
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0

International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Ellis A. Weglewski

Hyper-Dimensional Computing and its Applications
in tinyML
Ellis A. Weglewski

ydnawizard@protonmail.com
Division of Science and Mathematics

University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
As computing systems enter the realm of nano form levels,

new fields of computational development have spawned,

each posing their own set of challenges. Amongst these

fields is Tiny Machine Learning (tinyML), which aims to

install machine learning on tiny embedded systems. The

restrictions imposed upon algorithms by the limited hard-

ware of nano-scale tiny systems make contemporary ap-

proaches to machine learning non-contenders. Hyperdimen-

sional computing is an approach to representing data as

high-dimensional vectors which allows for one-pass encod-

ing and quick all-encompassing comparison operations via

an associative memory. This approach is power-efficient, ro-

bust, and can be done in-memory, all of which make it a

viable candidate for tinyML.

Keywords: HDC, hyperdimensional computing, tinyml, tiny

machine learning

1 Introduction
1.1 tinyML
tinyML is an area of computational development focused

on deploying machine learning models on tiny embedded

systems. Embedded systems are small devices optimized for

the handling of a singular task, which can then be imple-

mented as modules in a larger system. Neural networks can

be implemented on many such devices to achieve satisfac-

tory results. However, as tiny systems scale downwards into

nanometer dimensions, such networks will find themselves

starved of resources. Additionally, nano-scale tiny systems

are sensitive to highly energetic particles present in the natu-

ral space environment (e.g. alpha particles from radiation or

protons and neutrons from cosmic rays)[2]. In the event that

such a particle strikes a nano-scale tiny system, distruption

of the computation pipeline, change of logic state, or even

permanent damage to the system may occur [2]. These er-

rors are known as single event upsets[2] and occur at a rate of
about 1-3 upsets (depending on the altitude of the system’s

location) per million integrated logic gates a day[13]. Given

these challenges, a more lightweight and robust approach to

tinyML is required for deployment at the nanometer form

level.

1.2 Hyper-Dimensional Computing
Humans excel at quickly determining how similar or dissim-

ilar things are to each other. For example, we instantly know

that a fisherman and a lake are two separate things, but we

also instantly know that they share a likeness more so than

the fisherman and a volcano. This is because the fisherman

has more things in common with the lake than the volcano,

mainly fish and water.

Hyperdimensional Computing (HDC) aims to mimic this

ability by encoding data as spatial positions or directions,

which allows for very quick and all-encompassing compar-

ison operations. If we construct our encoding process cor-

rectly, we can quickly project data onto a vector, which can

then be compared to other encoded vectors for similarity.

This is the fundamental concept behind HDC and makes it

lightweight, tolerant of failures/noise, and low-power.

Rahimi et al.[6] and Kanerva[4] explain the foundational

concepts of Hyperdimensional Computing in respective com-

prehensive papers. We will discuss the foundational concepts

laid out in these papers in Sections 2 and 3. After this, we will

discuss how these concepts are applied to form a functional

machine learning model for natural language processing by

Kanerva et al.[3] in Section 4. In Section 5, applications at

the nano-scale form level will be explored with a low-power

prosthetic hand gesture classification system by Rahimi et

al[1, 11], and a proposed in-memory approach to HDC by

Rahimi et al.[5].

2 Hypervectors
A vector is a set of coordinates where each coordinate corre-

sponds to a single position on a single axis. When all these

coordinates are plotted, they form a position or a direction. A

hypervector is merely a vector with a very high dimensional-

ity (generally in the thousands). In the context of this paper,

dimensionality refers to how many coordinates a vector has.

2.1 Representation
In HDC, we project data onto hypervectors using different

approaches to representation. Given the scope of this paper,

it is necessary to understand two of them.

