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Introduction

● Evolutionary Computation (EC)
● Genetic Programming (GP)
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Evolutionary Computation (EC)
● A sub-field in artificial intelligence that solves problems using 

evolution's basic principles
● Similar to natural selection, it refines solutions using selection 

and variation.
● Less effective solutions gradually disappear, while more 

promising ones continue to improve.
● Goal of this iterative process: to progressively enhance solution 

quality, aiming for an optimal or satisfactory solution.
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Genetic Programming (GP)
● A specialized branch of EC that focuses on evolving computer 

programs, mathematical expressions and algorithms
● Fixed-size strings or vectors VS tree-like structures or 

variable-length vectors
● Applications: automated software engineering, symbolic 

regression, the evolution of control algorithms for robotics
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Flowchart for GP
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Background
● Parent selection

○ Lexicase selection
○ Down-sampled lexicase selection
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What is selection?
What are training cases? 
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Down-sampled Lexicase Selection
● Random subsampling the training set for each generation
● Significantly reducing the computational demands
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Methods
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Methods
● Phylogeny-informed fitness estimation

○ Ancestor-based estimation
○ Relative-based estimation

● Genetic programming experiments
○ Experimental setup
○ Program synthesis problems
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Ancestor-based estimation

● Tracing the lineage of an 
individual backward 
through its ancestors

● Preserving the integrity of 
the evolutionary process 

● Streamlining the 
computational demands 
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Relative-based 
estimation
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● Expanding the search to include any 
genetically related individuals within 
the population’s phylogeny

● Breadth-first search (BFS)



Experimental setup
● Comparing the problem-solving success among: 

○ 3 estimation models
○ 4 GP problems
○ 4 subsampling levels

● Phylogeny searches depth is limited to 5
● Running 30 replicates of each condition
● Evolving a population of 1,000 linear genetic programs in 

each replicate
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Program synthesis problems
● Median 

Programs are given three integer inputs (−100 ≤ input i ≤ 100) and must 
output the median value.

● Small or Large
Programs are given an integer n and must output 

○ “small” if n < 1000
○ “large” if n ≥ 2000
○ “neither” if 1000 ≤ n < 2000
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Program synthesis problems
● Grade

Programs receive five integer inputs in the range [0, 100]: A, B, C, D, and 
score. A, B, C and D are monotonically decreasing and unique, each defining the 
minimum score needed to receive that “grade”. The program must read these 
thresholds and return the appropriate letter grade for the given score or return 
F if score < D. 

● Fizz Buzz

Given an integer x, the program must return “Fizz” if x is divisible by 3, “Buzz” 
if x is divisible by 5, “FizzBuzz” if x is divisible by both 3 and 5, and x if none 
of the prior conditions are true. 
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Results
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Results
● Phylogeny-informed estimation reduces diversity loss 

caused by subsampling
● Phylogeny-informed estimation improves poor exploration 

caused by down-sampling
● Phylogeny-informed estimation can enable extreme 

subsampling for some genetic programming problems
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Enabling extreme subsampling for some genetic programming problems

● In most combinations, the performances of ancestor-based estimation and 
relative-based estimation are close.

● In some combinations, there are statistically significant differences between 
no-estimation control and phylogeny-informed fitness estimation.
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Conclusion
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Conclusion
● Ancestor-based estimation > relative-based estimation for more efficient 

optimization
● The phylogeny-informed approach allows for individual evaluations on varied 

training set subsets, potentially increasing accuracy and problem-solving 
success if training cases are subsampled to minimize phylogenetic distance.

● Beyond fitness estimation, runtime phylogeny tracking might enhance 
evolutionary search broadly, particularly in quality diversity algorithms that 
emphasize phenotypic or behavioral diversity.
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