Enhancing Evolutionary Computation through Phylogenetic Analysis

Chenfei Peng peng0368@morris.umn.edu

Outline

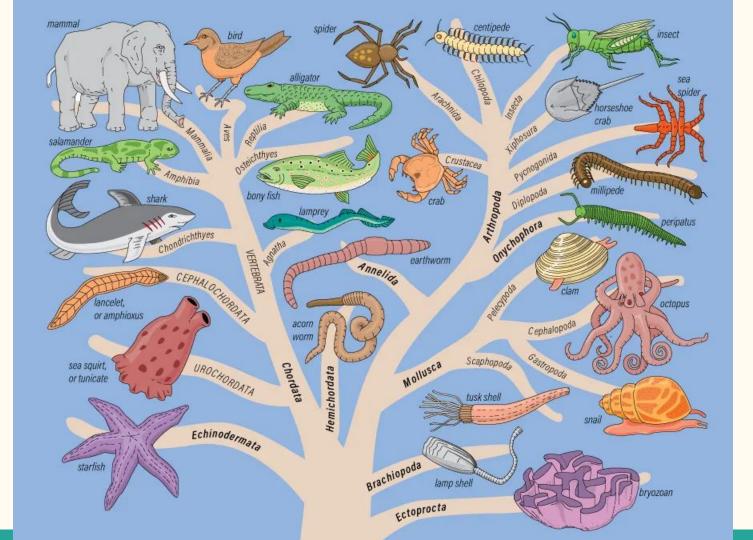
- 0. Motivation
- 1. Introduction
- 2. Background
- 3. Phylogeny-informed fitness estimation
- 4. Genetic programming experiments
- 5. Results

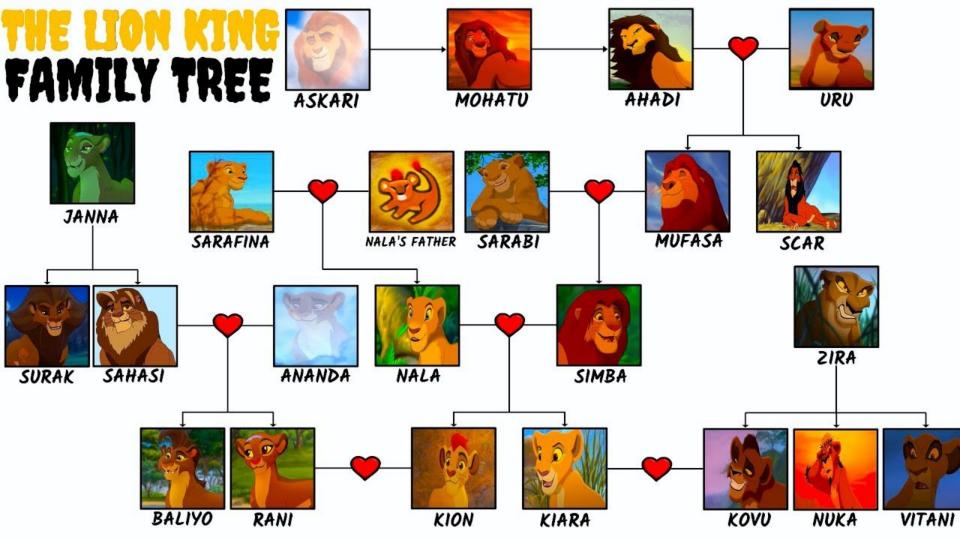
6. Conclusion

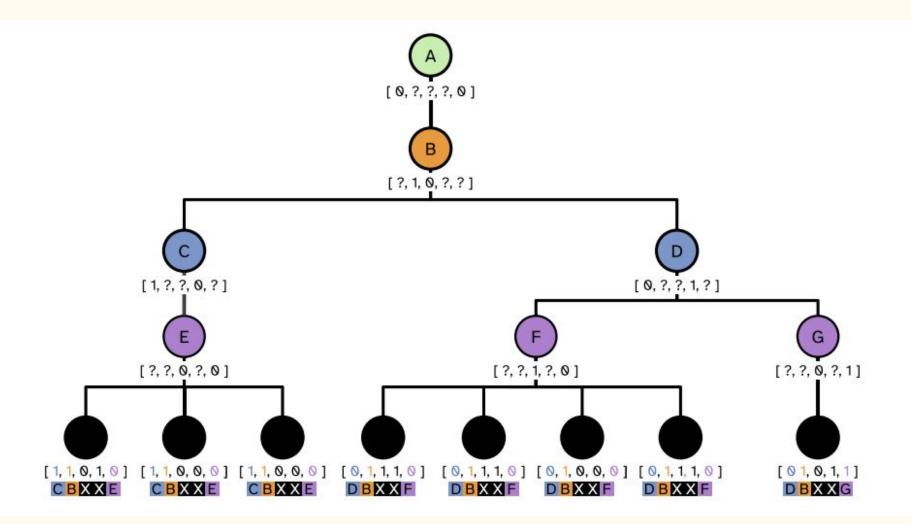
Phylogeny-informed fitness estimation

Alexander Lalejini¹, Matthew Andres Moreno², Jose Guadalupe Hernandez³, and Emily $Dolson^3$

