rather than the central cloud.

What is Edge Gaming?

● Gaming requires constant updates, as user
input can change any minute.

● Cloud gaming runs it on a central server,
then streams it to your device, but the
further from the central cloud the more
issues you might have.

● Latency and packet loss can cause your
inputs to be delayed

● Edge gaming puts nodes closer to the edge,
helping limit the latency and packet loss

Cloud Gaming vs Edge Gaming

Cloud Gaming vs. Edge Gaming (Cont.)

When playing on your own PC comes down to your internet connection and the game server.

During cloud gaming, the server is connecting to the game server, and the connection there

should be good. Your connection to the server is where latency comes from, and your distance

from the server can affect this.

During edge gaming it is much the same as cloud, but distance is far less of an issue.

● Cloud gaming has energy issues, they
are equal or worse with edge gaming

● The best way to deal with this appears
to be green energy.

Energy Issues

Energy issues cont.

This is a graph of wind and solar energy in Belgium.

It shows the general power being generated by them

over multiple days.

You can see how the energy fluctuates, solar going to

0 at night, and wind fluctuating over time.

Using this we can see the issue that green energy

would have with edge gaming, as it fluctuates a lot, but

could work to help fix some of the issues.

Energy Issues (Cont.)

Green energy helps to alleviate some of the energy problems.

It is free after the initial setup, and can be a much needed boost to the nodes energy.

But even then, some nodes will get too many users, and might struggle to keep up. Some users

will need to be moved to a different node in this case.

Migrations

Migrations need to happen to keep each users experience above a certain level. If you never

migrated, one node could get too much traffic and be unable to service everyone, or you might

be playing a game on the bus and get farther away from the node you were connected to.

When these sorts of things happen, your service needs to move to a new node, but if it’s not fast

and efficient, it can cause latency to spike and packet loss to occur. So they are managed by

algorithms.

Migrations (Cont.)

● Migrations are important to keeping the
quality of the service.

● Migrations are managed by algorithms like
this.

● This particular algorithm is a greedy
algorithm, which means it doesn’t worry
about the future, it makes the most
optimal choice at this very second.

1: Input. Takes the Network topology and all the jobs
(with the parameters)

Here is all the node information it takes
● bandwidth of the node
● computing power of the node
● memory of the node
● Green energy and total energy of the

node
● all nodes that are an element of N (the

full node map)
● delay incurred on link z
● and all links that are part of the full map

of links.

The parameters for the jobs
● The downlink bandwidth
● computing power required
● memory required
● Energy required
● maximum delay
● and all of the jobs that are an element of J

(the full list of jobs)

2: Output. It outputs a placement map of where

every job should go.

3: Initialization. It initializes a set of variables,

circled on the right.

4: Start of the while loop. Essentially, while the
current job and node are included in the overall list
so that the union of S and (j,n) satisfy (2c) which
makes sure that the job is following certain rules.

The rules that it must follow are:

● Each job can only be on one node
● The job’s placement can’t violate the servers

capacity in regards to : downlink bandwidth,
processing power, available energy, and
memory.

● The delay on each job is acceptable

5: (j*, n*) are assigned to the maximum argument of

Θ(S ∪ (j, n)) which essentially is the theoretical

requirements for S ∪ (j,n). It does this provided that

(j,n) exist in S∅

6: S is reassigned to the union of S and (j*, n*)

7: The variable J∅ is reassigned to J∅ \ j* which

removes j* from J∅ to not count it twice.

8: Sets S∅ to J∅ x N which is the cartesian product

(which essentially is a map of all the elements of J∅

paired with N)

9: ends the while loop

Migrations (cont.)

An algorithm meant to manage migrations are complicated, but are important to fixing the

migration issue. Without this, it wouldn’t be able to migrate efficiently, which would make the

user’s service suffer.

Study

The study was conducted by Spinelli et al. and included 8 algorithms. The study was a simulation

done in a few minutes (other than the solver algorithm, which took days.) I’ll go over each of the

algorithms briefly here. They measured their results on the utility which they determined using

an optimization algorithm that they developed.

Algorithms

● Greening: Greening is Spinelli et al.’s algorithm, based off of the greedy algorithm from

before.

● Greening-NoMig: Greening-NoMig is the same algorithm, but with the dedicated

migration feature turned off (which means that instead of finding the best node, it just

merely denies it at this one)

● Solver is an algorithm using the uses the Matlab intlinprog function, and needed a timeout

to avoid the experiment taking too long

● Random is merely a random placement with equal probability

Algorithms (Cont.)

● PFPJ-2: PFPJ-2 is from another paper

● PFPJ-1: PFPJ-1 is the same algorithm but with an energy component to match their

greening algorithm better.

● Free-Green places based on the amount of green energy available

● Total-Green places based on the total green energy at a node, regardless if it is available.

Results

Here are some of the results from the

research done in Spinelli et al.

Greening is developed from the greedy

algorithm that was shown before but is

extremely long so I don’t go in depth.

This compares 8 algorithms, and shows

the relative utility over the system with

differing amounts of nodes in the

system.

Results (Cont.)

This graph shows how many game sessions on average are in the system with each algorithm.

Spinelli et al. shows that their greening algorithm can handle the most at once, but not by a huge

margin.

Conclusion

Edge gaming isn’t in practice currently, but as it rolls out in the future, it will fix the main issue of

cloud gaming, allowing more types of games to be played. If it is to be rolled out, these issues

need to be addressed, but people are already looking for solutions.

Images from:

https://www.logo.wine/logo/Google_Stadia

https://seeklogo.com/vector-logo/457171/xbox-cloud-gaming

Francesco Spinelli, Antonio Bazco-Nogueras, and Vincenzo Mancuso.

2022. Edge Gaming: A Greening Perspective. Computer Communications

192 (2022), 89–105. https://doi.org/10.1016/j.comcom.2022.05.022 [1]

Sources

https://www.logo.wine/logo/Google_Stadia
https://seeklogo.com/vector-logo/457171/xbox-cloud-gaming
https://doi.org/10.1016/j.comcom.2022.05.022

