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Abstract
Artificial intelligence (AI) models have continued to grow
more and more advanced, growing both in size and model
accuracy. This trend of exponential model growth has some
serious environmental implications, however. While mod-
els have been growing exponentially, the efficiency of these
models has been lagging behind. Furthermore, we have seen
a quickly growing carbon footprint of AI. In order to address
this growing carbon footprint, we need a fundamental shift
in the way we approach developing and designing AI mod-
els, a shift towards a "Green AI" mindset that considers the
environmental implications of this technology across every
phase of development. This shift is very necessary to prevent
out of control carbon emissions and the potential damage
those emissions will have on our climate.
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1 Background
Artificial intelligence (AI) has rapidly advanced as a tech-
nology in recent years, and there is no doubt we greatly
benefit from this growing technology in many ways. We see
AI applications across several different industries, including,
science, medicine, finance, and education. [6] AI refers to
any time that machines are performing tasks that would
typically require human intelligence. The term was coined
in 1956 at a Dartmouth conference, and the field of AI when
it was young primarily focused on theoretical models that
were greatly limited by a lack of computing power and a
lack of available data. Increases in both computing power
and available data in recent times have enabled AI to grow
rapidly as a technology, and have applications across several
different industries and use cases.

Machine learning refers to a subset of artificial intelligence
that involves a model that gets trained on some set of data,
learns patterns from that data, and is then able to extrapolate
to data outside of the data set, and make predictions for that
other data. A useful abstraction for envisioning these models
is to think of them as a giant math equation with millions
of unknown variables or parameters on the inside of the
equation. The equation takes some input, and has a goal of
producing some expected output given that input. During
training, the millions of variables or parameters within the
equation are being adjusted/fine-tuned, such that the output

is close to what is expected. After training, the model is
expected to work on other data outside of the training set.
Neural networks are a subset of machine learning that

refers to a specific structure that mimics the system of layers
of neurons in the human brain. Deep learning refers to neural
networks with multiple layers.
Green or sustainable AI, refers to a specific approach to

AI that involves considering the environmental implications
of the technology of AI, more specifically, it considers the
carbon footprint of AI through the development of AI models.
It seeks to change the way that we understand and approach
creating AI.

The carbon footprint of AI refers to the emissions of green-
house gases associated with AI. Greenhouse gases are gases
that are involved in the greenhouse effect, a natural phenom-
enon in which certain gases have the property of trapping
heat in our atmosphere, which accelerates global warming
and climate change. We want to limit the greenhouse gas
emissions/carbon footprint of AI, as we want to limit the con-
tribution of this technology to accelerating climate change.

2 Introduction
Artificial Intelligence, or AI for short, is one of the fastest
growing technologies in our world today. AI has grown to
be broadly used across many sectors, and to solve many
different problems that different industries face that require
human-level thinking to provide solutions.

While AI has been around for a while, the degree to which
we depend upon and use AI as a society is increasing rapidly.
As our dependence upon AI continues to increase, themodels
and infrastructure that enables AI to keep growing increases
as well. We have consequentially seen a great increase in the
carbon footprint of AI, as bigger and more powerful (but not
necessarily more efficient) models require more and more
computational power.

Unfortunately, a sustainability approach to AI has not been
taken across the machine learning development process, and
AI Models have been designed and trained to prioritize accu-
racy and computational power over efficiency. Additionally,
the amount of data that feeds these models has been sharply
increasing, which has lead to growth in model size. The en-
vironmental footprint of AI includes every step of the AI
development process, including experimentation, training,
and inference. Beyond this, the footprint of AI also includes
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the emissions across the entire life cycle of hardware sys-
tems. All emissions across the entire system life cycle of AI
hardware need to be considered as a necessary part of the
transition to "Green" AI.
The need for a transition to a Green AI approach has

been made more necessary from several developments in
the last decade. For starters, the size of data that AI models
use to train (training data) has increased exponentially in
the last decade.[6] This increase in data size requires more
infrastructure for data storage, and also requires more power
consumption. The exponentially increasing data size has lead
to a great increase in model size growth. While the size of AI
models has been growing rapidly, the memory capacity of
the hardware used to run saidmodels has not been increasing
at the same rate. In a response to the increasing data sizes
and model sizes, we have also seen a great increase in AI
infrastructure growth.

