International” license.

This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0 @ @ @ @

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Max Quintavalle

Procedural Quest Generation

Max Quintavalle
quint218@morris.umn.edu
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA

Abstract

The idea of quests used in this paper will be the concept of an
action or set of actions that are given to a player to complete
to obtain some sort of reward. Quests are found everywhere
in video games and a core part of how the video games work
and function. Quests have expanded in how they are used
and what can be achieved through them. Procedural content
generation has become increasingly common in video games.
For example in the popular game "The Binding Of Isaac" all
the layouts of the levels you go through are created through
procedural content generation. Now with improvements in
technology and AI we start looking into having the quests
themselves become procedurally generated. Procedural quest
generation is a specific type of content generation where
quests are created systematically with the assistance of pro-
cedural generation. This work presents the research of two
different methods of performing procedural quest genera-
tion. The first method is based on user input, where the user
will type something in and then a quest will be created on
its own without any actual developer input outside of the
creation of the method. The second idea we look at is a pro-
gram called Questgram that uses Al to help create quests
while the actual developer decides if they want to use the
quests created by the program. Each of these methods has
distinct pros and cons, and each contributes to improving
the idea of procedural quest generation.

Keywords: Procedural Content Generation, Large Language
Model

1 Introduction

Procedural content generation is the idea of generating data
algorithmically instead of manually that would be used as
some sort of content for a user. The idea of using procedural
content generation for quests is a relatively new topic and has
only had a small amount of research done so far. The main
idea behind the quest is based in a typical RPG (Role Playing
Game) or fantasy setting because those are the games where
you would be the most likely to find quests in games. That
fact is important because the first method we will be going
through will go over the pipeline method (will be explained
further in Section 2) for creating a quest and will do so in the
style of fantasy only. Ashby et al. describe a process of taking
a user’s text input and using knowledge graphs and large
language models to create a quest tuple [2]. A quest tuple is

the three main parts of the quest which are the quest title,
quest description, and a quest dialogue to go with the quest.
There were 2 studies performed for the pipeline method. In
the first study [2], Ashby et al. test how their large language
model performs when compared to other large language
models using their own custom metrics (described in Section
2), and in the second study [2], the satisfaction of the users
and the responsiveness of the pipeline results is tested.

The second method that is involved is the Questgram
method. Questgram is a method that takes a different ap-
proach. Instead of going off user input, it actually assists
the developer of the quest during the creation process. It
does this through a program it took inspiration from called
Evolutionary Dungeon Designer where Al works with the
developer to help create a product. The Questgram approach
has the Al give suggestions to the developer on what to add
to the quest line. These suggestions would be quest actions
like "Explore" or "Kill" that the developer can choose to add.
There were two studies performed. One where they tested
the AI to see how often the Al suggested certain actions,
which they called an "Expressive Analysis", and the other
test was a test done on 6 developers to see how they would
rate the tool and Al and how it could be improved.

Section 2 will go over the pipeline method and the indi-
vidual parts of it. After which will move into how it runs
all together and end with analysis of the studies. Section 3
will review Questgram, the developer-oriented procedural
generation technique. Broadly speaking, Section 3 is bro-
ken into 3 major parts: The first, Subsections 3.1 through
3.2, introduce the 2 main parts of the Questgram process,
Actions and Grammar. Subsections 3.3 and 3.4 will present
the results of the two Questgram studies. The final section,
Section 4, compares the methodologies from Section 2 and
Section 3 and concludes with a short reflection on possible
future applications.

2 Pipeline Method

The first method is a "pipeline" of multiple parts to create
a quest with dialogue from an NPC (non-player-character)
based on player text input. For example the player could be
talking to an NPC and the player states that they wish to kill
a dragon. In response, the system would use the pipeline to
create a quest based on that input. The quest would most
likely be something along the lines of go kill said dragon
and offer a reward of 10 rubies as payment. What makes

Procedural Quest Generation

Q_count

Poachers
- Cave

" ocated_in

| want to kill
a dragon.

202,
)
Input

(Player to NPC)

Knowledge
base

s
< located_in \Iocated_in

ﬂ'here is a great dragon thaa

roams in the darkness. In
the west is a place known
as Poachers Cave. You will
find a Ruby crystal to the
southwest. Meet up with
me there and we will deal a
serious blow against this

Qhreat. \/—/

Fight The Great Dragon
of Arelind located in
Poachers Cave to obtain
1 Ruby Crystal.

