International” license.

This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0 @ @ @ @

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Ollie Willette

Programming Aided by Machine Learning

Ollie Willette
olipatw@gmail.com
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA

Abstract

The task of writing correct code efficiently is a large problem
in computer science, and is interesting from theoretical and
practical perspectives. We look at how recent advancements
in machine learning are being used to aid in code writing, and
discuss possible future places to research. We also explore
how the idea of using machine learning to aid in code writing
is related to the task of program synthesis, but in contrast to
program synthesis, we expect that there needs to be human
intervention at multiple levels of program development.

Keywords: codex, copilot, alphacode, machine learning

1 Introduction

The task of writing correct programs efficiently is interesting,
especially to people who spend much of their time writing
programs. By correct we simply mean programs that do what
we want without crashing. From a theoretical perspective,
this task is complex, as which parts of programming can
and cannot be automated is unclear, and what automating
different parts of programming would look like is worth
discussing. From a practical perspective, this is worth consid-
ering because programmers spend lots of time programming,.
Therefore it is important that they waste as little time as
possible, and use all tools available.

One distinction that should be emphasised is where the
problem of programming aid ends and program synthesis
starts. There is a lot of overlap between the two fields; the
two fields can work with one another when appropriate,
but they are distinct. The goal of program synthesis is to
develop machines that can automatically generate programs
to solve a given problem, solely based on the initial problem
description without requiring any additional human input.
Historically program synthesis was based on a high-level
formal specification of the problem. This formal specification
was found to be as hard to produce as the program code
itself [2], and the field of program synthesis moved to less
strict specifications.

The goal of programming aids is finding the parts of pro-
gramming that can be automated or made easier. Making
programming easier is an important thing to remember in
this paper; we don’t expect machine learning to write entire
programs for us.

Machine learning is when computer programs are able to
learn from data, using algorithms and statistics to "analyze"

it. This paper will be looking at how machine learning is
being used to aid in programming. Ideally the programmer
describes the solution to the problem in natural language,
and has some program (e.g. a generative pretrained trans-
former) that handles the ambiguity of natural language to
generate the best guess of what the programmer wants. The
programmer then engages with the output to make a correct
solution to that problem.

Certain difficulties of programming that can be mitigated
will be looked at in Subsection 2.1. Recent advances in ma-
chine learning [3] have opened up new methods of investiga-
tion with regards to programming aids. We will go into the
basic principles of machine learning in subsection 2.2. After
that, in Section 3 we will look at how Kulal [4] tried to re-
duce the problem of programming to writing fine grain pseu-
docode. Then we will talk about how recently OpenAlI [1]
created Codex, based off of GPT-3, to take a high-level de-
scription of the solution to a problem and try to generate
the correct code. From there we branch into Google’s Al-
phaCode [5] where Google created a machine quite similar
to Codex, but with the exclusive task of solving competi-
tive programming problems. The other branch will have us
looking at an evaluation of Copilot [9], which is GitHub’s
programming tool implemented with Codex. Then we go
to our conclusion in Section 4, discussing possible future
directions.

2 Background Information
2.1 Programming and Syntax

Many difficulties arise when programming, and it is con-
ducive to the practice of computer science to lessen these
difficulties. One difficulty in programming worth highlight-
ing for this paper is syntax. Sometimes a programmer knows
what they want a program to do, but are not certain about
the syntax to do it. For example, if a programmer has an
array, and they want to know how long the array is, the
programmer just has to memorize a table similar to 1, but
for all languages and units the programmer uses.

Let us consider a slightly larger task, of reading from
a file, capitalizing the alphabetic letters, and printing the
resulting text. Although this task may not be considered
complex, the syntax required to accomplish it may differ
significantly between programming languages. Additionally,
the task description is sufficiently clear to be understood by
a computer [12]. Despite this, a programmer may encounter

Programming Aided by Machine Learning

Table 1. Retrieving Size of a Collection in Various Languages

Language Unit Method
Java Standard array .length
Java String Jength()
Java ArrayList .size()
Clojure Any collection (count)
Python Any collection len()
Lua Array getn()
PHP Array sizeof()*
C++ Vector .size()

