Decentralizing the Web: A Study Of The Interplanetary — File system — Matthew Wanner

Why I choose this topic

- I wondered why in old online games there would be a host migration
- A lot of video games today use a Client-Server architecture to host online games
- Old online games would use a peer-to-peer (P2P) hosted meaning one of the players systems was hosting the lobby
- I thought it was cool that they didn't rely on a central server
- I learned what P2P networks were and thought they were interesting and wanted to learn more
- Did some research and found study's on the Interplanetary File System (IPFS) a popular P2P network

Outline

- IPFS overview
- Analysis of IPFS performance
- Use cases and application of IPFS
- Analysis of IPFS use in restricted environments.
- Conclusion
- Q&A

IPFS Basics

- Traditional internet:
 - Relies on a client-server model
 - Clients request resources from a central server
 - Files located and accessed via URLs that point to their location on a server
- IPFS network:
 - Operate through content addressing
 - Uses unique content identifiers (CIDs) to access files based on their content, not location
 - Each peer on IPFS stores and serves content, contributing to the network

Why use IPFS?

- Benefits of IPFS:
 - Independant
 - Moves away from reliance on central servers by distributing data across multiple nodes
 - Resilient
 - Network that can withstands outages and censorship more effectively than centralized models
 - Data permanence
 - Content remains accessible as long as its hosted somewhere on the network

IPFS DHT Network

Adding a File to IPFS

- Every participant in the network acts as a node, contributing to the storage and retrieval of files
- When a file is added to the IPFS from someones computer (node) it is hashed to generate a Unique Content Identifier (CID)
- Node creates a provider record saying to the network that it has the file associated with the CID
- Distributed Hash Table (DHT) gets updated with the provider record
 DHT is a decentralized directory that maps files CIDs to nodes that hold them
- Provider record is stored on the 20 "closest" nodes to the CID based on the DHTs distance metric

Retrieving a File from IPFS

- Look up file by its CID
- When a node wants to retrieve a file, it queries the DHT with the CID of the file it wants
- The DHT responds with the provider records for that CID
- Querying node uses information from provider record to connect to provider node
- Querying node receives file from provider node
- Local node verifies file by hashing it and comparing the hash to the CID to ensure integrity
- This node can now act as a provider of the file to other nodes. Enhancing availability across the network

IPFS DHT Network

How Well Does it Work? Analysis of IPFS data

- Go through a study that covers
 - Performance Data
 - IPFS Gateway usage Data
 - Peer Data

Design and Evaluation of IPFS: A Storage Layer for the Decentralized Web

Authors: Trautwein, Dennis and Raman, Aravindh and Tyson, Gareth and Castro, Ignacio and Scott, Will and Schubotz, Moritz and Gipp, Bela and Psaras, Yiannis

Publisher: Association for Computing Machinery

Performance Data Collection Methodology

- 6 virtual machines across 6 regions to simulate IPFS nodes
- Each machine ran an IPFS node to conduct controlled tests to assess how efficiently nodes can publish and retrieve content
- A node would announce a new 0.5 MB object to the network
- The other nodes then attempted to locate and download that object over the network
- After retrieval, nodes disconnected to ensure a fresh test environment for the next run
- Number of successful publications and retrievals were recorded

AWS Region	Publications	Retrievals	
af_south_1	547	2,047	
ap_southeast_2	547	2,630	
eu_central_1	547	2,708	
<pre>me_south_1</pre>	547	2, 112	
sa_east_1	546	2,363	
us_west_1	547	2,704	
Total	3, 281	14, 564	

Analysis of Performance Data: Publication

- Median publication time across regions is 33.8 seconds
- 90th and 95th percentile times are 112.3 and 138.1 second respectively
- Delays are consistent across regions
- DHT walk is primary contributor to publication delay (87.9% on average)
- Improving DHT walk efficiency is a key area for future improvements

Analysis of Performance Data: Retrieval

- Achieved a 100% success rate
- Performance overview
 - Noticeable variability in retrieval times
 - On average, retrievals take longer than loading a typical web page but are faster than content publications on IPFS
- Retrieval speed
 - 2.9 seconds for 50th percentile (median)
 - 4.34 seconds 90th percentile
 - 4.74 seconds 95th percentile
- Regional Variations
 - Central Europe fastest median time at 1.81 seconds
 - South Africa slowest median time at 3.75 seconds
- Reason for efficiency in retrieval vs publication
 - Publication DHT walks need to find 20 nodes while a retrieval walk ends upon finding a single node.