Grand Valley State University
² University of Michigan
³ Michigan State University



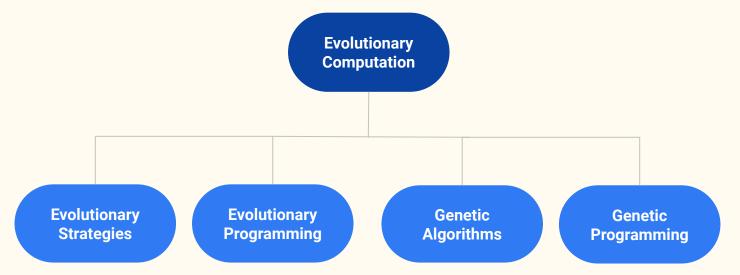




Introduction

Introduction

- Evolutionary Computation (EC)
- Genetic Programming (GP)

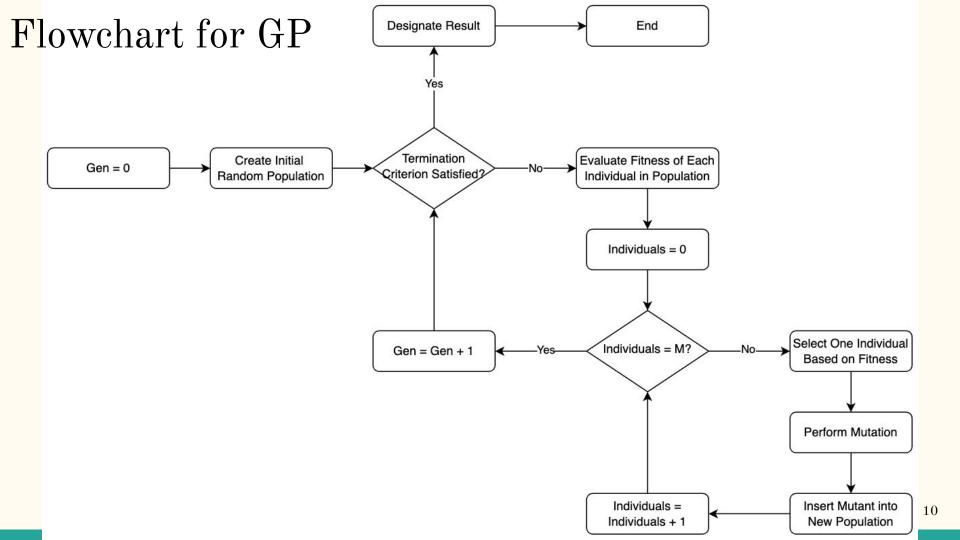


Evolutionary Computation (EC)

- A sub-field in artificial intelligence that solves problems using evolution's basic principles
- Similar to natural selection, it refines solutions using selection and variation.
- Less effective solutions gradually disappear, while more promising ones continue to improve.
- Goal of this iterative process: to progressively enhance solution quality, aiming for an optimal or satisfactory solution.

Genetic Programming (GP)

- A specialized branch of EC that focuses on evolving computer programs, mathematical expressions and algorithms
- Fixed-size strings or vectors VS tree-like structures or variable-length vectors
- Applications: automated software engineering, symbolic regression, the evolution of control algorithms for robotics

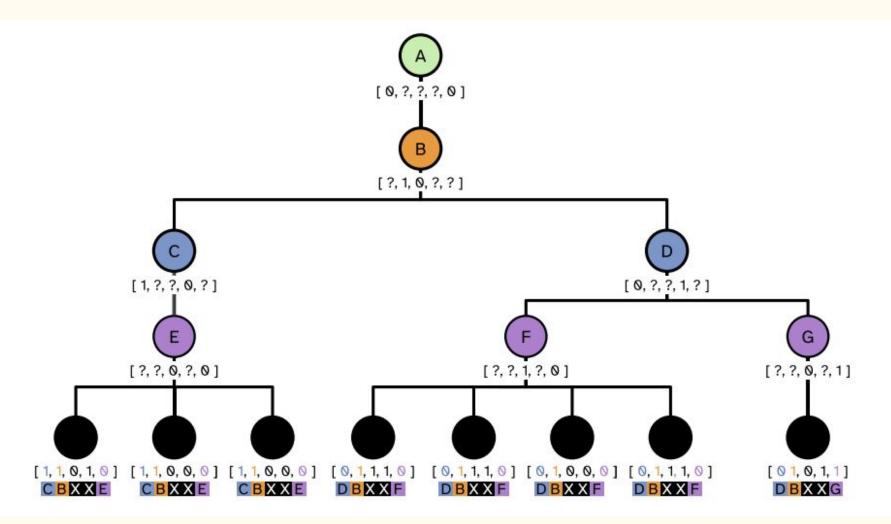


Background

Background

- Parent selection
 - \circ Lexicase selection
 - \circ Down-sampled lexicase selection

