International” license.

This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0 @ @ @ @

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Linnea Gilbertson

Using Al for Automated Penetration Testing

Linnea Gilbertson
gilb0348@morris.umn.edu
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA

Abstract

Penetration testing (pentesting) is a key practice in cyber-
security, helping to identify security vulnerabilities in de-
vices and applications. Due to system complexity and time
constraints, pentesting often involves the use of specially
designed tools. However, these tools are likely to introduce
a high rate of false positives. To reduce the time required for
pentesting and enhance the accuracy of tests, machine learn-
ing has been integrated into pentesting tools. This paper
covers one such tool, the BERT QA RL + RS, that integrates
both deep reinforcement learning (DRL) and a bidirectional
encoder representations from transformers (BERT) large lan-
guage model (LLM).

Keywords: penetration testing, large language model, deep
reinforcement learning, bidirectional encoder representa-
tions

1 Introduction

The number of electronic devices per person worldwide has
grown in the last couple of years, increasing from 2.4 devices
per person globally in 2018 to 3.6 devices per person in 2023.
Not only do devices currently outnumber people [13], but
the number of vulnerabilities found is also increasing yearly.
In 2024, 40,077 new vulnerabilities were found and published
in the Common Vulnerabilities and Exposures (CVE) data-
base, which is an increase of 38% from the number of new
vulnerabilities published in 2023 [5]. In this cyber-vulnerable
world, penetration testing is of increasing importance. Pene-
tration testing (pentesting) is a series of processes or tests
that mimic a real world attack on a complete and complex
system or application to identify its vulnerabilities [4]. More
about penetration testing is covered in Section 2.1.
Pentesting often involves the use of tools to analyze or
find vulnerabilities and security risks, or tools that assist
in the exploitation process (getting unauthorized access to
the application or system). These tools are useful, but often
result in high rates of false positives, which in this context
would mean the tools show vulnerabilities or exploitation
routes that do not exist. Recently, there have been attempts
to create new, more accurate tools to assist in pentesting via
the use of Machine Learning (ML). Reinforcement learning
(RL) is a ML technique that is able to rapidly react to diverse
target applications or systems and perform exploitation in
a way that closely mimics reality. However, RL alone is not

*—Mdiﬁanal Discovery—l

Discovery - Attack

Planning -

Figure 1. Steps for black-box penetration testing [12]

enough, as proof of concept tests are needed to validate any
findings from the RL. Also, to ensure the scope of the RL’s
exploration is narrow and thus does not take too long, very
specific goals must be set for the RL agent. This is where a
large language model (LLM) is helpful, as it can be prompted
to give the needed proof of concept tests based on past data,
as well as send specific and understandable commands to
the RL agent to ensure the scope of its exploration is narrow.
The BERT Question-Answer RL + Recommendation system
(BERT QA RL + RS) leverages a bidirectional encoder repre-
sentations from transformers (BERT) LLM along with a deep
reinforcement learning agent to make a new penetration
testing tool greater than the sum of its parts [10].

2 Background
2.1 Penetration Testing

To increase the security of applications and devices, penetra-
tion testing (pentesting) is often performed by human cyber
security experts (pentesters) [4]. Pentesting is designed to
mimic real world cybersecurity attacks and involves launch-
ing real attacks to break into a system, or otherwise damage
it, using technology and techniques that are commonly used
by malicious hackers. Pentesting is also helpful for evalu-
ating the cyber defenders’ ability to detect and respond to
attacks on their system [12].

Black-box penetration testing is penetration testing per-
formed without prior knowledge of the system’s structure
or source code. It is designed to mimic the way a real hacker
would try to break into a system. Black-box pentesting is the
best technique for assessing the security of the interfaces
between different components of a system, and the security
of interactions with the external environment, its users, or
other systems it interfaces with. The National Institute of
Standards and Technology Special Publication 800-115 (NIST

Using Al for Automated Penetration Testing

SP 800-115) defines a structured series of black-box pene-
tration testing steps, as outlined in Figure 1 [12]. The BERT
QA RL + RS System was designed to follows these steps, and
uses tools commonly used by human pentesters for each of
these steps, integrating them into its own system [10].