2.1.1 Symbolic Representations. We as humans typi-

cally gain an intuitive understanding of symbols early on in

Hyper-Dimensional Computing and its Applications in tinyML

our lives. Therefore, they are natural to us and are widely

used in computers [6]. In symbolic representations, objects

or items are represented by a symbol. In the context of this

paper, an object is an item of varying nature and complex-

ity, like physical features, letters, relations, and so on. Sym-

bols are naturally combinatorial meaning that an indefinite

amount of more complex symbols can be composed from

simpler ones [6]. In HDC, a good example of a symbolic rep-

resentation is natural language applications, where millions

of word hypervectors can be composed from a small alpha-

bet of letter hypervectors. Symbols have an all-or-nothing

similarity, meaning that the same symbols have maximal

similarity and different symbols have no similarity[6].

2.1.2 Distributed-Holographic Representations. Elec-
trical recording from neurons shows even mundane and

simple mental events activate a widespread set of neurons

[4]. While trying to mimic this is very difficult, we can take

pointers from it. Through distributing low-dimensional in-

formation across a high-dimensional medium, we develop

a Distributed-Holographic representation that is extremely

robust to noise. Distributed-Holographic hypervectors are

defined as a class of vector representations, where each

object or characteristic is represented by a subset of vec-

tor components[6]. This kind of representation maximizes

redundancy[4] which means that if components are per-

turbed, the information degrades only in respect to the num-

ber of perturbed components irrespective of their position[4].

2.2 Composition
2.2.1 Density. HDC deals with either densely populated

or sparsely populated hypervectors, this paper deals specifi-

cally with dense hypervectors. In this context, dense means

that the hypervector is approximately half composed of one

value from a set of size two, and the other half is composed

of the remaining value from the same set. In the case of a

hypervector with bipolar components from the set {-1,1}, a

dense hypervector would be composed of about half -1’s

and half 1’s. In the case of hypervectors with binary compo-

nents from the set {0,1}, a dense binary hypervector would

be composed of about half 1’s and half 0’s.

2.2.2 HDC Models. When dealing with hypervectors, it

is important to consider the makeup of their components.

HDC models use different component values which give

them unique properties. This makes certain models better

tailored for different problem types. There are a handful

of these models. For the sake of efficiency, this paper will

cover two of them. The Binary Spatter Code (BSC) model

was developed by Pentti Kanerva. In BSC, hypervectors are

dense and binary with components from the set {0,1} [6]. The

Multiply Add Permute (MAP) model was proposed by Gayler

in 1998[6] and has several variants, we will be covering MAP-

b which is bipolar in nature and isomorphic to the BSCmodel

[6]. In the MAP model, hypervectors are dense, bipolar, and

comprised of components from the set {-1,1}.

2.3 Comparison
Hyperdimensional Computing revolves around hypervectors

and how similar they are, therefore, a method is needed to

gauge similarity. To accomplish this, we can compare how

close they are or how similar their directions are. Three such

comparison operations are needed to understand this paper,

they are as follows (𝐷 is dimensions while 𝑎 and 𝑏 are two

separate hypervectors):

Hamming Distance:

𝑑𝑖𝑠𝑡ℎ𝑎𝑚 (𝑎, 𝑏) = 1

𝐷
|𝑎 ⊕ 𝑏 |;

Dot Product:

𝑠𝑖𝑚𝑑𝑜𝑡 (𝑎, 𝑏) =
∑︁
𝑖

𝑎𝑖𝑏𝑖 = 𝑎⊥𝑏;

and Cosine Similarity:

𝑠𝑖𝑚𝑐𝑜𝑠 (𝑎, 𝑏) =
𝑎⊥𝑏

∥𝑎∥2∥𝑏∥2
Hamming Distance calculates how many components dif-

fer between two binary hypervectors in relation to their

dimensions and is how we ascertain similarity amongst BSC

hypervectors. This is done by running 𝑎 and 𝑏 through a

component-wise XOR (denoted by ⊕), counting the amount

of non-zero components in the resulting vector, and dividing

that number by D-dimensions. The Dot Product returns a
scalar (one-dimensional vector) product of two vectors. Co-
sine Similarity measures the angle between two vectors and

is useful for gauging similarity amongst MAP hypervectors.