	Publication Percentiles			Retrieval Percentiles		
AWS Region	50th	90th	95th	50th	90th	95th
af_south_1	28.93 s	107.14 s	127.22 s	3.75 s	4.88 s	5.31 s
ap_southeast_2	36.26 s	117.74 s	142.79 s	3.76 s	4.85 s	5.15 s
eu_central_1	27.70 s	106.91 s	133.27 s	1.81 s	2.28 s	2.50 s
<pre>me_south_1</pre>	29.32 s	105.45 s	130.48 s	2.59 s	3.24 s	3.48 s
sa_east_1	42.32 s	115.45 s	148.04 s	3.60 s	4.56 s	4.93 s
us_west_1	36.02 s	121.13 s	147.59 s	2.48 s	3.17 s	3.42 s

Af_south_1 = Cape Townme_Ap_southeast_2 = Sydneysa_eEu_central_1 = Frankfurtus_v

me_south_1 = Bahrain

sa_east_1 = Sao Paulo

us_west_1 = N. California

IPFS Gateway data Collection Methodology

- Gateways are a different way to interact with IPFS
 - Gateways provide a way to access the IPFS network without the need to run your own node by having users access it through an HTTP interface
- Authors collected and analyzed GET requests from a public IPFS gateway
- Focuses on traffic from one day in January 2022 at a gateway located in the US
- Examined 7.1 million requests looking at details like
 - When request was made
 - What kind of device was used
 - Where the request came from
 - Volume of data transferred per request
 - Cache hit rate

Analysis of Gateway Data

- User Engagement
 - Identified 101,000 users
 - Accessing 274,000 unique CIDs
- Data size
 - Average size of requests was 664.59 KB
 - 79.1% of requests were larger than 100 KB
 - No correlation between object size and latency, suggest other factors affect delay
- Speed and efficiency
 - 46% of requests were fetched instantly, indicating a cache hit
 - Most remaining requests served under 24ms
- Over half of traffic (51.8%) of traffic came from third party sites
 - Significant portion of referred traffic from a small number of sites, mainly streaming and NFT platforms

	nginx cache	IPFS node store	Non Cached
Latency (Median)	0 s	8 ms	4.04 s
Traffic Served	46.4 %	38.0 %	15.6 %
Requests Served	46.0 %	40.2 %	13.8 %

Nginx is a cache for HTTP requests, caching responses to speed up response times

Authors note that while gateways can centralize certain aspects of IPFS, the possibility for anyone to set up a gateway helps maintain the decentralized ethos of IPFS

Peer Data Collection Methodology

- Researchers utilized a crawler to collect peer data due to a lack of a centralized peer directory.
 - A crawler is a software tool to traverse and gather data about networks.
- Operated crawler from a server in Germany every 30 minutes.
- Crawler systematically queried nodes starting with 6 established IPFS nodes and expanded outwards until no new peers were found.
- Crawler ran over 9,500 times and compiled a detailed list of peers including location, how long the peers stayed online, and technical details

Analysis of Peer Data

- Identified 198,964 peers across 152 countries
- Reachability
 - \circ 54.5% of IPs could be reached at least once
 - 45.5% were never reachable
- Geographical Concentration
 - Highest concentrations of users were in the US (28.5%) and china (24.2%)
 - France, Taiwan, and South Korea were next highest
- Reliability
 - Only 1.4% (2,747) of peers showed >90% uptime, considered "reliable"
 - About on-third of peers were never accessible (highlights network resilience)
- Distribution of users ensures no single country can dominate or disrupt IPFS, maintaining decentralization
- A concerning finding is that the top 10 IP addresses host nearly 66k distinct PeerIDs, raising concerns about misuse and its impact on routing

Use Cases of IPFS

- Video on demand
- File sharing
- Social networking services
- NFTs (Non-Fungible Token)

Dude, where's my NFT? Distributed Infrastructure for digital Art

Authors: Leonhard Balduf, Martin Florian, Björn Scheuermann

IPFS and NFTs

- Digital Art
 - NFTs typically represent digital assets like art, music, videos, or other creative work

• Blockchain storage

- Typically the blockchain stores the NFT (another P2P network)
- Blockchain is expensive and inefficient