While the carbon footprint of AI is largely determined and
influenced by these factors, it also goes beyond the opera-
tional energy use of AI. The embodied carbon footprint of AI,
the carbon footprint of the entire life cycle of infrastructure
associated with AI. It includes manufacturing of hardware,
production of data and software, transportation, and dis-
posal. Overall, the carbon footprint of AI includes both of
these components, operational energy use, and embodied
footprint.

The desire to achieve better-performing AI models has led
to a trend of models becoming larger and more complex at
an increasing rate [6]. This pursuit of higher quality comes
with significant environmental consequences. To fully grasp
the environmental footprint of AI we have to look beyond
training, experimentation, and inference, and consider the
broader embodied carbon footprint of AI. We also need to
consider the completemachine learning pipeline, and include
data collection, model experimentation, model optimization,
and run-time inference. We have to consider both the fre-
quency of which each stage in the pipeline is performed,
along with the scale of the operation in each stage, and the
full life cycle of hardware that is associated with any stage
of the machine learning pipeline. It is necessary to not just
focus on one element of the footprint, as just focusing on
the operational energy use might make a system rely more
an a greater embodied carbon footprint. While transition-
ing data centers to carbon-free and green/renewable energy
source may seem like a viable solution, we run into geo-
graphic issues of availability of sustainable energy and also
the issue of lack of green infrastructure that takes time and
financial investment to build. In other words, the availability
of access to green and renewable energy everywhere is not
uniform and evenly distributed. Therefore we need to focus
on reducing the carbon footprint of AI systematically and
holistically.
In this paper I will be discussing some key aspects of AI

and ML, such as phases of ML model development and and

the system life cycle of AI, and how these topics relate to a
Green AI mindset. I will then discuss the carbon footprint of
AI, including a case study on several ML models developed
by Meta. Lastly I will discuss the components of a Green AI
mindset, and I will draw conclusions from this work.

3 AI and ML Background
The shift towards Green AI requires a holistic focus on every
phase of model development for machine learning models,
along with a focus on ML infrastructure across the entire
system life cycle. The machine learning phases of develop-
ment include data processing, experimentation, training, and
inference. The infrastructure supporting different phases of
AI development is tailored to achieve specific goals. Both
elements of this holistic focus are described in this section.

3.1 Phases of Model Development
Data processing, the first phase of ML model development,
is the phase in which raw data is collected and cleaned into
a collection of data that works for the given ML algorithms.
Data processing includes cleaning the data such that it is
ready for training, for example, removing non-integer data,
removing outliers in the data, formatting data for consistency,
and converting categorical data into numerical data. Data in
this stage is also split into training data, and validation data.
The data processing stage of model development is essential
for training accurate models. Typically, data processing has
a negligible effect on carbon footprint. [6]
After the data is processed, it is ready to be fed into a

ML for training. Prior to the training phase of development,
however, an experimentation phase is required to determine
the most efficient model architecture and hyper-parameters
for the given problem. Different models and algorithms are
considered and tested, and the performance of the different
architectures is analysed such that the best architecture can
be selected for the given problem. Hyper-parameters, or pa-
rameters that are adjusted prior to the learning process, are
changed and explored with different models to determine the
optimal architecture for the problem at hand. A large collec-
tion of different ML structures and hyper-parameters is often
explored simultaneously, which can require a great amount
of computational power. This implies that this phase of de-
velopment often contributes greatly to the carbon footprint
of AI.
Following experimentation is training. Training is the

phase of model development in which the processed data is
taken and fed into the selected model architectures following
experimentation. This is the phase in which the "learning"
happens— where models learn patterns and relationships
from the training data in order to make predictions on new
data. The learning works by the model adjusted parameters
in attempts to achieve desired output. To achieve desired
output, the model aims to minimize a loss function, which
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is a function that captures the different between the models
prediction and actual expected output. This phase of model
development usually accounts for the largest contribution
to carbon footprint. [6]

The last phase of model development is inference. This is
the phase in which the trained model is ready to make pre-
dictions on data outside of its training data, with parameters
adjusted optimally following the patterns learned during
training. During inference, the model is given new input,
and it returns some type of output or prediction. If trained
well with a diverse set of properly cleaned data, the model is
expected to make predictions with minimal bias, however
it is always a possibility that the model learns some bias
from the training data. The inference phase of development
also has a significant contribution to the carbon footprint
of AI, as unlike the other phases, the power consumption
of the phase is not fixed after training. Every time a trained
model is used to make a prediction, for example, when a
text prompt is entered into a GPT like ChatGPT, the model
consumes power to generate the output and that contributes
to the carbon footprint. In other words, the carbon footprint
of this phase of development often continues to grow after
training and model development.