It works by taking the dot product of 𝑎 and 𝑏, and divid-

ing it by the product of their Euclidean norms. A vector’s

Euclidean norm is:

√︃
𝑎2
1
+ 𝑎2

2
+ ...𝑎2𝑛 .

2.4 Orthogonality and Similarity
Two vectors are orthogonal if they are perpendicular and

quasi-orthogonal if they are almost perpendicular. In terms

of HDC models, two MAP hypervectors are orthogonal if

their cosine similarity is 0 and quasi-orthogonal if their co-

sine similarity is within a small threshold around 0. In the

case of two BSC hypervectors, they would be orthogonal

if their Hamming distance was .5, and quasi-orthogonal if

their Hamming distance was within a small threshold of .5.

A cosine similarity of 0 in regards to MAP hypervectors and

a hamming distance of .5 in regards to BSC hypervectors

can only be obtained when half the components of the two

hypervectors being compared are the same and half the com-

ponents are different. Therefore, orthogonal hypervectors

are half correlated (similar) and half anti-correlated (dissimi-

lar), which cancel each other out. This gives them the unique

property of no correlation (neither similar nor dissimilar).

Quasi-orthogonal vectors operate similarly in that they are

Ellis A. Weglewski

Figure 1. Cosine similarity distribution amongst 2,000 ran-

dom MAP hypervectors in D-Dimensional spaces.

approximately half correlated (similar) and approximately

half anti-correlated (dissimilar) which gives them roughly

no correlation or similarity/dissimilarity.

2.4.1 Concentration of Measure and The Blessing of
Dimensionality. If we use the properties of a normal (Gauss-

ian) distribution to approximate the discrete binomial distri-

bution of random BSC hypervectors, the standard deviation

is

√
𝐷/2 (where 𝐷 is dimensions)[11]. In a normal distri-

bution, approximately 68.2% of the space lies within one

standard deviation from the mean or within

√
𝐷 ± 1 standard

deviations from a point in hyperspace[11]. Further, within 6

standard deviations from the mean, approximately 99.99% of

the space is found[11]. From this, in respect to the BSCmodel,

we can establish an orthogonality threshold of

√
𝐷 · (

√
𝐷±6)

2·𝐷 [11].

This means that there is an approximately 99.99% chance

that two random 10,0000 dimensional BSC hypervectors

will have a Hamming distance in the range {0.47, 0.53}[11].

The same logic can be applied to the MAP model due to

it being isomorphic to BSC. Therefore, as 𝐷 (where 𝐷 is

dimensions) increases, the number of orthogonal and quasi-

orthogonal hypervectors that can be generated in regards

to either the BSC or MAP models becomes incredibly large.

This is known as the concentration of measure phenome-

non [6] and can be observed in Figure 1 for the MAP model

and Figure 2 for the BSC model. Additionally, as dimensions

increase, the mathematical properties of quasi-orthogonal

hypervectors get closer to the properties of exactly orthog-

onal hypervectors[6]. This is known as the "Blessing of Di-

mensionality". These properties are very useful and make

the encoding process in HDC simple.

