Using Internet of Things (IoT) Networks for Wildlife Tracking

Collin Beane

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

April 13, 2024

Collin Beane (U of Minn, Morris)

Wildlife Tracking with IoT

P → 4 ≥ → 4 ≥ →
April 13, 2024

Hypothetical Scenario

Collin Beane (U of Minn, Morris)

April 13, 2024

Outline

Background

- 2 Components of a Modern Biologging System
- 3 Networks for a Biologging System

4 Conclusion

3/36

What is Biologging?

Introduction to Biologging

Figure: Animals With SigFox enabled biologging tags [14]

- **Definition:** "Investigation of phenomena in or around free-ranging organisms beyond human visibility or experience [4]"
- **Method:** Tracking wild animals using electronic devices attached to animals
- ↑ Popularity in early 2000s, practiced since 60's
- Pivotal role in understanding animal behavior and ecology

イロト イポト イヨト イヨト

What is Biologging?

Applications of Biologging

Figure: 3D movement of a prairie dog [9]

- Track animal movements, behaviors, and migration patterns
- Collect data on the animal's environment.

3 × 4 3

Impact and Importance

- Insights into organisms in hostile or hard-to-reach environments
- Study previously inaccessible aspects of animal life
- Inform conservation efforts and protect endangered species
- Tool for general data collection

What is Biologging?

Other Biologging Methods

- Cellular networks; High Cost
 - \$250/device
 - 10¢/message
- Radio Frequency (5-1000m)
 - Periodic tracking records
 - Time stamped data

Figure: Pigeons Equipped with cellular trackers [10]

Data Transmission

Figure: Data representation using amplitude modulation and frequency [8] • Data encoded into 1's and 0's

- Represented by amplitude
- More complex methods are used
- Frequency determines data rate and range
 - higher freq \implies higher data-rate

< 6 b

- higher freq \implies lower range
- Received and translated by other devices

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Wireless Network Frequencies and Range

- WLAN frequencies
 - 2.4GHz/5GHz/6GHz
 - Range \approx 200m (2.4Ghz)
- LPWAN Frequencies
 - <1GHz (depends on region)
 - Range \approx 20-40km

Figure: 200m, 20km, and 40km radius around Morris, MN

April 13, 2024

Frequency Hopping and Modulation

Figure: CHIRP and frequency hopping modulation

- Resistance to interference
- Ensures delivery
- Frequency hopping
 - Transmits message 3 times
 - Pseudo randomly hops to new frequency
- CHIRP (Compressed High Intensity Radar Pulse) spread spectrum
 - Gradually raises/lowers frequencies

• \uparrow SF \Rightarrow \downarrow modulation rates

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

What is the Internet of Things?

Empowering physical objects with sensors and software for autonomous interaction

- Can either connect via wired or wireless connection
- Many applications: Healthcare, agriculture, and of course conservation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Layers of an IoT System

- Application Layer
 - Processes and uses data
- Network Layer
 - Establishes connection to internet and IoT devices
 - Transmits data to and from the other layers
- Perception Layer
 - Collects data from the environment or...
 - Interacts with the physical device

Figure: Layer Structure of an IoT System [6]

April 13, 2024

< ロ > < 同 > < 回 > < 回 >

Sensor Devices (tags)

- IoT perception layer
- Required Components
 - Antenna
 - Microcontroller
 - Battery
 - Sensor(s)
- Optional Components
 - Solar panel
 - Extra storage

Figure: Animal wearing a solar powered biologging collar, looking majestic [DALL-E 3]

April 13, 2024

Sensor Devices

Sensor Devices

Figure: SigFox Biologging Sensor Device [14]

Collin Beane (U of Minn, Morris)

Wildlife Tracking with IoT

April 13, 2024

Base Stations

Figure: YRP hybrid base station [12]

IoT network layer

- Components
 - RF receiver and transmitter
 - Data forwarding engine
 - Power source
 - Connection to internet or ...
 - Local Storage

Collin Beane (U of Minn, Morris)

April 13, 2024

A b

Networking Outline

- Importance of a strong network for biologging
- LPWAN networks
 - SigFox
 - LoRa
- WLAN Networks
- Security of LPWAN and WLAN networks
- Which network is best for biologging?

イロト イポト イヨト イヨト

э

Importance of a Strong Network for Biologging

- Safe and secure transmission
 - Poachers
- Efficient transmission
 - Battery life
- Easy access to data
 - Cloud access

Figure: Cartoon depiction of a strong wireless network [DALL·E 3]

Wildlife Tracking with IoT

April 13, 2024

LPWAN Overview

Figure: LPWAN technologies network architecture [7]

- Low Power Wide Area Network
- Uses unlicensed industrial, scientific and medical radio frequencies (ISM)

- 433MHz-928MHz Depending on region (U.S. 915MHz)
- Low power consumption
- Long range (40km+)

SigFox LPWAN

Figure: SigFox Logo

- Owns and operates global network
- Began operation in 2010
- Proprietary service
- Subscription based service

SigFox LPWAN Capabilities

- 140 messages/day (12 bytes each)
- Up to 100bps
- 40km+ of range depending on environment
- SigFox Atlas for estimating location
- 6.5yr battery life w/ 2 AAA batteries (more with solar panel)

Figure: SigFox Europe Coverage, blue=live coverage, purple=roll-out [1]

April 13, 2024

SigFox Operation

Figure: SigFox frequency hopping modulation [13]

- Transmission modulation
 - Frequency hopping
- Proprietary base stations
- Devices certification

LoRaWAN LPWAN

- Standards based system
- Public networks available
- Self deployable networks
- Open source implementations

Figure: LoRa Logo

Collin Beane (U of Minn, Morris)

