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Abstract

In this paper, we will provide an overview of the paper
“Phylogeny-informed fitness estimation for test-based par-
ent selection” by Lalejini, et al. [7] Phylogenies, or ancestry
trees, provide a detailed look into the evolutionary journey
of a population. In evolutionary computation, a phylogeny
can represent the progress of an evolutionary algorithm
through a search space. Although phylogenetic analysis is
mainly used to deepen the understanding of evolutionary
algorithms after they have been run, this study explores its
potential use in real-time to enhance parent selection during
evolutionary searches. The research by Lalejini, et al. intro-
duces the concept of phylogeny-informed fitness estimation,
leveraging a population’s phylogeny to predict fitness val-
ues. This method is tested using both down-sampled lexicase
and cohort lexicase selection algorithms across four genetic
programming (GP) problems. The findings suggest that us-
ing phylogenies to estimate fitness values can improve the
performance of down-sampled lexicase selection, fostering
better diversity and search space exploration.

Keywords: genetic programming - parent selection - phy-
logeny - lexicase selection

1 Introduction

This paper explores evolutionary computation and genetic
programming — two subfields within artificial intelligence
that solve complex problems by simulating natural evolution-
ary processes. In this context, we focus on a novel idea in-
troduced by Lalejini et al. [7], which is the use of phylogeny-
informed fitness estimation. This concept uses the evolution-
ary history of a population to enhance the the process of
selecting parents during genetic programming.

The traditional methods of selecting parents in genetic pro-
gramming often face challenges such as premature conver-
gence, where the algorithm settles on suboptimal solutions
too early, which limits exploration of the possible solutions.
Lalejini et al. suggest that by understanding the ancestry
or phylogeny of the population, we can better estimate the
fitness of individuals, which can potentially lead to more
diverse and effective solutions.

By integrating the evolutionary history into the fitness
assessment, the proposed method aims to improve the ex-
ploration of the search space and maintain diversity within
the population. This could help prevent the algorithm from
getting stuck in less optimal solutions and enhance the dis-
covery of more innovative and high-quality solutions.

In the next section we will provide background materials
about Evolutionary Computation (EC) and Genetic Program-
ming (GP) . Then we will cover important subtopics such as
phylogeny (ancestry tree) and parent selection, as well as lex-
icase selection algorithms. In Section 3 we will describe the
main method used by Lalejini, et al. [7], phylogeny-informed
fitness estimation, following with their experimental design
in Section 4. Finally we will go through the results of their
experiments and their conclusions.

2 Background

The exploration of genetic and evolutionary biology is not
only about understanding the lineage relationships among
organisms but also involves investigating the mechanisms
driving their evolution and the methods used for selecting
traits that enhance adaptation to environments. This field
offers a wealth of methodologies and concepts focused on
tracing the ancestry of species and illustrating the intercon-
nected web of life that unites all living beings.

To bridge the gap between biology and evolutionary com-
putation (EC), the subsequent sections will cover several
key concepts crucial to both fields: evolutionary computa-
tion, genetic programming, phylogeny (ancestry tree), parent
selection, and lexicase selection algorithms such as down-
sampled lexicase selection and cohort lexicase selection.

Furthermore, the exploration of these concepts extends
well beyond biological scope, offering profound insights into
the field of evolutionary computation. By understanding and
applying these fundamental biological concepts, researchers
are equipped to simulate and enhance processes similar to
natural selection and evolution within computational envi-
ronments, which advances people’s capabilities in solving
complex real-world computational problems.
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2.1 Evolutionary Computation

Evolutionary computation (EC) stands as a cornerstone in
the realm of bio-inspired algorithms, drawing from the fun-
damental processes of natural selection and genetics. This
computational approach simulates the evolutionary process
to iteratively improve solutions to complex problems. EC
embodies a suite of algorithms, including evolutionary strate-
gies, evolutionary programming, genetic algorithms, and
genetic programming. The versatility of EC allows for its
application across a myriad of fields, from optimizing engi-
neering designs to solving intricate optimization problems
in finance and logistics. By simulating the adaptive processes
of natural evolution, evolutionary computation facilitates
the discovery of high-quality solutions that conventional
approaches might overlook.