3 Encoding
3.1 Atomic Hypervectors
It is common in HDC to first encode the base components

of a problem to be solved into hypervectors, which we refer

to as atomic hypervectors [6]. This process is often referred

to as projection or mapping. If we were solving a problem

dealing with natural language, we would project the letters

of the alphabet onto random hypervectors using a symbolic

Figure 2. Hamming distance distribution of random BSC

hypervectors in D-dimensional spaces.

representation. Letters are symbols so they should have an

all-or-none similarity; They should be orthogonal or quasi-

orthogonal to each other. Therefore, we can generate sym-

bolic random hypervectors for each letter of the alphabet

because of the concentration of measure phenomenon. There

may also be problems where the atomic hypervectors need

to have a degree of similarity amongst them [6]. For instance,

if atomic hypervectors were to represent signals, it might

make sense for signals with similar strengths to have similar

atomic hypervectors by distributing the signal strength in a

manner that preserves the signal threshold. In any case, we

need to choose atomic hypervectors so that that the similar-

ity amongst them corresponds to the characteristics which

we care about [6]. Once atomic hypervectors have been as-

signed, they can be manipulated via operations to represent

more complex objects and information.

3.2 Bundling
By nature, higher concepts are compositional. Likewise in

HDC, higher concepts are hypervectors composed of atomic

hypervectors. Further, these compositional hypervectors can

also be combined to encode even higher abstractions to the

nth degree. Thus, there needs to be a way to represent mul-

tiple hypervectors as one hypervector, like a superposition

in a sense [6]. We accomplish this through bundling, which
is a component-wise addition of two hypervectors. Through

adding the component of one hypervector to its cor- re-

sponding component of the next hypervector, we end up

with a hypervector that represents a more complex symbol

or concept, which is composed out of lower concepts, and

maintains its similarity to these components [6]

3.2.1 Bundling via Thresholded Addition. Depending
on a hypervector’s composition, a straight-ahead component-

wise addition can throw its components out of bounds. For

instance, if two MAP hypervectors are bundled via basic

component-wise addition, the resulting hypervector would

have components from the set {-2,0,2}. Likewise with BSC,

Hyper-Dimensional Computing and its Applications in tinyML

bundling two hypervectors via basic component-wise addi-

tion would result in a hypervector with components from

the set {0,1,2}. When bundling, we need the resulting hyper-

vector to only have components from the set that was used

to generate it. This is accomplished by establishing thresh-

olding parameters that restrict the resulting hypervector’s

component values to the respective model’s component set.

In BSC, thresholded addition works by outputting 0 if both

components are 0, outputting 1 if both components are 1, and

in the case that there is a 0 component and a 1 component,

the corresponding component a from a third random dense

binary hypervector with components from the set {0,1} that is

included in this special addition operation is taken as output

instead. A simple example looks like this (where 𝑉1 and 𝑉2
are portions of the input hypervectors being bundled,𝑉3 is a

portion of the tie-breaker hypervector, and𝑉𝑟 is a portion of

the resulting hypervector):

𝑉1

1

0

1

0

 +𝑉2

0

0

1

1

⇏
⇒
⇒
⇏

𝑉𝑟

1

0

1

0

⇐
⇍
⇍
⇐

𝑉3

1

1

0

0

 (1)

This generates a new hypervector 𝑉𝑟 that retains approxi-

mately 3/4 similarity to 𝑉1 and 𝑉2.

In MAP, thresholded addition is similar to BSC. It is a

component-wise addition using the sign function with 0 ties

broken by a third random dense bipolar hypervector with

components from the set {-1,1} that is included in the oper-

ation [6]. The sign function preserves the sign throughout

the thresholding operation. A simple example looks like this

(where 𝑉1 and 𝑉2 are portions of the input hypervectors be-

ing bundled, 𝑉3 is a portion of the tie-breaker hypervector,

and 𝑉𝑟 is a portion of the resulting hypervector):

𝑉1

1

−1
1

−1

 +𝑉2

−1
−1
1

1

⇏
⇒
⇒
⇏

𝑉𝑟

1

−1
1

−1

⇐
⇍
⇍
⇐

𝑉3

1

1

−1
−1

 (2)

This generates a new hypervector 𝑉𝑟 that retains approxi-

mately 3/4 similarity to 𝑉1 and 𝑉2.