3.2 System Life Cycle
Part of the carbon footprint of AI and ML models comes
from the system life cycle of hardware and infrastructure as-
sociated with models. The system life cycle of hardware can
be divided into four major phases: manufacturing, transport,
product use, and recycling. The carbon footprint of AI that
comes from the manufacturing phase of the system life cycle
can be referred to as embodied carbon footprint. The carbon
footprint of AI that comes from product use, or emissions
that result directly from the use of AI, can be referred to
as operational carbon footprint. Both the embodied carbon
footprint and operational carbon footprint of AI are major
components of AI’s overall carbon footprint.

4 The Carbon Footprint of AI
To examine the carbon footprint of AI, we will look at the
operational carbon emissions for several machine learning
models being developed by Meta (see Figure 1). [6] Six deep
learning models developed by Meta, LM, RM-1, RM-2, RM-3,
RM-4, and RM-5, are compared to 7 open source models,
BERT-NAS, T5, Meena, GShard-600B, Switch Transformer,
and GPT-3. LM refers to Meta’s Transformer-based Universal
Language Model for text translation, while the RM models
are deep learning recommendation models used for recom-
mending and ranking various Meta products. The opera-
tional carbon footprint of all models is divided amongst of-
fline training, which includes experimentation and training
models with historical data, online training, which includes
training models with recent data, and inference.

Figure 1. Operational Carbon Footprint of Large-Scale ML
Tasks

There are several interesting takeaways from the data in
Figure 1. For LM, the language model for text translation, the
carbon footprint mostly comes form inference, with a smaller
footprint coming from offline training. For the recommenda-
tion and ranking models, most of the footprint of the models
is dominated by inference, however the footprint is more
evenly divided among inference and offline training. Online
training accounts for the smallest part of the operational
footprint of these models. For the Meta models, training and
inference seem to be the phases of model development that
incur the largest carbon footprint. [6]
Looking at the operational carbon footprint of the open-

source models, we observe that interestingly, the size of a
model or number of parameters does not directly predict a
higher operational carbon footprint. For example, the Switch
Transformer model, which is trained with 1.5 trillion parame-
ters, has a significantly smaller operational carbon footprint
than the GPT-3 model, which has 750 billion parameters. As
we see that larger models don’t necessarily correlate with
higher operational carbon footprint, it is important to ob-
serve that models can achieve a lower carbon footprint if
they emphasize an efficiency-based approach to development
of models. Models with a large number of parameters can
have a significantly reduced operational carbon footprint
with an efficient model architecture.

In order to calculate the overall carbon footprint of these
different models, we need to first estimate the embodied car-
bon cost of the models, and then add that to the calculated
operational carbon cost. The embodied carbon footprint of
the 5 Meta models is estimated in Figure 2, along with the
operational carbon footprint of the models, giving us the
total carbon footprint of the models altogether. For all the
models, the operational carbon cost greatly outweighs the
projected embodied carbon cost of each model. Meta uses re-
newable solar energy to cover the majority of the embodied
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Figure 2. Overall Carbon Footprint of Large-Scale ML Tasks

Figure 3.Operational Energy Footprint Reduction forMeta’s
AI Fleet

carbon cost of these models. Accounting for the carbon-free
solar energy that is covering the majority of the operational
carbon costs, the majority of the overall carbon costs of these
models comes from the embodied carbon cost, or the man-
ufacturing of infrastructure and hardware associated with
the models. It is important to note that Meta has been able
to significantly reduce its overall carbon footprint for these
models by adopting renewable solar energy as an energy
source for its operational energy needs. [6]

5 A Case Study of Meta’s Model
Optimization

While optimization of models has lead to a reduction in en-
ergy consumption, AI infrastructure continues to grow and
expand, resulting in overall growing operational energy foot-
print for Meta’s AI fleet (see Figure 3). Regardless, Meta has
been able to reduce the overall operational energy footprint
for it’s AI fleet by 28.5% over the last 2 years.
The optimization of models can be broken down into 4

categories. Model optimization includes designing more re-
source efficient models. Infrastructure optimization refers to
data center optimization, and hardware optimization refers