To follow these black-box pentesting steps, first the pen-
tester should plan, or in other words set testing goals and
notify management of the upcoming pentest. Then comes the
discovery phase, which can be split into two parts. The first
part is reconnaissance, in which information about the sys-
tem is gathered [12]. One common tool used for this purpose
is Network Mapper (Nmap), which performs network scan-
ning, port scanning, and operating system detection [4]. Part
2 of the discovery phase is vulnerability analysis, where the
pentester compares the discovered services and operating
systems against one or more databases of known vulner-
abilities and system weaknesses [12]. Such databases that
will be utilized in the BERT QA RL + RS include the Com-
mon Vulnerability and Exposures (CVE) database, which
is a published list of security vulnerabilities, and the Com-
mon Weakness Enumeration (CWE), which is a public list
of underlying weaknesses in applications that can lead to
vulnerabilities, often linking to one or more CVEs [10].

Then comes the attack phase, also called the exploitation
phase. Using the vulnerabilities and system architecture iden-
tified in the previous steps, the pentester finds a way to get
into or otherwise damage the system involved, exploiting the
vulnerabilities. Oftentimes this first attack does not result in
getting the needed level of access, but it often reveals more
information about the system. This new information can
be used to repeat vulnerability analysis, and then another
exploitation is attempted [12]. The BERT QA RL + RS uses
Metasploit in order to help simulate this process. Metasploit
is a tool that can assist in selecting optimal attack paths as
well as develop exploit code [10]. Once the pentester is in
the system, they often perform a sub-phase of the attack
called post-exploitation, where information can be stolen
using the access gained, or the pentester can use additional
vulnerabilities to elevate their level of access in the system or
gain access to additional connected systems. And last is the
reporting phase, where vulnerabilities and other findings are
reported so they can be fixed or otherwise mitigated [12].

2.2 BERT Language Models

A large language model (LLM) is a machine learning model
that is able to generate natural language in response to a
prompt [3]. LLMs are able to do this thanks to their billions
of internal weights, or in other words, parameters that allow
them to capture patterns in language and predict words in a
response by creating a probability distribution of the most
likely next words. LLMs train on large amounts of text data,
adjusting their internal weights to get better responses. All
language models, including BERT, make use of tokens. To-
kens in language models represent the smallest data units

that a language model processes, whether they be words,
individual characters, or something else. The first step in
training language models is transforming the input to the
model into tokens (tokenization), then using different meth-
ods to detect patterns and relationships in the text. Also,
after tokenization is completed, the large language model
assigns a unique ID to each token [7].

The Bidirectional Encoder Representations from Trans-
formers (BERT) that is used in the BERT QA RL + RS is a kind
of masked language model (MLM) designed by Devlin et al.
BERT was created to be easily fine-tunable for a wide range
of tasks, including question answering and inference, with-
out many architecture modifications. Part of what makes
the BERT so easily fine-tunable is that it is a MLM. MLMs
randomly remove some of the tokens from the input, train-
ing themselves by predicting the IDs of the removed tokens
based only on the given context [6].

Tokens are then used to train embeddings. Embeddings
are numerical representations of categorical feature. Cate-
gorical features are attributes of real or virtual objects that
represent distinct classifications or categories. For example,
the type of fruit could be a categorical feature. An example
predetermined set of classifications for the fruit categorical
feature could be "apple", "banana’, or "strawberry". BERT
uses 3 different types of embeddings. The token IDs in BERT
contain token embedding, meaning each token ID is not ran-
dom, but is instead based on which tokens the BERT model
consider most similar to one another during training. Bert
also uses segment embeddings, which capture whether a
token is part of the question or answer being input to the
machine in a BERT QA. Lastly, the BERT uses position em-
beddings to label the initial position of the token in the input
text or prompt [2].