Role of IPFS to NFTs

- Provides a decentralized solution for NFTs, overcoming limitations of traditional blockchain storage
- Utilizes content-addressing capabilities, ensuring data immutability and authenticity
- Enhances accessibility and reliability, as files are redundantly hosted across multiple nodes
- IPFS reduces costs associated with data storage on blockchain

Note: I'm not an NFT enthusiast. I think this highlights the benefits and versatility of IPFS

I'm InterPlanetary, Get Me Out of Here! Accessing IPFS From Restrictive Environments

Authors: Leohard Balduf, Sebastian Rust, Björn Scheuermann

Assessing IPFS's functionality in restricted environments

- Testing China's Great Firewall (GFW)
- Researches experiment setup
 - 2 non-NATed (Network Address Translation) machines set up (controls)
 - A NAT provides a layer of security by hiding IP addresses from external devices
 - One in Germany and another in the US
 - 2 NATed machines set up
 - One in China
 - One in US act as a control for the NATed machine in China to measure the additional impact of the GFW
- Tested IPFS's locally hosted node data exchange and gateway accessibility

Overcoming Censorship: Gateway testing

- Tested 81 public gateways listed by the IPFS community
- All gateways were hosted outside of China, necessitating data to traverse the GFW
- Attempt to retrieve a widely replicated text file through the public IPFS gateways from each node
- Check for any use of whitelisting or other selective content delivery mechanism by verifying its hash

Gateway connectivity Results

- 14 of the 81 gateways worked correctly from the non-NATed clients in germany and US
 - Author notes that the gateway list was community maintained and may have outdated entries
- One of those 14 gateways was inconsistently accessible from US NATed node, suggesting flakiness
- Only 5 gateways were functional from the node in china, indicating challenges but not complete blockage by the GFW

Gateway Connectivity Results

-

(a) Functionality by Vantage Point.

Machine	Tested	Working
DE Client (non-NATe	^{d)} 81	14
CN Client	81	5
US Client	81	14
US Client (non-NATe	d) <mark>81</mark>	13

IPFS Client Node Testing

- Using the same 4 vantage points. This time using IPFS client software instead of gateways
- Create random files to ensure they're the only ones providing that content
- Each node downloads content from a different node in a random order in rounds
- Conduct test over 7 days, amounting to about 2000 data points per vantage point
- Verified hash for integrity of downloaded content
- Authors note that downloading and setting up an IPFS Client in China was more difficult but not insurmountable (Due to some sources of downloading the software being blocked)

Overcoming Censorship: IPFS Client Testing Results.

- Attempted 8,064 downloads across the 4 nodes with a 71% success rate
- Downloading
 - German non-NATed client success rate = 58%
 - US non-NATed client success rate = 66%
 - US and China NATed clients had success rates of 80%
- Uploading
 - German and US non-NATed clients success rates were >90%
 - \circ ~ US and China NATed clients success rates both were $\approx 50\%$
- This shows that IPFS client nodes are functional even in restricted environments
- Authors note that in a real world scenario, a node would likely download from multiple nodes, increasing chances for success

Nature of NATs on P2P networks.

- NATed Networks
 - Downloads are easier from both NATed and non-NATed networks
 - Uploading is harder especially to non-NATed networks. Uploading to other NATed networks is more successful
- Non-NATed Networks
 - Downloading is harder if downloading from a NATed network
 - Uploading is easier because these networks are directly accessible

Overcoming Censorship: IPFS Client Results

Download Success Rate by Storing Machine Download Success Rate by Downloading Machine

Stored On	n	Succ.	Rate	Downloaded By	n	Succ.	Rate
DE Client (non-NATed)	2016	1834	0.91	DE Client (non-NATed)	2016	1160	0.58
CN Client	2016	1049	0.52	CN Client	2016	1621	0.80
US Client	2016	956	0.47	US Client	2016	1608	0.80
US Client (non-NATed)	2016	1873	0.93	US Client (non-NATed)	2016	1323	0.66

Overcoming Censorship Conclusion

- Functional
 - IPFS operates effectively even in restrictive environments, overcoming barriers to information sharing
- Points of Failure
 - Public gateway access could be limited
 - Distribution of IPFS software
- As long as these risks can be mitigated, IPFS can serve as a powerful tool for sharing information freely in environments where access is often constricted

Conclusion

While IPFS or other P2P network may never surpass the performance or replace the traditional client-server architecture, the various studies that I've talked about today shows that IPFS is a reliable alternative way for storing, accessing, and sharing data around the world. Making the internet a more open and user empowered environment.