Dialogue

LLM
Quest (NPC to Player)

Figure 1. Image of the Pipeline Method (taken from [2])

this possible is the multistep pipeline that Ashby et al. [2]
made for this (see Figure 1). The first step is the input (from
player to NPC). Then, the input is passed to a knowledge
base that contains a number (determined by the developer)
of knowledge graphs of how different things in the game
relate to each other. Next, the pipeline method will formulate
a quest off of this knowledge graph (Section 2.2), which then
is thrown into a large language model that would generate
the dialogue for the quest which the NPC would give to the
player.

2.1 Players

The idea to make the quests based off of the user input is to
increase the enjoyment and the engagement of the players.
The makers of this pipeline have attempted to achieve this
by letting player input guide the automated construction
of a new quest, instead of forcing the player to follow a
randomly selected pregenerated quest that might have no
real significance to the player. The way they attempt this is
by letting the "players initiate quest generation via free-form
text entered into the terminal" [2]

This is their process of having an NPC and a player interact
and communicate with each other, which has similarities to
way that a player would try to communicate with an NPC in
most games. The pipeline method requires, though, that the
message that the user wishes to type must be some sort of
request about either some kind of action the player would
like to do or some kind of goal they would like to achieve.
The exact process of how the user input is configured into a
quest will be later described in Section 2.3.

2.2 Knowledge Graphs

Knowledge graphs are simple graph where nodes represent
objects, people, or places while the edges describe the re-
lationships between the entities they connect. An example
of this can be found in Figure 1. The knowledge graph in
Ashby et al’s pipeline method is set up in a way that nodes
represents entities and objects in the game while the edges
represent the relationships between these entities and ob-
jects. These relationships could be something "wants to have",
"wants killed", "needs". After taking the user text input the
knowledge graph is scanned to determine if any of the nodes
and edges relate to the player’s input and sent to the next
part of the pipeline. The pipeline method has a knowledge
base instead of a knowledge graph (See in Figure 1) and that
is because their knowledge base is database of multiple dif-
ferent knowledge graphs. The knowledge base that Ashby
et al. [2] use for the method to test with is relatively small,
but they do believe that with a bigger knowledge base, the
quest generation performance would improve. They made
the knowledge base with their idea to be able to handle a
multitude of different quest types. That can range from a
variety of different objectives such as go to point A, collect
said material, or something like kill this monster.

2.3 Quest Generation

In this subsection, we describe how the quest would be gen-
erated through their pipeline describing the actual events
as it goes through the pipeline. We will use our example
from earlier, which was where the player was talking to an
NPC. Let us call the NPC John. The player types in their
request "I want to kill a dragon” to John. Then, the pipeline
program would find johns node in a knowledge graph and
then grab all the edges and nodes that are within 2 nodes

of johns. "Once all acceptable relations to the NPC nodes
have been identified, their English-language representations
are converted to a vector representation and compared via
cosine similarity to the player’s original input. The relation
with the highest cosine score is selected as the first edge
in a knowledge graph traversal to extract information with
which to construct a quest” [2]. In our example we will say
that John had a dragon that he wanted killed that scored the
highest cosine value. Then, these terms are thrown into a
quest structure/template that has sections to place nodes val-
ues and the relationships in to make a quest description. The
quest structure is the framework of the quest with spaces de-
signed to put in the terms taken from the knowledge graph.
In the end it would make a quest with the title "Kill the red
dragon" and a quest description saying "Kill the red dragon
in the Sarum mountains for 10 rubies". That statement is then
sent to the the large language model to create the dialogue.

2.4 Language Model

The large language model is used after the quest generation
and uses the quest description to make the dialogue that is
shown to the player. They use "the GPT-2 language model, a
transformer-based neural network architecture that learns
to predict likely continuations of a conditioning prompt or
narrative context” [2]. They have trained this Al using World
of Warcraft data which is a popular online video game that
is in a fantasy setting similar to "Lord of the Rings". They
made the data set up in such a way that the data always
includes a quest, a quest title, and NPC dialogue to go with
it as well for the Al to be trained on. They have put it this
way because for their pipeline, they wish for every quest to
have some kind of quest title, the quest description, and the
NPC dialogue. The next step to the generation is to make the
quest feel more immersive and give the NPC the dialogue to
say to the player.