April 13, 2024

LoRaWAN Operation and Capabilities

- Unlimited messages/day
- CHIRP Spread Spectrum modulation
- 20km+ of range depending on environment
- Up to 50kbps

Figure: DIY LoRa gateway w/ Raspberry Pi [5]

April 13, 2024

WLAN Capabilities

- 200m+ of range depending on environment
- Unlimited messages/day
- 24/7 data transmission
- 1840kbps+ (depending on implementation)

Figure: Wavlink AX1800 Outdoor Router

April 13, 2024

< ロ > < 同 > < 回 > < 回 >

WLAN Operation

Figure: WildFi tag with GPS extension and solar panel [15]

- Can be entirely self developed
- Can last an animals lifetime with solar
- Cheap, Open Source, common hardware
- Maintained entirely by user

< ロ > < 同 > < 回 > < 回 >

Security with AES-128 Encryption

- Proven track record
- Secures data over the air
- Small 128bit encryption keys
- Not computationally expensive
- 🖒 Security on battery powered devices

AES Design

Figure: AES Design [2]

April 13, 2024

SigFox, LoRa, and WLAN Security

Figure: Model of LPWAN Chaining Encryption [3]

- SigFox, LoRa and WLAN can use AES-128
- End-to-End encryption
- Encrypted at the source (sensor device)
- Per device keys for physical protection

April 13, 2024

LPWAN Network Comparisons

- SigFox
 - Better range and coverage
 - Worse latency and payload
- LoRa
 - Easier to deploy (Private)
 - Less data restrictions

Figure: LPWAN Comparisons [11]

April 13, 2024

Final comparisons

Performance Rankings of Networks by Criteria

Collin Beane (U of Minn, Morris)

Wildlife Tracking with IoT

Benefits of IoT for biologging

- Why use IoT for biologging?
 - Bigger data rates and size
 - Highly customizable
 - Many existing components
 - Battery lasts for a lifetime
 - Less disruptive tagging

Figure: IoT sensor device on an animal in the wild [DALL E 3]

Wildlife Tracking with IoT

April 13, 2024

Questions

Thanks for Listening! Any Questions?

Collin Beane (U of Minn, Morris)

Wildlife Tracking with IoT

April 13, 2024

・ロ・・ (日・・ モ・・ ・ 日・・

31/36

э

References I

- [1] Mar. 2024. URL: https://www.sigfox.com/coverage/.
- [2] Mukhadin Beschokov. What is Advanced Encryption Standard (AES)? URL: https://www.wallarm.com/what/what-is-aes-advanced-encryption-standard.
- [3] Amir Jalaly Bidgoly and Hamed Jalaly Bidgoly. "A novel chaining encryption algorithm for LPWAN IoT network". In: *IEEE Sensors Journal* 19.16 (2019), pp. 7027–7034.
- [4] Ian L. Boyd, Akiko Kato, and Yan Ropert-Coudert. "Bio-logging science: sensing beyond the boundaries". In: *Memoirs of National Institute of Polar Research. Special issue* 58 (Mar. 2004), pp. 1–14.
- [5] Build your own gateway. URL: https://www. thethingsnetwork.org/docs/gateways/start/build/.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References II

- [6] Adam Calihman. IOT architectures common approaches and ways to design IOT at scale. Aug. 2021. URL: https://www.netburner.com/learn/architecturalframeworks-in-the-iot-civilization/.
- [7] Lara Fernandez et al. "Assessing LoRa for Satellite-to-Earth Communications Considering the Impact of Ionospheric Scintillation". In: *IEEE Access* 8 (Jan. 2020), pp. 165570–165582. DOI: 10.1109/ACCESS.2020.3022433.
- [8] How is data put on radio waves? URL: https://www.qrg.northwestern.edu/projects/vss/ docs/communications/1-how-is-data-put-on-radiowaves.html.

< 日 > < 同 > < 回 > < 回 > < □ > <

References III

[9] Abhishyant Kidangoor. New trackers bring Prairie Dogs' little-known underground life to light. Mar. 2024. URL: https://news.mongabay.com/2024/03/new-trackersbring-prairie-dogs-little-known-undergroundlife-to-light/#:~: text=While%20accelerometers%20measure%20if% 20and, the%20direction%20of%20their%20movements..

[10] Glen Martin. San Jose / in studying pollution, this professor will wing it / ... Feb. 2006. URL: https: //www.sfgate.com/bayarea/article/SAN-JOSE-Instudying-pollution-this-professor-2542456.php.

 Kais Mekki et al. "A comparative study of LPWAN technologies for large-scale IoT deployment". In: *ICT express* 5.1 (2019), pp. 1–7.

э

References IV

- [12] miyajima. Established lorawan base station. Mar. 2020. URL: https://yrprd.or.jp/en/LPWA/establishedlorawan-base-station/.
- [13] SIGFOX Signal Identification Wiki. URL: https://www.sigidwiki.com/wiki/SIGFOX.
- [14] Timm A Wild et al. "A multi-species evaluation of digital wildlife monitoring using the Sigfox IoT network". In: Animal Biotelemetry 11.1 (2023), pp. 1–17. DOI: https://doi.org/10.1186/s40317-023-00326-1. URL: https://doi.org/10.1186/s40317-023-00326-1.

イロト 不得 トイヨト イヨト

э.

References V

[15] Timm A Wild et al. "Internet on animals: Wi-Fi-enabled devices provide a solution for big data transmission in biologging". In: *Methods in Ecology and Evolution* 14.1 (2023), pp. 87–102. DOI: https://doi.org/10.1111/2041-210X.13798. URL: https://doi.org/10.1111/2041-210X.13798.