C Array prayer

* sizeof() is also a function in C that does something different from
what it does in PHP

difficulty in translating this description into code, since no
programming language would accept the description as is.
It is reasonable to question why a programmer should have
to spend time deciphering the necessary code when an ex-
plicit description of the desired behavior has already been
provided. Ideally the written-out solution to a programming
problem should be expressed as simply as possible. The pro-
gramming language Python is a good example of one way to
make programming simpler, and Python does a good enough
job, removing a lot of bloat that is in a lot of other program-
ming language’s syntax. Consider the example of opening a
file and printing all of it capitalized to stdout in C++, slightly
modified from [8]

std::ifstream myfile("demofile.txt");
while (myfile) {

std::cout << std::toupper(myfile.get());
3

versus in Python [11]

f = open("demofile.txt", "r")
print(f.read().upper())

In Python, there is still room for error in knowing that the
open, read, and print functions exist, how they work, and
how to use the functions, but it is more concise than C++.
Issues like knowing the names to functions and when to
use them are limitations to all programming languages, as
programming languages must have specific, non-ambiguous
syntax. This is because programming languages must de-
scribe the exact instructions for the compiler/interpreter, as
any deviation would be harmful to the process of program-
ming. It is inefficient for programmers to be looking at com-
piled code to make sure the compiled code is actually correct,
so programming languages can have no ambiguity in what
a statement accomplishes functionally. Natural language,
though, has lots of ambiguity, and much more complicated
context, but every person is familiar with a natural language,
and can use natural language much more efficiently. The

issue was that computers were not capable of processing nat-
ural language effectively, but this has changed with recent
developments in the field of machine learning [10].

2.2 Machine Learning

The recent advances with regards to programming we will
be looking at all have to do with machine learning, and the
newest use large language models (LLM). LLMs are language
models built on neural networks with billions of parameters,
and trained on huge amounts of data. A language model is a
program that gives the probability that a given sequence of
words appears in the language. The challenge for language
models lies in the infinite amount of possible sequences in a
language. The two LLMs of note in this paper are GPT-3 [1]
and AlphaCode [5] which are both transformers that get
pretrained on unlabeled data. Data, and unlabeled data, will
be talked about later in the section.

In their research of mapping pseudocode to compilable
code Kulal and Pasupat, unlike Codex and AlphaCode, did
not use a transformer, but a long short-term memory [4].
LSTMs were state of the art with regards to natural language
processing until transformers were introduced [10].

Transformers and LSTMs are both based on the idea of a
neural network, which is a type of machine learning model
which consists of layers of interconnected nodes, or "neu-
rons,’ that process information and make predictions based
on input data. There are also values between the layers called
weights, that affect how the data moves from one layer to the
next. Weights are then changed during the training process.

A fundamental part of using neural networks is training
data. Training data for neural networks typically consists of
input and output pairs. (e.g, for the problem of determining
what animal is in a picture, an input/output pair could be a
picture of a cat and "cat".) The input represents the data that
is fed into the neural network, while the output represents
the expected result of the network’s computation given that
input. Learning is done by running a large amount of train-
ing data though the model, and taking the generated output.
Then the generated output is compared against the correct
answer, and taking the difference, which is called the error.
The error gets propagated backwards through the layers, af-
fecting the weights (values between layers) in order to reduce
the future error. The methods of changing the weights is all
based on ideas from statistics such as regression analysis.

Recurrent neural networks (RNNs) are a type of neural
network that can read and write sequential data by using
loops in the network, which allows information to persist
across time steps. This enables recurrent neural networks
to capture dependencies and patterns in sequences, such
as in natural language processing and speech recognition.
But RNNs have an issue called the vanishing gradient prob-
lem. The vanishing gradient problem is where as input is
fed through the model, older input becomes less and less

relevant, quickly "disappearing,” which can negatively affect
the model’s ability to succeed.

Long short-term memory (LSTM) is a subtype of recurrent
neural network, designed to address the vanishing gradient
problem. LSTMs try to solve this by using gated memory
units that can selectively remember or forget information
over time, allowing them to maintain long-term dependen-
cies and make accurate predictions on longer sequences.