2.5 Large Language Model Dialogue Study

Ashby et al. performed a study to see the effect different
large language models had on their system using 4 large
language models and handcrafted World of Warcraft (WoW)
Quests. Ashby et al. surveyed students from the computer
science major at Brigham Young University, where the stu-
dents were asked to write in a request and then rate the
5 quest dialogues they were given. The rating categories
were Fluency, Coherence, Novelty, and Creativity and the
following definitions were used (taken from [2]):

Fluency: The dialogue makes use of correct English.
Coherence: The goal is clear from the dialogue.
Novelty: The dialogue is written in a novel way.
Creativity: The dialogue is creative.

The main 2 large language models that should be focused on
is the DRG-L model and VS-MYS model. The DRG-L model
is the main model that is being used for the pipeline and

Max Quintavalle

is trained on the data set described earlier (Section 1) of
quest data split into tuples (quest title, quest description, and
dialogue). VS-MYS is a model developed by Stegeren and
Mysliwiec [3]. This model was trained on a large amount of
quest data not set in the tuple format, which made it unsuit-
able for the pipeline method. The results (found in Figure 2)
from the study was determined that the handwritten WoW
quests were rated the highest with DRG-L and VS-MYS scor-
ing roughly the second highest. Descriptions of all the large
language models used in the study can be found in Table 1.

Dialogue Quality By Model

[\ —— DRG-M
s | ~ # . DRG-L
_/ . \ - t , "& \ ch"‘ E ’.-.:',: VS_MYS
TEEYN BN EEY ZEN |~ wow
SER EE N S Ea
o =8N BN AN AN
7 :/»"cf-'-\ TN :/?oc--'\ =G\
L= TN 0 -&-'\ = ge N\
) :/»’cf-'\ = 0N = ow e N
P BN TEN SEN BN
. :/?é.‘\ &N = cﬁ.‘\ =g |
:/?é-'\ SN = -6:.-'\ g™\
=By e = 0N
1 :/aq-\ :aq\ :/Jc-\ :JC-\
| 10 1'\ _,/hjoc- | |°c|-’\ - JC'C'"'
=5 TN e T oeN
AR TOON DAY

Fluency Coherence Novelty Creativity

Figure 2. Dialogue quality results in terms of fluency, coher-
ence, novelty, and creativity from the large language model
dialogue quality study (taken from [2])

2.6 Satisfaction and Responsiveness Study

A second study was performed by the same researchers [2]
on a subset of the previous participants. This study was to
test overall player satisfaction with the system. The par-
ticipants were instructed on how the system operated and
told to engage in text-based conversation with a new NPC.
Because of the way that the NPC was set up, the initial
phrase the players gave were enough to trigger quest gen-
eration response where it would output 3 different quests.
The three different responses to the participant were, "an
option from our normal, knowledge graph-based model, a
randomly-selected hand-written option from the World of
Warcraft training data, and an option drawn from a naive,
baseline 4-gram language model" [2]. All of these options
followed the tuple pattern of Quest, Title, Dialogue and each
of the options were shown randomly to the participant.They
asked the participants then to answer 3 questions about the
quests they were given in order to figure out which ones
felt the most responsive and which ones were the most cre-
ative/exciting and their reasoning for choosing the ones
they did. The results determined that players preferred the
WoW quests even though they were random because the
knowledge graph model and the n-gram model often felt se-
mantically incongruent to the participant. Even though the

Procedural Quest Generation

Model Description

The largest version (774M parameters) of
OpenATI's GPT-2 language model, fine-tuned
using the Hugging Face transformers library
on their dataset. The primary difference be-
tween this model and VS-MYS is in its train-
ing.

A medium-sized (355M parameters) imple-
mentation of GPT-2 fine-tuned on a cleaner
subset of 25% (8638/34450) of their dataset.
This model explores the ability of a smaller
and more resource-effective language model
to produce effective NPC dialogue.

A distilled variant of the (82M parameters)
GPT-2 language model trained to generate
quests whose locations, organizations, and
people are replaced by back-filling from re-
spective node values. This model tests the
feasibility of learning generalized dialogue
structures rather than fully developed NPC
dialogue.

A GPT-2 language model fine-tuned by van
Stegeren and Mysliwiec [3] on a corpus of
video game quests. This model produces NPC
dialogue that most closely matches the quali-
ties of handcrafted quests. However, due to
differences in training, this model is incom-
patible with our content generation frame-
work and cannot receive raw quests as input
to dialogue generation.