Figure 4.Operational Energy Footprint Reduction forMeta’s
AI Fleet

to optimizing hardware to reduce overall operational en-
ergy costs. Lastly, another category is platform optimization,
which involves enhancing the performance and efficiency
of the software platforms or frameworks used to deploy and
run machine learning models.
Figure 4 shows the operational energy footprint reduc-

tion over 2 years for Meta’s AI fleet divided into the four
aforementioned categories. Each bar represents operational
power reduction over a 6-month period from each of the
optimization categories. Every 6 months sees on average an
operational power consumption reduction of about 20%. [6]

While overall operational energy consumption continues
to grow, coupling optimization of operational energy uses
with a renewable energy approach, as we have seen with
Meta, leads to significant reductions in overall carbon foot-
print. The majority of the total carbon footprint falls on the
embodied carbon costs of the infrastructure, which is the
component of the total footprint of AI that needs the most
work done on minimizing carbon costs. [6]

6 A Green AI Mindset
A shift away from our current mindset towards one that
considers the environmental implications of the exponential
scaling and growth of AI is necessary. While there have
been many efforts to look at AI model system efficiency and
infrastructure efficiency, optimizing data, experimentation,
and training algorithm efficiency hasn’t been explored as
much. An approach to AI sustainability that encompasses
optimization of every phase of the model development cycle
is necessary to significantly improve the footprint of AI. This
new mindset has three main components: redefining success
in the context of ML models, taking a more holistic approach
to capturing AI’s footprint, and assuming a responsibility to
minimize the carbon footprint of AI.
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We need a large shift in the way that we define a model’s
success. The current idea of how successful amodel is equates
most directly with the accuracy and prediction quality of
the model. A model that expands its size and energy con-
sumption drastically to improve accuracy is said to be rep-
resentative of "progress" in this field. In other words, effi-
ciency isn’t looked at as a benchmark of model success in
the way that accuracy is. This leads to massive scaling of
models in the endless pursuit of accuracy that largely ig-
nores model efficiency and environmental footprint. An AI
sustainability mindset says that we need to change this. In-
stead, our goal should be to improve model efficiency along
with model accuracy, such that we see a trend of improving
model accuracy with a fixed or decreasing rate of compu-
tational cost. In other words, efficiency needs to be used to
evaluate models alongside accuracy. We need to introduce
a new key question: At what cost do these models achieve
accuracy? Encouraging more model transparency is key to
incentivize model efficiency, and allowing for an environ-
ment of learning from others surrounding designing more
efficient models. We need to redefine successful AI as AI that
achieves the same new and exciting results and accuracy,
while minimizing computational cost with efficient design
principles. [4]
A step that can be taken to encourage this shift in our

mindset, is to encourage reporting efficiency along with ac-
curacy alongside models. Requiring academic work done
surrounding ML models to report and detail efficiency incen-
tivizes developers to take the most efficient approach and
optimize model development along every phase of model
development. One metric that can be used as a metric of effi-
ciency for models is floating point operators (FPOs). FPOs
provide an overall estimation of work performed by the com-
putational process, and furthermore have potential to be a
good metric for efficiency.

Taking a more holistic approach to AI involves including
both operational and embodied carbon costs in the total
carbon footprint for AI, but also examining the embodied
footprint of associated hardware and infrastructure along
the complete system life cycle. This approach also means
optimizing efficiency for every stage of model development.
Lastly, this new approach to AI says that we have a re-

sponsibility to make this change. It stems from a broader
technological ethics lens, which says that the creators and
users of a new technology have a responsibility to reduce the
negative implications of the given technology. Even if you
are someone not directly involved with the development of
models, this can still apply to you. This means being mindful
of usage of AI, limiting use to necessary cases, voting, and
spreading awareness of the carbon footprint of AI.