For a clear and full explanation of transformers see [10],
but for this paper, understand that a transformer is a machine
learning model, using neural networks, that can handle se-
quences of data like RNNs, but without using loops inside
of the network. Furthermore, transformers have attention
mechanisms, that are nodes dedicated to looking at the pre-
vious data in a sequence and determining which parts of
the sequence are important. Transformers are used to build
Codex, GPT-3, and AlphaCode.

Codex, GPT-3, and AlphaCode all get "pretrained." Pre-
training is the idea of giving training data which is not nec-
essarily representative of what you want the neural network
to do, but similar enough to be valuable. For example, GPT-
3 was pretrained on data from all over the internet, with
the goal of just predicting the next word to appear. Because
the data was pulled from all around the internet, there was
little known about the data, making it "unlabeled" data, as
apposed to labeled data, where the correct output and more
is known. This training, on unlabeled data, made GPT-3 very
effective at the task of natural language processing and gen-
eration. This is where the name GPT comes from; Generative,
Pretrained, Transformer.

3 Research
3.1 Pseudocode to compilable code

Kulal and Pasupat [4] in 2019 did research on the topic of
mapping pseudocode to compilable code. This is in the gray
area between program synthesis and programming aid, and
can very well be considered both. The work of Kulal and
Pasupat involved programs of about 15 lines of code in C++;
they then wrote pseudocode to describe each line of code
with high specificity. For example the pseudocode

read n values into array a and array b
would be used for the line of code
for(int i = @; i < n; i++) cin >> ali] >> bl[il;

The corpus of pseudocode was written by over 50 different
people, as Kulal and Pasupat made use of Amazon’s "Me-
chanical Turk" to have help writing the pseudocode for a
line of code. The workers had no formal qualifications, but
were tested to provide acceptable pseudocode for some code.
Those that passed the test then were allowed to work on the
project. Using the pseudocode and its associated code as the
training dataset, Kulal and Pasupat trained a LSTM network
to write a new program given a new pseudocode description.

Ollie Willette

Checking if code is correct is a difficult task, as surface
level metrics like exact sequence matching can fail for func-
tionally equivalent lines of code [1, 4, 5]. For example the
lines

if(a){run();%
if(a==true){run();?}
if(la){Yelse{run();}
all have the same functionality despite looking different.
Kulal and Pasupat looked to the program synthesis commu-
nity, where the notion of functional correctness is the gold
standard. Checking functional correctness means that the
program generates the correct output for test input. The
tests were written by Kulal and Pasupat. One downside to
testing functional correctness is that checking code requires
running the generated code, whereas sequence matching can
be done without running code. Kulal and Pasupat further
implemented pass@k, meaning the framework generates
k samples and considers the problem solved if any of the
k samples successfully pass all tests [4]. This was new to
the research community, and has been continued in use by
many researchers, including OpenAl and DeepMind. Ku-
lal and Pasupat used 100 samples to test if a problem was
solved, eventually using compiler errors of early samples to
automatically improve future samples for a given problem.
They did this by using a second neural network to predict
the offending line, and replace it with a new line of code.
This is analogous to what a human programmer does, since
human-written code rarely compiles flawlessly the first time.
Kulal and Pasupat eventually got to a model that passed
44.7% [4] of the test cases, which is impressive, but not para-
digm shifting.

3.2 Codex and OpenAl

OpenAl is the research laboratory responsible for creating
the GPT family. They recently had a team of researchers
develop a machine learning model based on GPT-3, called
Codex. Codex was trained on 159 GB of Python code from
GitHub and was developed to take a function declaration
and docstring (a comment at the beginning of a function
describing what the function does) and produce a working
function in Python. Codex was developed in the pursuit of
program synthesis, but is now the core of GitHub Copilot, a
programming aid. Describing each function is a much higher
level of granularity compared to the work of Kulal and Pasu-
pat, which described every line of code. The docstrings were
about 1-4 sentences long. e.g. [1]

def vowels_count(s):

"""Write a function vowels_count which takes a
string representing

a word as input and returns the number of vowels in
the string.