(Not a language model.) Hand-coded quests
from the World of Warcraft massively mul-
tiplayer online video game. These quests of
necessity reflect neither the intent of the user
nor the state of the game knowledge graph,
but they are a useful comparison when eval-
uating the fluency and believability of quests
generated via our framework.

DRG-L

DRG-M

DRG-T

VS-MYS

WoW

Table 1. Descriptions of all the large language models used
in the dialogue study (taken from [2])

WoW quests were the most preferred the pipeline method
had slightly more votes (169 votes) than the WoW quests
(159 votes) when it came to how responsive they were. After
analyzing the results further they discovered that most of
the participants asked something along the lines of "How
can I help you?" or "Do you have any quests?" which caused
the models to not have any specific data to actually use to
make a quest and make the random WoW quest feel more
appropriate.

3 Questgram Method

The Questgram (Qg) approach takes a different turn on the
idea of procedural quest generation where the actual Al
isused during game development, rather than generating
quests on the fly. The Questgram approach is labeled aa a
mixed-Initiative approach where the system or Al work with
the developer to operate and complete a task. The system
that Alvarez et al. [1] use follows the idea of making multiple
quest actions, which are the simple actions that are required
to complete a quest, to create an overall narrative questline
all at once. Currently it only supports the option of one
main quest line, but the makers of Qg do have the idea of
expanding it to support the expansion of multiple quest lines.

3.1 Quest Generation

Qg is based off of a program called Evolutionary Dungeon
Designer (EDD) which is a level dungeon designer and quest
designer at the same time. In other words, EDD supports
developing a dungeon while also allowing the incorporation
of pieces of the dungeon within a quest. It already has its
own mixed initiative Al system in place; it only works for
making singular quests and not a long questline of multiple
quests. Qg uses this program and has the Al give suggestions
on how to continue on with the dungeon/quest in a more
long term idea. These suggestions are something that the
developers of the quest can use or look into at any time and
are not forced to use them.

3.2 Actions and Grammar

The Al during the building process can offer a variety of
options for the developer to use while creating the quest and
one of which is the quest actions which are what exactly is
happening in the quest and what is done. Some examples
of what these quest actions would be are "Kill", "Explore",
or "Spy". These individual quest actions, when brought to-
gether, form the actions that are part of the questline. The
way that the Al chooses what actions to suggest is through
the generative grammar and prerequisites. The prerequisites
are conditions for quest actions to be allowed; for example
there must be an entity that can be killed for the action "Kill"
to be used or suggested. The generative grammar follows
productions rules that are split into 2 categories: motivation
and non-motivation. Motivation is the idea that the quest
is created because the NPC is motivated to do so. An ex-
ample of this would be a questline to gain reputation or
knowledge for the NPC. Questlines in the non-motivation
category are much more simplistic questlines. Examples of
non-motivation questlines are simple commands such as to
go here or get that. When using the EDD framework the
developer first make the dungeon and NPCs then the Qg
Al is able to either completely make a quest on its own or
together with the developer. If the user decides to take the

mixed initiative approach they can make the quest them-
selves and have the Al later suggest items they should need
to get during the quests, how the storyline could continue
from the said quest, or could even suggest different options
the user could rewrite the quest to be.

3.3 Expressive Analysis Study

An expressive range analysis is a study of content generated
by the system to see if it has diversity and the variations of
the output (for the case of this study it would be the quest
actions generated) by counting the number of similar outputs.
Alvarez et al. performed this analysis by having Qg create
100,000 quests with a maximum of 50 quest actions. Alvarez
et al. ran an Expressive range analysis where they checked
how often quest actions appeared to see the diversity and
expressivity of the quest actions that Qg would use. From
the data that was created they measured mainly two things,
how many quest actions were generated into a quest and
how often the individual quest actions popped up (Figure
3). For example they have quest actions such as "Explore" to
explore an area, "Kill" to go kill an enemy, and "Defend" to
defend a location or NPC. The results showed that in quests
that had only one quest action that "Repair" was the most
common coming up 60% of the time. If the quest had around
5 actions the most common quest action was "Explore". For
longer quests "Explore” and a handful of other actions are
very common as one of the earlier actions for quests, but
as the quest gets longer they become less and less frequent.
Instead the most quest action common in the later steps were
found to be "go to".