What is selection? What are training cases?



```
Result: Individual to be used as a parent
```

```
candidates := the entire population
```

```
cases := list of all test cases in a random order
```

while True do

```
candidates := candidates who perform best on case[0]
```

- if only one candidate exists in candidates then
 - l return candidate

end

if cases is empty then

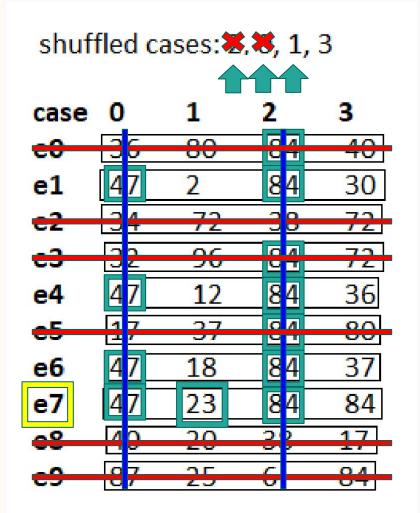
return a randomly selected candidate from candidates

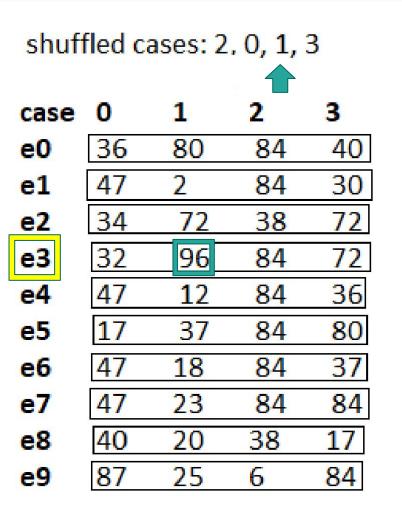
end

delete case[0]

end

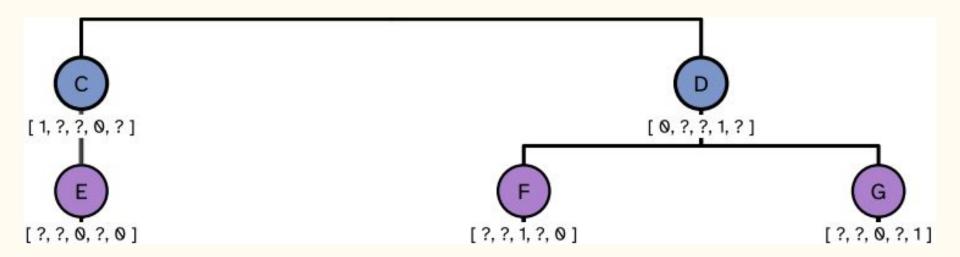
Algorithm 1: Lexicase Selection





Down-sampled Lexicase Selection

- Random subsampling the training set for each generation
- Significantly reducing the computational demands