Vowels in this case are ’a’, ’e’, ’i’, ’o’, 'u’.
Here, 'y’ is also a

Programming Aided by Machine Learning

vowel, but only when it is at the end of the given
word.

Example:
>>> vowels_count("abcde")
2
>>> vowels_count("ACEDY")
3 nmnn
For which Codex might generate the (incorrect) solution:
vowels = "aeiou"
v=20

for i in s.lower():
if i in vowels:
v += 1
return v

This example fails, as it will not count ending ys as vowels.
Note the docstring gives two examples, but Codex does not
have any mechanism for separating out and specifically using
that information.

The final model of Codex has 12 billion neural network
parameters (basically the weights between the layers). Codex
achieved successful completion of 70.2% of the problems it
was tested on, which is a large improvement over the work
of Kulal and Pasupat. The test set was called HumanEval [1]
which was created by OpenAl because any pre-existing pro-
gramming problem set (i.e, Codeforces) would have problem
solutions already existing on GitHub. Problems that have
already been solved on GitHub shouldn’t be tested on, as
that would just allow Codex to copy and paste solutions it
had seen during training. Furthermore, GitHub is known
to have malicious programs (i.e. programs that damage the
computer when run) [1], so the OpenAl team ran the pro-
grams in an isolated and safe environment. Codex was tested
further on competitive programming problems pulled from
around the internet, where it achieved a solution for 3.08%
of the 10,000 problems. These low numbers are despite the
fact that Codex might have been trained on the solutions to
these competitive programming problems. Codex is far from
replacing programmers, and the biggest issue was succinctly
stated by one of the researchers at OpenAl

We find that as the number of chained build-
ing blocks [e.g. instructions] in the docstring
increases, model performance decreases expo-
nentially. This behavior is uncharacteristic of
a human programmer, who should be able to
correctly implement a program for a chain of
arbitrary length if they can do so for a chain of
length two.! [1]

This may be solved in Auto-GPT [7], which is able to make prompt calls
to itself, and for complex problems will now often prompt itself to break
the complex problem into smaller problems, and then prompt itself on
the smaller problems, and then prompt itself to join them together. More
research is needed on this.

There are more issues with Codex, such as misalignment.
Misalignment refers to the phenomenon where a "request”
(e.g. the description of a function) is made to the LLM to
perform a certain task (write the function), but it attempts
to perform a different one. Misalignment is possible because
language models like Codex are based on statistical patterns
learned from large data sets of text. While they can generate
impressive outputs, they do not truly "understand" language
in the way that humans do. They are simply applying sta-
tistical patterns and making predictions based on the input
they receive. This means that there is always a possibility
for the model to misinterpret or misunderstand the input,
leading to misaligned outputs.

Another issue with Codex, and all LLMs, is bias. This is
because LLMs are trained on large data sets that have biases
present in the data sets. These biases may be unintentionally
introduced through the collection and curation of the data,
or they may reflect societal biases that exist in the real world.
When an LLM is trained on biased data, it can learn to per-
petuate and amplify these biases in its outputs. For example
when I gave Codex the code fragment

sql insert for person name Tyrone Williams
INSERT INTO employeelList(name, startdate, salary,
hourlyRate, hoursPerWeek, position, manager)

it generated the completing code

VALUES ('Tyrone Williams', '2020-04-15',
'$50,000', '$20.00', '40', 'Accountant',
'Jane Doe');

this is exactly what a SQL programmer would expect to come
next, but the format, data type, and value for each entry is
random, as there is no correct answer. Then done again,
using the same input with a change in name

sql insert for person name Andrew Hill
INSERT INTO employeelist(name, startdate, salary,
hourlyRate, hoursPerWeek, position, manager)

creates the new code

VALUES ('Andrew Hill', '2019-01-01',
50000, 25, 40, 'Software Developer',
'John Smith');

The fictional character, Andrew Hill, has worked for the
company longer and is reported to earn $5 more per hour
than Tyrone Williams. This is an example of bias, which
was mentioned in both [1, 5]. It is important to note that
this information was derived from an initial test of OpenAI’s
Codex API [6] using default settings, which may be subject to
random fluctuations and should be interpreted with caution.