3.3 Binding
We cannot rely on bundling alone, however, because during

recursive application, the information about combinations

of the initial objects (e.g., grouping) is lost since, e.g., (𝑎 +
𝑏) + (𝑐 +𝑑) = (𝑎 + 𝑐) + (𝑏 +𝑑) = · · · = 𝑎 +𝑏 + 𝑐 +𝑑 [6]. There

needs to be a way to establish that a was with b, that c was

with d, and the sequence in which they appear in the first

expression. We can accomplish this through what is called

binding.

3.3.1 Binding via Multiplication/XOR. In a situation

where the order of operand hypervectors is irrelevant, if

we want to establish that 𝑎 and 𝑏 were grouped together,

for MAP hypervectors, we bind 𝑎 and 𝑏 via component-wise

multiplication [6]. In the case of BSC hypervectors, we bind 𝑎

and 𝑏 via component-wise XOR [6]. This effectively creates a

new hypervector that is dissimilar to its input hypervectors

and represents their grouping because its only replicable

when the same input hypervectors go through the same

operation [6].

3.3.2 Binding via Permutation. If we want to encode the
sequence in which hypervectors appear, we can use a fixed

permutation operation 𝜌 on the hypervector coordinates. In

respect to 𝑎 and 𝑏, the sequential context of (𝑎 + 𝑏) can be

encoded by permuting 𝑎 once, leaving 𝑏 as it is, and then

binding them via multiplication/XOR. This distinguishes the

sequence (a+b) from (b+a) [3].

3.4 Item Memory and Associative Memory
In HDC, encoded hypervectors are stored in a matrix which

we refer to as the item memory but a system that is built on

HDC might employ an auto-associative memory [6]. In an

auto-associative memory, addresses and its contents are one

and the same, therefore it is commonly also referred to as a

content-addressable memory.

4 Natural Language processing
4.1 Language Identification
Halseth and Kanerva present a method of language identifica-

tion that is known as random indexing using the MAP model

in their paper [3]. Random indexing represents information

by projecting data onto random hypervectors [3]. The goal

of this implementation is identifying languages given the

frequency of three character sequences under the assump-

tion that given enough text, the character distribution will

approach the distribution of the language. This approach is

fast, scalable, and space efficient [3].

4.1.1 Mapping. In order to encode these three letter se-

quences, we need to first assign atomic hypervectors (10,000-

dimensional MAP hypervectors) to each character that is

to be encountered in the text. We will assume for the sake

of example that we are analyzing text written in the Latin

alphabet, so the atomic hypervectors would be a symbolic

representation of the alphabet, plus one more that represents

the space character.

4.2 Encoding
To begin encoding three letter sequences, atomic hypervec-

tors are bound via permutation in accordance to their posi-

tion in the three letter sequence, and then bound via multipli-

cation to form a trigram hypervector. For instance, if we were
encoding the three letter sequence "the", we would permute

the atomic hypervector for "t" by rotating it two shifts left,

permute the atomic hypervector for "h" by rotating it one

shift left, take the atomic hypervector for "e" as it is, and

then bind all of them via multiplication. This process can be

Ellis A. Weglewski

Figure 3. Visualization of the permutative and multiplicative

binding operations for the trigram encoding process.

observed in Figure 3. We then iterate over the text character

by character, creating a trigram for every sequence of three

letters. If the first five letters of a text are "three", a trigram

would be created for "thr", then "hre", and then "ree" etc...

The resulting trigrams are then bundled together to create a

profile hypervector that has the frequency of the three letter

sequences encoded into it. The encoded profile hypervectors

are then stored in either an item memory or an associative

memory. This algorithm was used to create profile hypervec-

tors for 21 languages with 10,000 sentences of news material

for each language[3]. In Figure 4, the profile hypervectors

can be observed clustering with other languages that share

similar three letter frequencies. The entire encoding process

took just over 7 minutes when programmed in Python on

a 64-bit, 2.70GHz (100MHz clock) Intel processor, 4 cores,

and 32GB of 1600 MHz memory computer [3]. Letters out-

side of the 26 in the Latin alphabet were replaced by their

Latin equivalents by hand-coding and using the Unidecode

package [3].