With the full results (3) it shows the percentage chance
that every quest action has to occur given the quest step
you are at with the beginning starting at 0. it is shown that
"Explore" is the most common quest action to be recom-
mended. But as it gets to later stages of a quest the chances
for "Explore" drop from 87% to 24% while on the other hand
"go to" increase its odds from 0% to 28%. The reason this is
believed to occur is because at the early stages most areas
are not known to the player and when the player has gained
knowledge of various places they can not explore said areas
and now need to "go to" instead. "Some actions are very un-
derrepresented regardless of quest length or step number,
as is the case for "Defend", "Report", "Experiment”, "Escort",
"Capture”, and "Spy". This implies that these actions have
very little chance to be suggested at any quest step, so it is
more likely to end up in a quest if manually added by the
designer" [1]. This is important to recognize so that in future
improvements these options become more apparent in the
suggestions.

3.4 Developer Use Study

The next step to testing Qg was to have users try the program
and get their feedback. They had 6 participants, which were
all game developers in the level and quest design field, were

Max Quintavalle

game development alumni and had no experience with EDD
or any other mixed initiative tool. They then had 3 tasks to
complete: to create a questline manually, to make a questline
automatically, and lastly to make a questline using the mixed
initiative approach.

3.4.1 Manual. The participants were asked to use Qg to
create a level manually, including the questline. After com-
pleting the tasks, participant feedback was recorded: Partici-
pants responded that Qg was easy to use and to understand
but had complaints when making a questline that they were
not able to reorder quest actions. So once they made a quest-
line if they wanted to swap around how it worked they would
have to start from scratch and rebuild the questline.

3.4.2 Automatic. The participants made the level and af-
ter which they let the Qg Al fully develop the questline. The
participants talked about the usefulness of this when making
games that required a lot of quests, but overall the opinions
on the fully automatic questline was negative. "Most partici-
pants remarked the system as random and illogical regarding
random tile picks connected with quest actions as the system
picked farther away NPC and targets with no purpose” [1].
One other point of information was that participants did not
like the automatic use because it felt like it took away their
freedom for creating their questline and ideas.

3.4.3 Mixed Initiative. The participants this time were
able to design a level and create a questline themselves but
this time they had the suggestions from the Qg Al that they
could use when they wished. The participants stated that it
helped them in development, making the questline creation
process feel quicker, and helped inspire them when they
were at a blockage for what to do next. There were some
concerns that when the participants got to the later stages
of the questline creation they felt that the Qg suggestions
lacked cohesiveness.

Some comments that were given from the participants
after the mixed initiative approach talked about how they
felt that the suggestions were a good way to gain inspiration.
"One participant said that ’[the system] suggested captur-
ing a monster which they had thought about killing. The
"capture" option might be more interesting and might have
been an option I had otherwise overlooked." [1]. Through
looking at the other comments it was concluded that most
participants felt that the suggestions were good ways to gain
inspiration instead of actually implementing them.

After the testing was all done the participants were asked
to give comments about Quest actions, Usability, Creativity,
overall experience, and any features they felt were missing.
Most of the quest actions were clear and easy to understand
but there were some cases where the participants had to
go through trial and error to figure out what some actions
meant. The participants stated that it was a useful tool for
game development but questioned how it would perform in

Procedural Quest Generation

DEFEND
TAKE
STEALTH
USE P8
REPORT
DAMAGE
EXPERIMENT
EXPLORE
GIVE

READ
REPAIR [
ESCORT
GATHER
LISTEN
EXCHANGE
CAPTURE
KILL

SPY

GO_TO

% 16 17 18 18 19 19 2

2

21

6 21 T T T T T T BB R

Figure 3. Results from the expressive analysis of Questgram (taken from [1])

different game settings like a long-term grinding game or a
very short-term quick-paced game. Some participants also
felt that they would not know for sure how useful it would be
until they could actually test run a game through it. Overall
most of the participants felt that the system helped them
be more creative but mainly was a useful tool to help with
ideas when they hit a blockage. They felt the tool was useful
for those in the gaming community, but those with little
background knowledge would find Qg difficult to use and
understand. A suggestion they had to improve the system
was to give the user a way to reorder the questline without
having to fully remake a questline.