2.2 Genetic Programming

Genetic programming (GP) is a specialized branch of evolu-
tionary computation that focuses on the evolution of com-
puter programs or symbolic expressions to solve specific
tasks [1]. Unlike other branches of EC that evolve fixed-size
strings or vectors, GP evolves tree-like structures or variable-
length vectors representing programs or mathematical mod-
els. This approach enables GP to automatically discover algo-
rithms, mathematical expressions, or software programs that
perform well against predefined fitness criteria. GP has been
successfully applied in diverse domains such as automated
software engineering, symbolic regression, and even the evo-
lution of control algorithms for robotics and artificial intelli-
gence tasks. By evolving programmatic structures, genetic
programming transcends traditional optimization, offering a
powerful tool for automatic programming, problem-solving,
and knowledge discovery.

Figure 1 is a flowchart that demonstrates the rough idea
of how genetic programming works in a real-world scenario
when applied to a specific task. In genetic programming, the
process begins by generating an initial random population,
marking the start of the first generation (Gen = 0). Each indi-
vidual within this population is then evaluated to determine
its fitness. Based on these fitness evaluations, individuals are
selected for further genetic operations such as mutation. Af-
ter an individual undergoes mutation, the resultant mutant
is added back into the population.

The loop of evaluating fitness, selecting individuals, mutat-
ing, and reintegrating continues until the population reaches
the desired size (M). If the population size is achieved, but the
termination criteria — such as a maximum number of gener-
ations — are not yet met, the generation counter is increased
by 1 (Gen = Gen + 1), and it will restart the process of the
evaluation of fitness. This loop repeats until the termination
criteria are satisfied, at which point the process concludes
and the results are designated.

Create Initial
Random Population

Termination
riterion Satisfied

Gen=Gen+1

=3 1 :

Evaluate Fitness of Each
Individual in Population

Individuals = 0

Select One Individual
Based on Fitness

Individuals = M?

Perform Mutation

Insert Mutant into
New Population

Individuals =
Individuals + 1

Figure 1. Flowchart for Genetic Programming [5]

2.3 Phylogeny (Ancestry Tree)

Phylogeny refers to the evolutionary history and lineage
relationships among species or groups of organisms, which
can be traced back through time to reveal the branching
patterns of evolution. Phylogenetic trees, which graphically
represent these relationships, are fundamental tools in biol-
ogy for understanding biodiversity, evolution, ecology, and
genomes. They depict how species diverge from common
ancestors over time.

Similarly, phylogenetic trees in evolutionary computation
can also demonstrate the lineage relationships between dif-
ferent individuals. Figure 2 is an example of phylogenetic
tree in EC. As shown in Figure 2, node A produces node B;
node B produces node C and D; node C produces node E;
node D produces node F and node G. There are many details
in this figure, and we will cover them in subsequent sections.

2.4 Parent Selection

Parent selection is a process in genetic algorithms and evolu-
tionary computation where individual solutions are chosen,
based on their performance, to contribute to the next gen-
eration [2]. This step is crucial for guiding the evolutionary
process towards optimal solutions, as it influences the genetic
diversity and quality of subsequent populations. Techniques
for parent selection vary, including roulette wheel selection,
tournament selection, and rank selection [6], each with its
advantages and disadvantages in maintaining diversity and
pressure towards optimal solutions.

2.5 Lexicase Selection

Lexicase selection is a parent selection algorithm tailored
for test-based problem-solving environments, particularly
where candidates are evaluated based on a series of input-
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Figure 2. Example diagram of ancestor-based phylogeny-informed fitness estimation [7]

Algorithm 1 Lexicase Selection [9]

: Result: Individual to be used as a parent
: candidates « entire population
. cases « list of all test cases in a random order
: while True do
candidates « candidates who perform best on
cases[0]

I ol S SR ol

6: if only one candidate exists in candidates then
7: return candidate
8: end if
9 if cases is empty then
10: return a randomly selected candidate from can-
didates
11: end if
12: delete cases[0]

13: end while

output training cases. The vector under each individual in
Figure 2 represents the scores of each individual on 5 sepa-
rate training cases. Here “0” means that the individual fails
the training case, while “1” means that it passes. And “?”
means that the training case is not evaluated. These training
cases set the foundation for a selection process that starts by
randomizing the order of the training cases. At the beginning
of the selection process, the entire population is viewed as
potential candidates.

The selection process iteratively narrows down this pool
of candidates by retaining only those performing best on
the current training case being considered, as detailed in
Algorithm 1. This step-by-step filtering, following the ran-
domized sequence of training cases, ensures that only the

most promising candidates for this particular ordering of the
training cases remain. If, at any point, only one candidate
remains, that candidate is immediately selected. If, after eval-
uating all training cases, multiple candidates still qualify, the
final parent is chosen randomly among them. In addition,
shuffling the training cases will help preserve the diversity
of lexicase selection. A series of training cases in different
order sometimes may result in different selection results.