4.2.1 Identification. Input data can then be encoded in

the same manner (but is not stored) and compared to the

profile hypervectors in the itemmemory/associativememory

via cosine similarity. The most similar profile hypervector is

taken as a positive identification. The detection success rate

of this method is 97.3 percent [3].

5 tinyML
5.1 Biosignal Classification
HDC is extremely robust in the presence of failures[11]. On

top of this, its viability at low form levels make it ideal for

things such as biosignal processing. Rahimi et al[1, 11] lay

out an HDC encoding module utilizing a distributed BSC ap-

proach for electromyographic (EMG) signal-based prosthetic

hand gesture classification at a nanometer form level with

extremely low power consumption. .

5.1.1 Layout. The signal encoding layout can be observed

in Figure 5. Two channels are shown, however, an indefinite

amount of channels can be implemented.

5.1.2 Mapping. To begin, atomic hypervectors must be

assigned. Random BSC hypervectors are generated for each

Figure 4. 10,000-dimensional language vectors for 21 lan-

guages roughly cluster based on the known relations be-

tween the languages. The Language Vectors were based

on letter trigrams and were projected onto a plane using

t-stochastic neighbor embedding which is a compression

algorithm for visualizing high-dimensional data in low-

dimensional spaces [3]. Observe the cluster of Portuguese

(POR), Spanish (SPA), Italian (ITA), and English (ENG), as

well as the cluster of Danish (DAN), Swedish (SWE), Dutch

(NLD), and German (DEU).

Figure 5. Example of an HD architecture for hand gestures

learning and classification from EMG biosignals [11]

channel and stored in the item memory (IM). An additional

atomic hypervector that is designated as the seed is also

generated and stored in the continuous item memory (CIM).

The seed is used to generate hypervectors for each possi-

ble incoming quantized signal strengths (between 1-21) in

a manner such that the stronger the signal, the closer to

being orthogonal with the seed its hypervector is. This is

accomplished by randomly choosing 𝐷/2 (where 𝐷 is Di-

mensions) components of the seed and splitting them into

𝑞−1 (where 𝑞 is the quantized signal strength) groups which

equally contain (𝐷/2)/(𝑞 − 1) components[11].

5.1.3 Encoding. The encoding process produces what are

called N-gram hypervectors, which are composed of bundled

hypervectors. The concept of an N-gram hypervector is sim-

ilar to the trigram hypervectors from the natural language

processing model in that they are records of hypervector

combinations. When a signal comes in, it transforms the seed

by feeding it through (𝐷/2)/(𝑞 − 1) (where 𝐷 is dimensions

and 𝑞 is the quantized signal strength). The resultant hyper-

vector (𝑆𝑣 [𝑡]) is then bound via XOR (denoted in the diagram

Hyper-Dimensional Computing and its Applications in tinyML

as ⊗) to its respective channel hypervector (𝐶𝑛), and then

bundled (denoted in the diagram as ⊕) with the hypervectors
produced by the other channels to create a record hypervec-

tor (𝑅 [𝑡]). The record hypervector represents that specific

combination of those signal strengths on their respective

channels. This whole process can be observed in Figure 5 in

the section labeled "Mapping and Spatial encoder".