2.3 Deep Reinforcement Learning

Deep reinforcement learning (DRL) is a method that com-
bines deep neural networks (elaborated on in Section 2.4)
and reinforcement learning (RL) [8]. Reinforcement learning
consists of an agent, which is the decision maker that acts
in accordance with its policy and engages with an environ-
ment [11]. The environment is the system that the agent
gets data from and interacts with. In this paper, the envi-
ronment will be the target system the BERT QA RL + RS is
pentesting [10]. The policy is a plan that controls the agent’s
decisions by having it do certain actions on certain states. A
state is a representation of the current environment, and an
action is a possible decision an agent can take. The agent’s
goal is to maximize the overall reward it receives, and the re-
ward is the feedback it receives from the environment based
on its current decision. The agent learns how to maximize
this reward by convergence, the process in which the pol-
icy changes and moves more towards the optimal policy for
getting the most reward possible.

Basic reinforcement learning must always have a model of
the environment, which is its internal representation of the
environment and states in the environment [8]. However,
one of the reasons Moreno et al. chose deep reinforcement
learning is that DRL does not need to have this model of the
environment. This is because it can rely on Quality Learning
(Q-learning), which is a model-free RL method [11]. This
is important because in pentesting environments, changes
in services and potential vulnerabilities are common, mak-
ing the states too large in number and too changeable to
easily make the model of the environment needed for typi-
cal RL [10]. Also, DRL makes use of deep neural networks,
which can help create more intricate policies by picking up
on the mappings of numerous states to actions, and is able
to be used with far more states and actions than a typical RL

could [8].

2.4 Neural Networks

This section will cover neural networks (NN), as they are
used both in the BERT language model and in deep rein-
forcement learning. A neural network is a machine learning
model that identifies and learns patterns directly from data.
In NN, nodes are the most basic units that receive inputs
from the initial data and from previous nodes. Nodes have
an activation function, which is the formula that calculates
what the node should output based on what inputs are fed
to that node. Connections are the links between nodes that
transfer the data or inputs, and they are regulated by weights
and biases. Weights and biases are numerical parameters that
are used to determine the strength and influence of the effect
of the connection on the activation function of the node it’s
connected to.

In NN, the initial data is first fed to a layer of nodes called
the input layer. Each node in this layer corresponds to an
individual feature of the initial data. Then it is fed through
one or more hidden layers. These hidden layers are where
most of the computation is performed via the weights and
biases of the connections and the activation functions of the
nodes. The output of the hidden layers is then fed to the
output layer. The output layer produces the final output of
the model, which are the final numerical value or values that
actually mean something. Different models create different
final outputs depending on the task the model performs.
During training the NN puts its data through all of these
steps and then adjusts its weights and biases to improve
accuracy on its specific task by minimizing the difference
between the expected model output, which is the output that
is desired and would be output if the model was perfect, and
the actual model output, with the actual model output being
the final numerical value or values the model yielded [14].

The BERT QA part of the BERT QA RL + RS system uses
a Feed-Forward neural network (FNN) [10]. An FNN is a
NN where data can only move and be transformed in one

Linnea Gilbertson

direction, forward, and each layer uses the data values trans-
formed from the previous layer [9]. The reinforcement learn-
ing agent of the BERT QA RL + RS uses a deep neural network
(DNN) as it uses deep reinforcement learning [10], as detailed
above. A DNN is just a feed-forward neural network with
many hidden layers [1].

3 BERT QA RL + RS Overview

The BERT QA RL + RS is a model that uses both an LLM
and DRL to identify cybersecurity vulnerabilities and pos-
sible tests to execute to confirm or deny that the system
being tested has such vulnerabilities. As seen in Figure 2, the
BERT QA component of the model is first trained on many
CWE cases in the different domains of pentesting. These
cases include those on recognition, vulnerability analysis,
and exploitation.

As well as using these cases to train, the BERT will in-
tegrate the information into its database for use in future
responses. Once the BERT QA is done training, the pentester
can query or send a question to the BERT QA model and
the model will attempt to infer an answer or response. The
question is based on what the pentester knows about the
system architecture and hopes to accomplish.