This approach, while thorough and effective, is also known
for its computational demands because it requires each indi-
vidual to be evaluated against every training case.

2.5.1 Down-sampled Lexicase Selection. To reduce the
computational demands in standard lexicase selection, the
down-sampled variant introduces a strategy of random sub-
sampling of the training set for each generation. This ap-
proach limits the evaluation to a subset of the original train-
ing cases, largely reducing the computational demands [4].

So how does down-sampled lexicase selection actually
work? Let’s go back to Figure 2 and focus on the blue and
purple generations (from node C to node G). The blue gen-
eration cares about the 1st and 4th training cases, while the
purple one cares about the 3rd and 5th. This shows that the
subsampled training sets are usually different from each gen-
eration. However, the individuals under a certain generation
will always share the same subsampled training sets.

2.5.2 Cohort Lexicase Selection. Cohort lexicase selec-
tion further refines the process by dividing both the training
set and the population into equally sized cohorts, based on a
specified subsample levels. For instance, a subsample level
of 20% divides the population and training set into 5 evenly
sized cohorts. With cohort memberships randomly assigned
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each generation, this method facilitates a focused evaluation
where each group of candidates is tested against only its
matched set of training cases.

Despite the reduced per-generation evaluation scope, the
integrity of utilizing the full set of training cases for selection
purposes is maintained. The selection of a parent involves
first randomly choosing a cohort and then applying standard
lexicase selection within it [4].

3 Phylogeny-informed Fitness Estimation

Phylogeny-informed fitness estimation is a strategy for en-
hancing the efficiency and efficacy of evolutionary algo-
rithms. The method involves dynamically subsampling a set
of discrete fitness test cases, which enhances the efficiency
by reducing the number of evaluations each individual un-
dergoes. However, this efficiency comes with a restriction: it
limits the selection process to a subset of available informa-
tion, potentially overlooking vital data that could influence
the selection of the fittest candidates.

Phylogeny-informed fitness estimation addresses this chal-
lenge by using the lineage information of the population.
While the actual evaluation is confined to the subsampled
training cases, this approach leverages the phylogenetic
data to infer an individual’s likely performance on the non-
evaluated portions of the training set. This strategy ensures
that the selection process remains robust, allowing Lalejini
et al. to consider an individual’s capability more comprehen-
sively, without directly testing every single case [7].

3.1 Ancestor-based Estimation

The first method under the scope of phylogeny-informed fit-
ness estimation is ancestor-based estimation. This technique
confines the fitness estimation to the direct line of ancestry
of the individual whose performance we’re currently esti-
mating, tapping into the ancestral lineage to glean insights
into performance on unevaluated training cases. Specifically,
it involves tracing the lineage of an individual backward
through its ancestors — parent, grandparent, and so on - un-
til it identifies the nearest ancestor that has been evaluated
against the training case we care about. The performance
score of this ancestor on the training case then serves as a
proxy for the individual’s own score. This method not only
preserves the integrity of the evolutionary process by relying
on genetically linked performance indicators but also stream-
lines the computational demands by limiting the search to
direct ancestors, making it an efficient option for integrating
phylogenetic insights into the fitness estimation process.
So how does ancestor-based estimation work in evolution-
ary computation? Let’s go back to Figure 2 again and focus
on the right-most black node. Cross marks here indicate the
evaluated training cases, while the colorful numbers mean
the estimated ones. But where do these colorful numbers
come from? The estimation of the 1st training case is 0, which

comes from D. Since there is a “?” on the 1st training case of
G, D becomes the nearest ancestor that has been evaluated
against the 1st training case. Using the same logic, we can
also figure out why the estimation of the 2nd training case
comes from B and why the 5th comes from G.

3.2 Relative-based Estimation

In contrast, relative-based estimation expands the horizon
of the search for fitness estimates beyond direct ancestors
to include any genetically related individuals within the
population’s phylogeny. Employing a breadth-first search
strategy starting from the focal individual, this method seeks
out the nearest relative that has been evaluated against the
specific training case, regardless of their direct ancestral
relation. This could include “cousin” or even more distantly
related individuals, provided they offer relevant performance
data for the training case at hand.

Despite its potential for drawing estimates from a wider
subset of the population in estimating fitness, the relative-
based approach necessitates a more complex and potentially
computationally intensive search process, highlighting the
trade-offs between breadth of search and efficiency in the
context of phylogeny-informed fitness estimation.