Record hypervectors are generated with respect to the

sampling rate of the sensors and the length of the train-

ing period, meaning that a stream of record hypervectors

is constantly being generated as time goes on. The record

hypervectors, however, dont have a sequential context, only

a combinatorial one. There needs to be a way to encode what

order the record hypervectors were generated in. In order to

make a record of signal/channel combination sequences, the

record hypervectors are bound via permutation such that

the first record hyper vector is rotated N-1 times, the second

N-2 times, so on and so forth. The permuted hypervectors

are then bundled with each other to create an N-gram hyper-

vector that is only replicable when the same signal strengths

hit the same channels in the same sequence. The N-grams

are defined as N-gram[𝑡] = ∏𝑁−1
𝑖=0 𝜌𝑖 (𝑅 [𝑡 − 𝑖]) The permu-

tation sequence can be observed in Figure 5 in the section

labeled "Temporal encoder". The resulting N-gram hyper-

vectors are then stored in the associative memory for easy

comparison operations. The whole module is referred to as

the "Temporal-Spatial encoder" [11].

5.1.4 Classification. After encoding, the associative mem-

ory has an array of N-gram hypervectors stored, each cor-

responding to a different gesture. When a patient attempts

a gesture that was encoded, the EMG signals are fed into

the Temporal-Spatial encoder which produces an N-gram

hypervector. The N-gram hypevector is then compared via

Hamming distance to the N-grams in the associative mem-

ory. The closest one is taken as a positive classification and

its respective gesture is executed.

5.1.5 Power Consumption. Rahimi et al[1] physically

implemented an identical EMG gesture classification model

on a Parallel Ultra-Low-Power (PULP) system on a chip (SoC)

called Mr.Wolf[10]. Mr.Wolf is a microcontroller class RISC-

V core augmented with an autonomous IO subsystem for

efficient data transfer from a wide set of peripherals and is

implemented in a 40-nm LP CMOS technology[10]. RISC-V is

an instruction set that is mainly aimed at implementation on

tiny devices[8]. CMOS stands for complementarymetal oxide

semi-conductor and is a techonology that is utilized today’s

integrated circuits due to its low power consumption[9]. The

implementation was capable of remembering 11 gestures,

with a power consumption of .0832mJ per classification, and

a classification accuracy of 85 percent[1].

5.2 In-Memory HDC
5.2.1 Resistive Memory Devices. In the current com-

puting paradigm, a major topic of interest is subverting the

energy and time consumption of shuttling data back and

forth between the memory and the CPU. This is commonly

referred to as the Von-Neumann bottleneck. In-Memory com-

puting aims to combat this by utilizing resistive memory

devices. A resistive memory device is a nano-scale resistor-

type circuit component that can store data by defining bits

with corresponding bipolar resistance states[7].

5.2.2 Crossbar Array. We can use resistive memory de-

vices to create a circuit that stores information and does

computations with it in the same location, hence the name

"In-Memory". These circuits are known as crossbar arrays.

The structure of a crossbar array consists of nodes where a

resistive-memory device is sandwiched between perpendic-

ular running nano-wires with one direction running below

the device as an input drive and the other direction running

on top as an output drive. Data can be written and read via

application of electrical fields of varying natures depending

on the class of resistive memory device being used [12]

5.2.3 Hyperdimensional Crossbar. Rahimi[5] proposes

a way to leverage in-memory computing in tandem with

HDC for very low-latency, low-power, and low-form factor

system using PCM resistive memory devices. PCM techonol-

ogy operates by switching a material between an amor-

phous state (high resistance) and a crystalline state (low

resistance)[5]. The system works by storing the atomic hy-

pervectors in the nodes of a crossbar array that acts as an

item memory. The item memory can be pulsed with low

voltage down certain input drives to send the atomic hy-

pervectors down the output drives into CMOS gates which

perform the bundling and binding. The encoded hypervec-

tors are then stored in the nodes of an associative memory

crossbar array for easy comparison operations.

6 Conclusion
In this paper, we have explained hyperdimensional comput-

ing as it was laid out by Rahimi et al. [6] and Kanerva[4].

We explored how Kanerva [3] proposed how it might be

employed for natural language processing and how Rahimi

et al. [1, 11] deploy a prosthetic hand gesture classification

on a nano-scale ultra low power system. Finally, we covered

in-memory computing and how Rahimi et al.[5] propose

HDC might be done in-memory.