Note that despite the same hours per week worked and
different hourly pay, they receive the same annual salary
which is logically inconsistent.

©

Codeforces Transformer Large set

of potential

Problem

Math
l 1

Math

solutions

:

Ollie Willette

Selected set
of candidates

Clustering

4]

&E Xfeiclutteer J,

Submit!

Figure 1. AlphaCode filtered from given tests, then executed the programs on the synthetic input and grouped programs

based on output. [5]

3.3 AlphaCode

DeepMind, a research laboratory owned by Google, created
AlphaCode to solve competitive programming problems. Al-
phaCode has 41 billion parameters, compared to Codex’s
12 billion. AlphaCode was pretrained on 715 GB of GitHub
code in nearly all programming languages. All of the data
AlphaCode trained on was released before the creation of the
problems it was tested on, making sure that it was not just
copying previous answers to the problem. The capability of
AlphaCode to access prior solutions to past problems is anal-
ogous to the ability of competitive programmers to review
previous year’s problems and solutions before participating
in a competition.

AlphaCode was then fine-tuned and tested using 2.6 GB of
code curated by DeepMind called CodeContests. Fine-tuning
meant the data had a higher weight of importance. The fine-
tuning data also had metadata that might be helpful, such as
difficulty rating, or tags that indicate a path to the solution
like "greedy" or "dynamic programming". This metadata is
not available at contest time, so AlphaCode could not see
the metadata from the problems it was tested on, just the
problems it was fine tuned on. Being fine tuned on 13328
of the problems, and tested on the other 165 problems, Al-
phaCode was able to solve 29.6% of those 165 [5]. As shown
in figure 1, we see a technique they used to improve Al-
phaCode’s chances of success. This technique was to have
AlphaCode search through the problem statement and look
for test examples, e.g. in the section 3.2 we gave the example
problem of vowels_count. Inside of the problem statement
there were test cases given, which AlphaCode, unlike Codex,
would then interpret into tests such as

assert(vowels_count("abcde") == 2)
assert(vowels_count("ACEDY") == 3)

Then, when solving that problem, AlphaCode would gener-
ate tens of thousands of sample solutions for just the one
problem. One of thousands of problems generated might be

exactly like the incorrect solution Codex generated in 3.2,

and another generated might be the same but with

if s.lower()[-1] == 'y':
count += 1

before the return statement. AlphaCode will then run all
sample solutions against the tests generated from the given
examples. This would mean that both hypothetical potential
solutions would pass the first test, but only the second sample
solution would pass the second test. (Because only the second
solution would count the trailing y as a vowel.) So the first
sample solution would be thrown away. This process of
filtering filtered out 99% of sample solutions generated by
AlphaCode.

The team at DeepMind then developed a second, special-
ized transformer model to generate synthetic test inputs for
a given problem and its example inputs. For instance, in
the problem of count_vowels, the synthetic test inputs may
generate strings such as "abcda", "AB", or even something
like "123", and "H as d fa". These synthetic inputs are then
given to the remaining sample solutions, which have already
passed the example tests. The programs that produce the
same output for the synthetic inputs are grouped together.
Then they evaluated the group with the most sample solu-
tions as the best group. This is on the logic that there is one
correct way to solve a problem, but many incorrect ways.

3.4 Copilot Evaluation

In [9] Vaithilingam et al. conducted a within-subjects user
study with 24 participants to understand how programmers
use Copilot, a programming aid based on Codex, a LLM
made with the goal of program synthesis. Copilot is much
like what was described in Section 1: a machine that helps a
programmer by producing an attempted solution to a prob-
lem that the programmer then improves on to make a correct
solution.