4 Conclusion

Procedural Quest Generation techniques are still in the de-
velopment and testing stage but this is a very important
step in developing the use of procedural generation with
quests in video games. The authors of these papers expand
on different ideas as to how the Al itself works but they both
cover the ways of making quests procedurally in some way.
Questgram has some faults of its own with it only having a
limited amount of quest actions a user can choose from and
the fact that when you want to tweak the questline you have
to delete all of it and start from scratch again. These can be
solved with further development of the program where they
allow for easier editing and adding more quest actions to
be available to the user. The studies done in the Questgram
method show how there is room to improve with the change
of having uncommon actions to be offered more by the Al
instead of a few actions being the overly common in the
suggestions. It is also shown through the use of developers
that is a helpful tool to inspire even though it can sometimes
limit or slow down the process.

The pipeline method itself has the issues of limited size
when testing because they did not work with a fully-sized

knowledge graph that it would need to be for an actual full
video game since that would require a lot of work. This issue
causes some cases where a player asks for something outside
the scope which limits the answer to be that the NPC does
not have the knowledge for it. Also, for the large language
model there is the issue of the data that it was trained on has
resulted in some incorrect English. For example, when the
user gives an input while talking with a pirate NPC, it would
randomly throw out phrases such as "Arr" or "Yarr" which
is not desired. These faults can all be fixed through either
creating larger knowledge graphs to expand on options or
performing more thorough and detailed training on the large
language model used. The studies from the pipeline method
show that the method’s current large language model still
falls behind in the metrics novelty, creativity, fluency, and
coherence (Section 2.5) but are not that much behind and
are close to being as good as the hand written WoW quests.
The study done on player satisfaction and responsiveness
proved that even though the WoW quests were described
better the pipeline method was still voted to be better at
creating quests tuned to the user’s input. The future outlook
for these methods is that Questgram could be developed
more and be used in the future as a helpful tool to help the
developers of quests in games to create them faster and with
more variety using the suggestions as inspiration for new
ideas. For the pipeline method they talked about including
open chat AT’s that simulate real conversations with users
alongside the personalized quest generation to make a more
immersive experience for the user. The idea of procedural
content generation is something that games are constantly
evolving alongside with and will help each other to improve
as time goes on.

Acknowledgments

Thank you to all of my professors I have had over the years
and to the friends and family who have supported me through
my life. Special thanks to Professor Kristin Lamberty and
Professor Wenkai Guan for helping me with my research.

References

[1] Alberto Alvarez, Eric Grevillius, Elin Olsson, and Jose Font. 2021.
Questgram [Qg]: Toward a Mixed-Initiative Quest Generation Tool.
In Proceedings of the 16th International Conference on the Founda-
tions of Digital Games (Montreal, QC, Canada) (FDG ’21). Association
for Computing Machinery, New York, NY, USA, Article 6, 10 pages.

[2]

(3]

Max Quintavalle

https://doi.org/10.1145/3472538.3472544

Trevor Ashby, Braden K Webb, Gregory Knapp, Jackson Searle, and
Nancy Fulda. 2023. Personalized Quest and Dialogue Generation in
Role-Playing Games: A Knowledge Graph- and Language Model-based
Approach. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems (Hamburg, Germany) (CHI ’23). Association
for Computing Machinery, New York, NY, USA, Article 290, 20 pages.
https://doi.org/10.1145/3544548.358 1441

Judith van Stegeren and Jakub Mysliwiec. 2021. Fine-tuning GPT-2
on annotated RPG quests for NPC dialogue generation. In Proceed-
ings of the 16th International Conference on the Foundations of Digi-
tal Games (Montreal, QC, Canada) (FDG ’21). Association for Com-
puting Machinery, New York, NY, USA, Article 2, 8 pages. https:
//doi.org/10.1145/3472538.3472595

https://doi.org/10.1145/3472538.3472544
https://doi.org/10.1145/3544548.3581441
https://doi.org/10.1145/3472538.3472595
https://doi.org/10.1145/3472538.3472595

	Abstract
	1 Introduction
	2 Pipeline Method
	2.1 Players
	2.2 Knowledge Graphs
	2.3 Quest Generation
	2.4 Language Model
	2.5 Large Language Model Dialogue Study
	2.6 Satisfaction and Responsiveness Study

	3 Questgram Method
	3.1 Quest Generation
	3.2 Actions and Grammar
	3.3 Expressive Analysis Study
	3.4 Developer Use Study

	4 Conclusion
	Acknowledgments
	References