If a response can be generated, the BERT will output it.
If no response can be generated the question is sent to the
RL agent automatically. If the pentester is not satisfied with
the response, they can manually send the question to the RL
agent. The RL agent imitates the steps a human pentester
would take based on the steps recommended by the NIST
SP 800-115, as outlined in Section 2.1. These steps include
Reconnaissance, Vulnerability Analysis, and Exploitation.

Then, the RL agent assembles the results into a new JSON
data set and sends it back to the database. The BERT then un-
dergoes a new round of training, incorporating the new data.
This will enable the BERT QA to produce new responses
when queried, specifically responses pertaining to the ques-
tion asked earlier that was either unable to produce a useful
response or unable to produce any response. The BERT will
not attempt to infer this new response unless the pentester
sends the same or a similar question.

Combining the RL Agent with the BERT QA to make the
BERT QA RL + RS produces a helpful tool that can not only
provide recommendations based on past CWE cases, but can
also pentest the target system itself to provide suggestions
when necessary. In the next two sections, the different parts
of the BERT QA RL + RS will be elaborated on in depth [10].

4 BERT QA

A BERT Question Answer (QA) Recommendation System
(RS) at its core, consists of a query/question Q, which is
a query that is based on what the pentester hopes to ac-
complish and knows about the system architecture and the
specific goals for this pentest. In order to train the BERT QA,

Using Al for Automated Penetration Testing

il Ty P Ty
CWEs Sends Cluestion
—» Bert QA Training > Complated HERT (24 b3 Fentester
Model
Wl . A \ A
o v
é';_‘-" al % l Ty
& Mo Yes
] BERT Qutputs
-EE-F RL Agent #— Inferred Answer Response
p 'l o p o
Reconnaissance,
Vulnerability Analysis,
Exploitation

Figure 2. Diagram of the BERT QA RL + RS recommendation system [10]

example Qs must be provided that are associated with Con-
texts (C) and example factual responses to be predicted called
Answers (A). A is a response to Q that can detail how to per-
form pentesting tests, or how to perform reconnaissance,
identity specific vulnerabilities and how to exploit them or
perform post-exploitation. Cs are contexts that are associ-
ated with the vendor (the provider of information about the
vulnerability or test), one or more CWEs, description of vul-
nerability, and specific ways in which the vulnerability can
be exploited and tested (proof of concept).

The Qs, As, and Cs used to train the BERT QA in the re-
search article were generated using the CWEs in the NIST
vulnerability repository. The researchers first identified 171
different CWE types from 43,080 vulnerabilities. The ques-
tions (Q) were formulated to contain information such as
the system environment, possible system versions, and other
known information about the target system. An example
Question is shown below:

"Q = What tests do you recommend for a Class
C IP address, with Ubuntu 20.0 operating system,
running an Apache PHP 5.2.4 server?"

During the training of the BERT QA, As and Cs are fed
another time to the BERT QA as one sentence without a
separator between them, forming AeC, which can be thought
of as A in C. AeC is a response/answer (A) defined with
context C, where the context comes first and the answer
comes second, as shown below:

"C = According to CWE-116, CWE-79, and CWE-
94, with improper neutralization of resource in-
puts, enabling potential remote code execution,”
A = "it is possible to use a proof of concept for
XSS and then inject arbitrary code by modifying
functions.lib.php."

The complete inputs used in training the BERT QA end up
being a tuple of Q and AeC, with the places where A starts
and ends within AeC marked.

Next the architecture of the BERT QA will be elaborated
on, as is seen in Figure 3. The BERT QA is used in order to
select potential answers based upon the asked question. The
inputs Q and C (which is actually AeC) are tokenized, with
the [SEP] token separating these inputs and the [CLS] token
placed in front to indicate that it is a classification task for
the BERT.

The tokenized input is then used to train a vector of em-
beddings which contain the token embeddings, segment
embeddings, and position embeddings. Then a combined
embedding is produced that represents the concatenation of
all embeddings.

As seen in Figure 3, next the combined embedding under-
goes many layers of transformation, which are hidden in
Figure 3 under the transformer layers. The first of which is
Multi-Head attention. Multi-Head attention aids in learning
the relationships between words that are both close to and
distant from one another.