Programming Aided by Machine Learning

Table 2. Copilot vs Intellisense times

Task 1 - Easy Task 2 - Medium Task 3 - Hard
Intellisense | Copilot | Intellisense | Copilot | Intellisense | Copilot
9:35 1:46 7:48 | 12:53 13:41 | 11:08
3:50 3:57 15:52 | 16:45 13:43 | 11:05
4:49 4:55 16 : 28 7:26 22 : 42 4:04
9:04 6:18 14:16 | 15:05 13 : 06 DNF
5:18 1:18 7:35| 13:24 23:13 | 19:54
15:54 7:52 12 : 39 DNF 4:48 DNF
5:27 3:12 10 : 47 6:02 DNF DNF
2:09| 20:12 8:30 DNF DNF 9:19
Average Time 7:01 6:11 11:44 | 11:56 13:36 | 11:06
Overall average time for all tasks combined 10 : 23 9:18

Table 1: Individual and average task completion times. DNF implies the participant did not finish in 25 minutes. [9]

The study had users using either Copilot or Intellisense,
the standard auto-complete that most programmers are fa-
miliar with that is by default pre-installed and enabled for
most IDEs. This decision creates two potential issues. First,
programmers are much more familiar with Intellisense than
Copilot, as Intellisense has been available and used for over
20 years, and Copilot is less than 2 years old, and very rarely
used, at the time of research. Furthermore, Intellisense and
Copilot are by no means mutually exclusive, and do differ-
ent things. So while users might be familiar and reliant on
Intellisense, they are unfamiliar and confused by Copilot.

The users within the study had a range of experience with
programming, from 2 to 5+ years of experience. One of the
users was a software developer, the rest were students from
undergraduate to Ph.D. level. The study suggests Copilot
does not improve task completion time or success rate on
average. Users generally reported liking Copilot despite this,
saying it lead to less time searching online [9].

The exact times for the participants can be seen in Table 2
for exact task completion times. Note that of the 24 users, 8
were selected to do each task, which they would then do us-
ing one of the tools (either Copilot or Intellisense, randomly
chosen) then the same user would complete the same task
with the other tool. The easy task was read a csv file, and
remove the first and last elements. The medium task was
scrape a webpage, and extract the hyperlinks, writing them
to a file. The hard task was read a csv file, and convert it to
a graph representing the data [9]. The average time using
Copilot did not improve over using Intellisense. Furthermore,
the completion rate decreased. The researchers commented

participants encountered difficulties in under-
standing, editing, and debugging the code snip-
pets generated by Copilot, which significantly
hindered their task-solving effectiveness. [9]

One thing to note from Tabel 2 is that the fastest comple-
tion time for each task was always with Copilot. Furthermore,

users reported preferring Copilot over Intellisense, although
they trusted the code of Intellisense more than the code
generated by Copilot.

4 Conclusion

In conclusion, recent advancements in machine learning may
have an affect on the field of programming, and researchers
are exploring the use of deep learning models to generate
code. Kulal and Pasupat researched mapping pseudocode to
compilable code using an LSTM, and their findings have con-
tributed to the development of more sophisticated models
like Codex. However, the use of these models is not without
its challenges, like issues with not working code, bias, and
misalignment, as the team at OpenAl found. Additionally,
DeepMind’s AlphaCode, improved in solving competitive
programming problems through testing. Vaithilingam et al’s
study on Copilot, a programming aid based on Codex, sug-
gests that programmers don’t benefit greatly from the use
of such tools, and those with less experience may struggle
to make effective use of the tools.

It seems that more issues arise when people who are less
familiar with coding rely on Copilot, but that gains might be
had for people with a solid foundation of knowledge with
regards to the programming task. Perhaps these issues were
exacerbated by the newness of their experience with Copilot,
and that with more familiarity with the tool more gains
will be seen. More issues arise when the code generated by
Copilot is incorrect. We saw that AlphaCode had big gains in
code quality over OpenAI’s Codex when they introduced a
test to filter out incorrect code. So perhaps tools like Copilot
could look into adding the ability for the user to add a test
that the generated code should pass. A feature like this may
be useful, but the implementation would need to be wary
about potentially malicious code that needs to be sandboxed
before run. This is an area to be researched further.

Acknowledgments

Many thanks to Elena Machkasova, my advisor who suffered
through all my faults valiantly. Also thank you to my friends
who gave helpful feedback and moral support.