6.1 Data Scaling
One of the most common approaches to improving model ac-
curacy is to increase the size of data. Rather than optimizing

Figure 5. Model Quality vs. Energy Consumption

algorithms, accuracy is often attempted to be improved by
training models with larger and higher quality training data.
The problem with this approach is that with larger datasets,
system resources have to be made larger, and more com-
putational power is required. This requires more embodied
carbon footprint, as more powerful infrastructure is required,
and a larger operational footprint, as more data is stored and
used to train the model during the training phase of model
development. Even if infrastructure is not upgraded to keep
up with the larger datasets, a larger burden is placed on the
operational side of things, as it takes much longer to train
the model with the larger dataset.
In Figure 5, energy consumption required when training

(x-axis), is displayed against model accuracy (y-axis). The
model shows us a diminishing rate of model accuracy in-
crease with more energy consumption. In other words, past
a certain point, to achieve a only slightly higher accuracy,
significantly more power is required. [6]

6.2 Memory-Efficient Model Architecture
An efficient solution to optimizing the footprint of experi-
mentation and training phases of model development is to de-
velop resource-efficient model architectures. One approach
to this is memory-efficient model architectures. Memory-
efficient model architectures require less memory and more
efficiently utilizes accelerators. Some memory-efficient tech-
niques include parameter-reduction techniques, in which
the number of parameters in the model is reduced without
significantly sacrificing performance, and architecture de-
sign approaches, which focus on a more memory-efficient
model design. [5]
Parameter reduction techniques, such as pruning, quan-

tization, and knowledge distillation, aim to minimize the
number of parameters in the model without compromising
performance. Pruning identifies and eliminates redundant
or less crucial parameters, while quantization reduces the
precision of weights and activations. Knowledge distillation
involves training a smaller model to mimic the behavior of
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a larger, more complex model, effectively transferring the
knowledge from the larger model to the smaller one.
In addition to parameter reduction techniques, architec-

ture design involves designingmodels withmemory-efficient
architectures. Approaches include reducing model depth by
using shallower models with fewer layers, and leveraging fac-
torization techniques to decompose large layers into smaller
ones.

6.3 Efficient use of Hardware
A Green AI approach should include maximizing the effi-
ciency of system resources, while prolonging the life of AI
infrastructure. This involves shifting system design from a fo-
cus on operational energy optimization to include embodied
carbon cost and the life cycle of hardware. [2]

This means that we need to carefully consider how hard-
ware resources are utilized throughout the entire life cycle of
AI infrastructure. One key aspect is optimizing the utilization
of hardware resources during both training and inference
phases of model development. Techniques such as process-
ing multiple data samples simultaneously can lead to more
efficient use of computational resources.

Also, extending the lifespan of AI hardware infrastructure
through techniques like hardware refurbishment, compo-
nent reuse, and responsible disposal practices can contribute
to reducing the environmental impact of AI systems. By pro-
longing the life of hardware components and minimizing
electronic waste, it is possible to lessen the carbon footprint
associated with manufacturing and disposing of hardware.

6.4 Carbon-Efficient Scheduling
A solution that has arisen in response to the issue of AI’s
rapidly growing carbon footprint has been green and clean
energy integration into operational energy costs. While this
approach has the potential to significantly reduce the carbon
footprint of AI, it leads to a new problem— data centers have
to be able to adopt to a renewable source of energy that
naturally has more fluctuations in production levels. Data
centers thus require schedulers that are aware of this, and
can smartly and efficiently schedule workloads in a way that
can predict patterns of intermittent production and schedule
accordingly. [3]
Once renewable energy integration becomes more com-

mon, and our grids become more reliant on intermittent
renewable energy, AI models can provide a solution to the
issue of fluctuations in renewable energy production. Models
can be trained to predict these fluctuations, and can inform
smart schedulers such that the power grid is more balanced
and stable. [1]

6.5 Additional Ways to Promote Green AI
There are some additional suggestions to promote Green AI.
One approach might be to encourage more reporting sur-
rounding the experimentation phase of model development.

Currently this phase is not typically reported. Reporting in-
formation about how many different model architectures
were explored, and what approaches were successful and
unsuccessful can lead to more learning about efficiency dur-
ing this phase of model development, and help others to
optimize models for more efficiency.
Another step that can be taken is to encourage releasing

trained models to the public. [6] This would prevent the
unnecessarywork of retrainingmodels, and lower the carbon
footprint overall.

7 Conclusion
It is critically important that we make a shift in the way that
we approach developing and discussing AI. This shift needs
to include holistically examining the environmental footprint
of AI along every phase of development, and every life cycle
stage of associated hardware. We have a responsibility to
manage the negative environmental implications this rapidly
growing technology has on our world.
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