Then the output of the Multi-Head attention is passed into
the feed-forward neural network (FNN), which applies non-
linear transformations and creates a language representation
that integrates information from Q and AeC by capturing
unique characteristics of elements in the sequence. Then
normalization is applied to enhance generalization and con-
vergence as well as stabilize learning. Finally, a softmax layer
is applied, which outputs a probability distribution, which
estimates the probabilities that the Q input corresponds to a
specific answer A.

If a satisfactory Answer is not found via this process, or
in other words there is no A with a high enough probability

A e
t* t*
* t*

©

Transformer Layer k

Transformer Layer 1

EfcLs) Eq, Ecy Ecy

a2

T

Eq,
S *

i R

r

[CLS] Tokeng, Ml Tokeng, [SEP] Tokeng,

_‘_I

Q = what tests do you recommend ...

Tokenc,,

C =According to CWE-116 ...

Figure 3. Architecture of BERT QA [10]

of being correct, then the response will be a note indicating
that the Q was sent to the RL agent for evaluation.

5 Reinforcement Learning Agent

In order to both train itself and conduct a penetration test, the
RL Agent interacts with a system D that has vulnerabilities
V.In a typical RL, a state space is required that represents
the possible environmental configurations that exist in V,
and an action space S that consists of all possible actions a
the RL agent can take. The RL agent selects an action a when
given the current state, with the goal being maximizing a
reward r.

The RL agent imitates the steps a human pentester would
take based on the steps recommended by the NIST SP 800-
115, as outlined in Section 2.1.

1. Planning and Preparation: The RL agent first uses the
decomposition of the question asked by the pentester to
define the objectives and scope of the subsequent penetration
test steps it will undergo.

2. Reconnaissance: In order to identify useful system archi-
tecture, including host, services, and open ports, the RL agent
uses Network Mapper (Nmap). More on Nmap is detailed
above in background Section 2.1. The agent also correlates
these findings with configurations of system architecture
stored in the BERT QA RL + RS database, which speeds up
the process of obtaining results for this phase.

3. Vulnerability Analysis: Then using the system architec-
ture identified in the reconnaissance phase, the RL agent uses
the Nmap Vulners tool to compare this system architecture
with previously noticed vulnerabilities in the CVE database
in order to identify possible vulnerabilities.

4. Exploitation and Post-exploitation: The agent then uses
Metasploit modules to find the attack path, as well as meth-
ods of exploitation and post-exploitation. More on Metasploit
is described in Section 2.1.

Token
embeddings

Positional
embeddings

Linnea Gilbertson

The RL agent undergoes multiple iterations of the above
series of four steps, while adjusting its policies in order to
achieve the maximum 7. The RL agent gets rewards for per-
forming successful actions a, with a higher reward for a
complicated successful action. If an action fails, the RL agent
returns to the current state and changes the policy to be
more flexible until it converges. A step is concluded when
the max Q-value is reached for that step. The max Q-value
corresponds to the highest estimated r that the RL agent can
gain from all possible actions in the states. At each stage, the
agent either selects the most effective action learned so far or
selects random action in S, which ensures the exploration of
a wide variety of actions and a better convergence towards
a maximum Q-value.

The RL agent concludes either when all of the above steps
have succeeded with their max Q-values, or it will truncate
if the agent can for some reason no longer make progress
towards the maximum Q value. After the RL agent concludes,
the state action pairs with the highest rewards are assem-
bled into a JSON data set. Each output will have a target
to evaluate, the characteristics of the target, the parameters
used in by Nmap in the reconnaissance step, the vulnera-
bilities identified via use of Nmap Vulners, and finally the
steps for successful exploitation via the Metasploit modules.
If the agent did not reach its goal in a specific step, then it
will be marked down in the JSON as a failed attempt. Then,
whether it succeeds or not, the JSON object is sent to the
BERT QA, which integrates this information into its data-
base and begins a new round of training using the obtained
information.