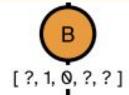


Methods

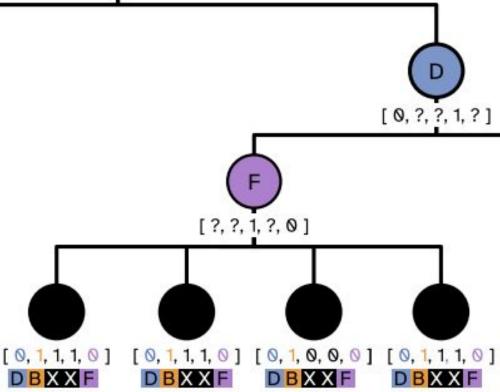
Methods

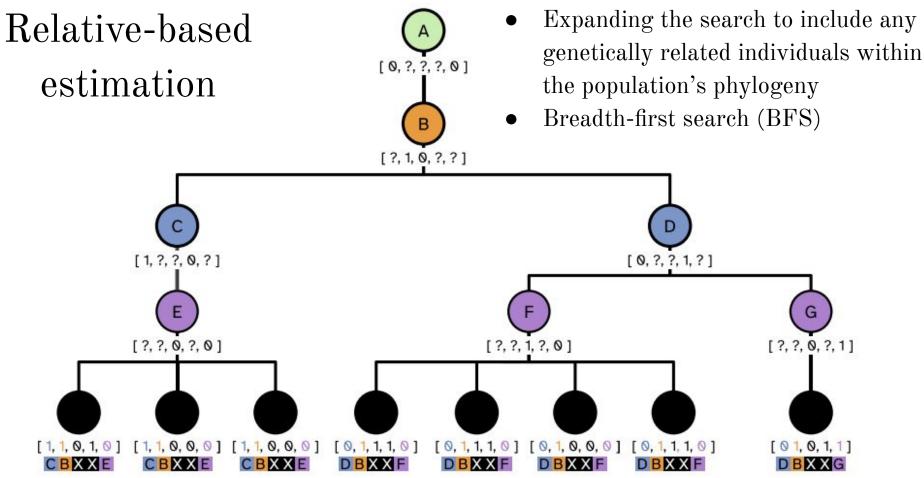
- Phylogeny-informed fitness estimation
 - \circ Ancestor-based estimation
 - \circ Relative-based estimation
- Genetic programming experiments
 - Experimental setup
 - \circ Program synthesis problems

Ancestor-based estimation



- Tracing the lineage of an individual backward through its ancestors
- Preserving the integrity of the evolutionary process
- Streamlining the computational demands





Experimental setup

- Comparing the problem-solving success among:
 - **3** estimation models
 - \circ 4 GP problems
 - \circ 4 subsampling levels
- Phylogeny searches depth is limited to **5**
- Running **30** replicates of each condition
- Evolving a population of **1,000** linear genetic programs in each replicate

Program synthesis problems

• Median

Programs are given three integer inputs ($-100 \leq \text{input } i \leq 100$) and must output the median value.

• Small or Large

Programs are given an integer n and must output

- "small" if n < 1000
- "large" if $n \ge 2000$
- \circ "neither" if $1000 \leq n < 2000$

Program synthesis problems

• Grade

Programs receive five integer inputs in the range [0, 100]: A, B, C, D, and score. A, B, C and D are monotonically decreasing and unique, each defining the minimum score needed to receive that "grade". The program must read these thresholds and return the appropriate letter grade for the given score or return F if score < D.

• Fizz Buzz

Given an integer x, the program must return "*Fizz*" if x is divisible by 3, "*Buzz*" if x is divisible by 5, "*FizzBuzz*" if x is divisible by both 3 and 5, and x if none of the prior conditions are true.

Results

- Phylogeny-informed estimation reduces diversity loss caused by subsampling
- Phylogeny-informed estimation improves poor exploration caused by down-sampling
- Phylogeny-informed estimation can enable extreme subsampling for some genetic programming problems

Enabling extreme subsampling for some genetic programming problems

а	Down-sampled lexicase												
	1% subsampling			5% subsampling			10% subsampling			50% subsampling			Full
Problem	None	Anc.	Rel.	None	Anc.	Rel.	None	Anc.	Rel.	None	Anc.	Rel.	None
Median	8	13	14	4	19	23	16	21	22	2	15	13	1
Small or large	0	0	0	0	0	0	0	0	0	0	0	0	0
Grade	1	10	11	22 ⁺	12	11	22	13	11	5	9	4	1
Fizz buzz	0	0	0	20	2	2	8	8	7	0	7	7	0

- In most combinations, the performances of ancestor-based estimation and relative-based estimation are close.
- In some combinations, there are statistically significant differences between no-estimation control and phylogeny-informed fitness estimation.

Conclusion

Conclusion

- Ancestor-based estimation > relative-based estimation for more efficient optimization
- The phylogeny-informed approach allows for individual evaluations on varied training set subsets, potentially increasing accuracy and problem-solving success if training cases are subsampled to minimize phylogenetic distance.
- Beyond fitness estimation, runtime phylogeny tracking might enhance evolutionary search broadly, particularly in quality diversity algorithms that emphasize phenotypic or behavioral diversity.

Acknowledgements

References

[1] Alexander Lalejini, Matthew Andres Moreno, Jose Guadalupe Hernandez, and Emily Dolson 2023. <u>Phylogeny-Informed Fitness Estimation for Test-Based Parent Selection</u>

[2] R. Boldi, M. Briesch, D. Sobania, A. Lalejini, T. Helmuth, F. Rothlauf, C. Ofria and L. Spector. 2023. Informed Down-Sampled Lexicase Selection: Identifying productive training cases for efficient problem solving

[3] Jose Guadalupe Hernandez, Alexander Lalejini, Emily Dolson, Charles Ofria
2019. <u>Random subsampling improves performance in lexicase selection</u>
Genetic and Evolutionary Computation Conference Companion (GECCO '19 Companion)

[4] Thomas Helmuth, Lee Spector2021. <u>Problem-Solving Benefits of Down-Sampled Lexicase Selection</u>

[5] Blossom Metevier, Anil Kumar Saini, Lee Spector 2019. <u>Lexicase Selection Beyond Genetic Programming</u>