4 Genetic Programming Experiments

In the exploration of the efficacy of phylogeny-informed
fitness estimation within genetic programming (GP), Lale-
jini, et al. conducted a series of experiments focusing on
the impact of ancestor-based estimation, relative-based es-
timation, and a control condition without estimation [7].
These experiments were designed to assess problem-solving
success across 4 genetic programming problems — Median,
Small or Large, Grade, and Fizz Buzz, sourced from PSB1 and
PSB2 benchmark suites [3]. We will cover the details of these
problems in Section 4.2.

Besides, the experiments were structured to evaluate the
performance of these phylogeny-informed strategies using
both down-sampled and cohort lexicase selection methods
across four subsampling levels: 1%, 5%, 10%, and 50%. A crit-
ical modification in these experiments was that the search
depth was limited to 5, which basically means that the esti-
mation of an individual can only based on the performance
of related ancestors or relatives in the former 5 generations.

4.1 GP System

The experimental setup involved running 30 replicates for
each condition, utilizing a population of 1,000 linear genetic
programs developed using the SignalGP representation [8].
This setup aimed to simulate a controlled environment that
allowed for the asexual reproduction of programs, with mu-
tations introduced to offspring through single-instruction
insertions, deletions, and substitutions.



4.2 Program Synthesis Problems

The selected program synthesis problems involved a range
of introductory programming challenges, each with specific
requirements and constraints. The Median problem tasked
programs with determining the median value from three
integer inputs, while the Small or Large problem required
programs to classify an integer as “small”, “large” or “neither”
based on predefined thresholds. The Grade problem involved
assigning letter grades based on input scores and predefined
thresholds, and the Fizz Buzz problem challenged programs
to output “Fizz”, “Buzz”, “FizzBuzz”, or the input integer based
on divisibility criteria.

These problems were chosen not only for their diversity
but also for their ability to test the GP system’s problem-
solving capabilities under various conditions. Each problem
was associated with a set of 100 training cases for program
evaluation and selection, and 1,000 test cases for determining
problem-solving success, with the aim of including input-
output edge cases in both sets.

Through this experimental framework, the study sought
to uncover the potential benefits and limitations of incor-
porating phylogeny-informed fitness estimation techniques
in genetic programming. By comparing the outcomes of
ancestor-based and relative-based estimation against a con-
trol condition without estimation, the experiments aimed to
provide insights into the strategies that could enhance the
problem-solving success of GP systems across a spectrum of
programming challenges.

4.3 Statistical Analyses

In this study, the analyses were strictly confined to 3 spe-
cific fitness estimation treatments without cross-comparison
across different problems, subsampling methods (either down-
sampling or cohorts), or levels of down-sampling (1%, 5%,
10%, and 50%). Only pairwise comparisons were made be-
tween methods that were consistent in problem type, sub-
sampling technique, and down-sampling percentage.

Statistical assessments of the distributions from various
treatments involved the use of Kruskal-Wallis tests to iden-
tify significant differences across independent conditions.
Subsequent to identifying significant differences with the
Kruskal-Wallis test (p < 0.05), pairwise distinctions were ex-
plored through Wilcoxon rank-sum tests. For evaluating dif-
ferences in problem-solving success rates, pairwise Fisher’s
exact tests were applied, also at a significance threshold of
0.05. Multiple comparison corrections were applied using
the Holm-Bonferroni method as necessary.

5 Results

Based on Lalejini, et al’s research [7], there are 3 main re-
sults from their experiments. The first one is that phylogeny-
informed fitness estimation reduces diversity loss caused by
subsampling. Secondly, it improves poor exploration caused
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by down-sampling. Both results are largely based on two di-
agnostic experiments which are not covered here due to lack
of space. As a result we will mainly focus on the third result:
Phylogeny-informed fitness estimation can enable extreme
subsampling for some genetic programming problems.

Table 1 presents the success rates of different phylogeny-
informed estimation methods across a variety of genetic pro-
gramming problems under both down-sampled and cohort
lexicase. The table presents problem-solving success, defined
as the production of a program that passes all tests in the
testing set, across various subsampling levels and problems,
with a total of 32 distinct combinations evaluated.

The majority of comparisons — 20 out of 32 — showed no
statistically significant difference in success rates among the
different fitness estimation treatments. However, phylogeny-
informed methods did result in statistically significantly
higher success rates in 4 out of 16 comparisons for down-
sampled lexicase and 5 out of 16 for cohort lexicase. In a
few cases under down-sampled lexicase, the control without
estimation outperformed phylogeny-informed methods. No
such instances were detected under cohort lexicase.