Acknowledgments
I would like to thank Elena Machkasova for guiding me

through the writing process and pushing me to understand

this topic. I would also like to thank Peter Dolan for tak-

ing the time to help me understand this complex topic, and

Ellis A. Weglewski

Wenkai Guan for his leading of the senior seminar course. Fi-

nally, I would like to extend thanks to alumn JosephWalbran

for his valuable feedback and interest in my topic.

References
[1] Benatti, S., Montagna, F., Kartsch, V., Rahimi, A., Rossi, D., and

Benini, L. Online learning and classification of emg-based gestures

on a parallel ultra-low power platform using hyperdimensional com-

puting. IEEE Transactions on Biomedical Circuits and Systems 13, 3
(2019), 516–528.

[2] Dodd, P., and Massengill, L. Basic mechanisms and modeling of

single-event upset in digital microelectronics. IEEE Transactions on
Nuclear Science 50, 3 (2003), 583–602.

[3] Joshi, A., Halseth, J., and Kanerva, P. Language recognition using

random indexing, 2015.

[4] Kanerva, P. Hyperdimensional computing: An introduction to com-

puting in distributed representation with high-dimensional random

vectors. Cognitive Computation 1 (2009), 139–159.
[5] Karunaratne, G., Gallo, M. L., Cherubini, G., Benini, L., Rahimi,

A., and Sebastian, A. In-memory hyperdimensional computing,

2020.

[6] Kleyko, D., Rachkovskij, D. A., Osipov, E., and Rahimi, A. A survey

on hyperdimensional computing aka vector symbolic architectures,

part i: Models and data transformations. ACM Comput. Surv. 55, 6 (dec
2022).

[7] Lin, W.-P., Liu, S.-J., Gong, T., Zhao, Q., and Huang, W. Polymer-

based resistive memory materials and devices. Advanced Materials 26,
4 (2014), 570–606.

[8] Lu, T. A survey on risc-v security: Hardware and architecture, 2021.

[9] Martins, R., Nathan, A., Barros, R., Pereira, L., Barqinha, P.,

Correia, N., Costa, R., Ahnood, A., Ferreira, I., and Fortunato, E.

Complementary metal oxide semiconductor technology with and on

paper. Advanced materials (Deerfield Beach, Fla.) 23 (10 2011), 4491–6.
[10] Pullini, A., Rossi, D., Loi, I., Tagliavini, G., and Benini, L. Mr.wolf:

An energy-precision scalable parallel ultra low power soc for iot edge

processing. IEEE Journal of Solid-State Circuits 54, 7 (2019), 1970–1981.
[11] Schmuck, M., Benini, L., and Rahimi, A. Hardware optimizations

of dense binary hyperdimensional computing: Rematerialization of

hypervectors, binarized bundling, and combinational associative mem-

ory. J. Emerg. Technol. Comput. Syst. 15, 4 (oct 2019).
[12] Slesazeck, S., and Mikolajick, T. Nanoscale resistive switching

memory devices: a review. Nanotechnology 30, 35 (jun 2019), 352003.

[13] Wang, F., and Agrawal, V. D. Single event upset: An embedded

tutorial. In 21st International Conference on VLSI Design (VLSID 2008)
(2008), pp. 429–434.

	Abstract
	1 Introduction
	1.1 tinyML
	1.2 Hyper-Dimensional Computing

	2 Hypervectors
	2.1 Representation
	2.2 Composition
	2.3 Comparison
	2.4 Orthogonality and Similarity

	3 Encoding
	3.1 Atomic Hypervectors
	3.2 Bundling
	3.3 Binding
	3.4 Item Memory and Associative Memory

	4 Natural Language processing
	4.1 Language Identification
	4.2 Encoding

	5 tinyML
	5.1 Biosignal Classification
	5.2 In-Memory HDC

	6 Conclusion
	Acknowledgments
	References