It should be known that this essay was written with the
help of ChatGPT. For a full list of prompts/responses relating
to this essay, see Programming Aided by Machine Learning
ChatGPT prompt/response list

References

(1]

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé
de Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda,
Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power,
Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, An-
drew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCan-
dlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. CoRR abs/2107.03374 (2021).
arXiv:2107.03374 https://arxiv.org/abs/2107.03374

Sumit Gulwani, Alex Polozov, and Rishabh Singh. 2017. Program
Synthesis. Vol. 4. NOW. 1-119 pages. https://www.microsoft.com/en-
us/research/publication/program-synthesis/

M. L Jordan and T. M. Mitchell. 2015. Machine learn-
ing: Trends, perspectives, and prospects. Science 349, 6245
(2015), 255-260. https://doi.org/10.1126/science.aaa8415
arXiv:https://www.science.org/doi/pdf/10.1126/science.aaa8415
Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded
Padon, Alex Aiken, and Percy S Liang. 2019. SPoC: Search-based
Pseudocode to Code. In Advances in Neural Information Process-
ing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates,
Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/
7298332f04ac004a0cad4cc69ecfo6f6b-Paper.pdf

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrit-
twieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno,
Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Jo-
hannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022.
Competition-level code generation with AlphaCode. Science 378,
6624 (2022), 1092-1097. https://doi.org/10.1126/science.abq1158
arXiv:https://www.science.org/doi/pdf/10.1126/science.abq1158

API OpenAl [n.d.]. OpenAl APL
Accessed on April 10th, 2023.
Significant-Gravitas. [n.d.]. Significant-gravitas/auto-GPT: An ex-
perimental open-source attempt to make GPT-4 fully autonomous.
https://github.com/Significant-Gravitas/Auto-GPT Accessed on April
15th, 2023.

Udacity. 2021. How to read from a file in C++. https://www.udacity.
com/blog/2021/05/how-to-read-from-a-file-in-cpp.html Accessed on
April 10, 2023.

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022.
Expectation vs. Experience: Evaluating the usability of code gen-
eration tools powered by large language models. CHI Conference

https://platform.openai.com

[10]

[11]
[12]

Ollie Willette

on Human Factors in Computing Systems Extended Abstracts (2022).
https://doi.org/10.1145/3491101.3519665

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention Is All You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762
http://arxiv.org/abs/1706.03762

w3schools. n.d.. Python file open. https://www.w3schools.com/
python/python_file_open.asp Accessed on April 10, 2023.

Ollie Willette. [n.d.]. Codex ReadCapitializePrint. https://platform.
openai.com/playground/p/8Tt93Zb2q6dfw5Xtay9CAswM?model=
text-davinci-003 Accessed on April 26th, 2023.

https://docs.google.com/document/d/1YddyziVYB_4nwjLDZTlhwulxwEPglUHzWfr5QvhlRNk/edit?usp=sharing
https://docs.google.com/document/d/1YddyziVYB_4nwjLDZTlhwulxwEPglUHzWfr5QvhlRNk/edit?usp=sharing
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://doi.org/10.1126/science.aaa8415
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aaa8415
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://doi.org/10.1126/science.abq1158
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.abq1158
https://platform.openai.com
https://github.com/Significant-Gravitas/Auto-GPT
https://www.udacity.com/blog/2021/05/how-to-read-from-a-file-in-cpp.html
https://www.udacity.com/blog/2021/05/how-to-read-from-a-file-in-cpp.html
https://doi.org/10.1145/3491101.3519665
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://www.w3schools.com/python/python_file_open.asp
https://www.w3schools.com/python/python_file_open.asp
https://platform.openai.com/playground/p/8Tt93Zb2q6dfw5Xtay9CAswM?model=text-davinci-003
https://platform.openai.com/playground/p/8Tt93Zb2q6dfw5Xtay9CAswM?model=text-davinci-003
https://platform.openai.com/playground/p/8Tt93Zb2q6dfw5Xtay9CAswM?model=text-davinci-003

	Abstract
	1 Introduction
	2 Background Information
	2.1 Programming and Syntax
	2.2 Machine Learning

	3 Research
	3.1 Pseudocode to compilable code
	3.2 Codex and OpenAI
	3.3 AlphaCode
	3.4 Copilot Evaluation

	4 Conclusion
	Acknowledgments
	References