The benefits of phylogeny-informed estimation varied
depending on the subsampling method and the problem at
hand. Interestingly, no significant differences were found be-
tween the success rates of ancestor-based and relative-based
estimation methods. Cohort lexicase showed a more consis-
tently neutral or positive effect with phylogeny-informed
fitness estimation compared to down-sampled lexicase. In
some scenarios, such as with the Fizz Buzz problem at 5%
down-sampling, not using phylogeny-informed fitness esti-
mation yielded better results, which deviates from diagnostic
results where phylogeny-informed estimation was beneficial
more consistently.

The discrepancies observed suggest that while phylogeny-
informed estimation can enhance certain aspects of problem-
solving, such as diversity maintenance, it may negatively
impact other facets. For instance, inaccuracies in fitness esti-
mation can potentially lead to the selection of suboptimal
candidate solutions. These findings highlight the need for
further research to refine phylogeny-informed estimation
methods and to better understand their effects on evolution-
ary search processes.

Notably, problem-solving success at 1% subsampling was
highlighted as especially significant. Even with such extreme
subsampling, resulting in elite selection based on very lim-
ited information (a single training case per individual), the
no-estimation control still managed to produce successful
solutions for the median and grade problems. This indicates
that effective problem-solving can sometimes occur even
under conditions of extreme subsampling.
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a Down-sampled lexicase

1% subsampling 5% subsampling

18% subsampling 58% subsampling Full

Problem None | Anc. | Rel

None | Anc. Rel. | None | Anc. Rel.

None | Anc. Rel. | None

Median 8 13 14 4 19 23

16 21 22 2 15 13 1

Small or large ] o 3] ] 8 3]

3] 3] 3] ] ] ) ]

Grade 1 10 11 22° 12 n 22 13 Al 5 9 4 1
Fizz buzz ] Y 8 20 2 2 a8 8 7 ] 7 7 Y]
b Cohort lexicase

1% subsampling 5% subsampling

18% subsampling 58% subsampling Full

Problem None | Anc. Rel. | None | Anc. Rel. | None | Anc. Rel. | None | Anc. Rel. | None
Median o] 22 27 12 23 25 15 26" 24 5 12 13 1
Small or large 8 1 ] ] 8 1 8 8 8 8 8 8 8
Grade 28 18 23 18 13 19 12 20 15 4 2 4 1
Fizz buzz ] 2 3 5 3 7 1 3 ot ] 9 6 ]

Table 1. Problem-solving success for 2 lexicase selection methods (down-sampled lexicase selection, cohort lexicase selection)
on 4 GP problems (Median, Small or Large, Grade, and Fizz Buzz), in terms of 3 fitness estimation treatments (ancestor-based
estimation, relative-based estimation, and a control condition without estimation) and 4 subsampling levels (1%, 5%, 10%,
50%), out of 30 replicates. Bolded and italicized numbers mean both phylogeny-informed estimation results significantly
outperformed the no-estimation control, or the opposite. “+” means only one phylogeny-informed estimation result significantly

outperformed the control, or the opposite. [7]

6 Conclusion

This study explores two phylogeny-informed fitness esti-
mation strategies: ancestor-based for quick reference and
relative-based for a more comprehensive search of close rel-
atives. The research provides evidence that these methods
can offset some of the limitations of lexicase selection by
enhancing diversity retention and search space exploration.
However, the impact on problem-solving success in genetic
programming is not uniform, varying with the problem, sub-
sampling method, and level, as detailed in Table 1.

Moreover, no significant differences were found between
the two phylogeny-informed methods, prompting further
investigation into their specific impacts on evolutionary
search. Currently, ancestor-based estimation is preferred
due to its potential for more efficient optimization compared
to relative-based estimation.

Lalejini, et al’s study applied these estimation methods
to both down-sampled and cohort lexicase [7]. By doing
so, it enabled every selection event in lexicase to consider
the entire training set through estimated performances on
unevaluated cases, thereby allowing population members to
be assessed on varying training subsets.

Future enhancements could involve systematic subsam-
pling to minimize the search depth, thus improving estima-
tion accuracy and problem-solving effectiveness. Addition-
ally, incorporating mutation data into subsampling decisions

could further improve evaluations, especially for offspring
with significant mutations.

Beyond the scope of this research, Lalejini, et al. see po-
tential for using runtime phylogeny tracking to enhance
evolutionary search in various ways [7]. This could be par-
ticularly valuable in quality-diversity algorithms, which are
a new type of evolutionary algorithms aiming to find a set
of high-performing and diverse solutions, with applications
in machine learning and robotics [10].
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