The RL Agent was tested by using virtual environments
constructed via the OpenAl Gym library in Python version 3
on two different virtual machines (VMs). One VM was based
on the Linux 20.04 OS, and the other was based on Windows 8
and 10. Both VMs hosted a variety of vulnerable services. The
researchers determined the most persistent vulnerabilities
that still affect systems today via the maturity reports of the
Cybersecurity and Infrastructure Security Agency. In the
end, about 1520 vulnerable configurations were assembled
for the two VMs. The RL agent has not yet been tested on
real-world systems [10].

6 Overall Model Results

The researchers tested three different BERT models to find
out which works best for the BERT QA RL + RS system.
These models include BERT uncased, the first and most basic
BERT model, RoBERTa which leverages a larger dataset and
uses a different masking approach, and DistilBERT, which is
a lightweight BERT version that retains most performance
but has a much lower computational cost.

Training loss, which represents the discrepancy between
the BERTs actual output answers and the predicted answers
it should output for all answers, was used as a measurement

Using Al for Automated Penetration Testing

Table 1. BERT QA Training Metrics [10]

Model Loss Training (min)
BERT uncased 0.0001 1297.5
RoBERTa 0.0000 1299.8
DistilBERT 0.0043 689.1

of the models accuracy. The formula is L = 1/N = (A -
Expected A)? The Loss and training time taken is shown
above in Table 1.

The model with the best Loss value and greatest overall re-
sponse accuracy was the ROBERTa, with a highly impressive
lost value of 0.0000. It also had the greatest training time,
taking 1299.8 minutes. Since the RL agent’s average training
time is 34 minutes, the average training time of the most
accurate BERT QA RL + RS system about 1334 minutes, or
22.2 hours. However, if speed and computational efficiency
are more crucial to the pentester, they could use the Distil-
BERT instead. DistilBERT has a training time of 689 minutes,
so this BERT QA RL + RS version would only have a total
training time of 12.1 hours. This is just over half the training
time of the most accurate version.

Although the response time of the BERT QA RL + RS de-
pends on which BERT model is used, overall it will only
be approximately 2 minutes if the BERT model provides an
inference or response based off of the training data. If the
question is sent to the RL agent due to a lack of response
or unsatisfactory answer, the RL agent will take about 21
additional minutes. It should be noted that the training and
testing was conducted in intentionally vulnerable test envi-
ronments instead of real-world environments. Moreno et al.
predicted that both training and execution times would be
higher in a real-world system.

The next component that will be discussed is the Ques-
tion Answer (QA) accuracy metrics for the BERT QA RL
+ RS. The following metrics evaluate the quality of the re-
sponses made by the BERT QA RL + RS. These include Pre-
cision, which assesses the accuracy of the model’s response.
It is a measure of the proportion of correct words in the

response relative to all the words in the response. Its for-
Number of correct words in response

total words in response + 100. The
Recall metric is a measure of whether the model response

contains the key words of the expected response. It mea-
sures the proportion of correct words in the response to
the words in the expected response/answer. The formula:

Recall = Number of cor'rect words in response * 100. Finally, Exact
total words in expected response

Match measures the percent of the responses that exactly
match the expected/ correct response. The metric only counts

the answers that match exactly with their expected answer.

That formula is: Exact match = Numb? of correct responses , 4,
otal responses

Table 2 above includes all these metrics for all BERT QA RL

+ RS tested, differentiated by BERT model used.

mula: Precision =

Table 2. Accuracy Metrics for BERT QA RL + RS [10]

Model Exact Match (%) Precision (%) Recall (%)
BERT uncased 97.5 98.0904 98.4848
RoBERTa 99.9998 99.9999 99.9998
DistilBERT 99.8763 99.9057 99.8763

Interestingly, even the BERT QA RL + RS using the light-
weight DistilBERT had better accuracy metrics in all category
than the BERT QA RL + RS using the BERT uncased, despite
DistilBERT having worse loss metrics than BERT uncased.
Also all accuracy metrics of DistilBERT were extremely close,
within .2% of the accuracy metrics for the best BERT QA RL
+ RS using RoBERTa. Combined with DistilBERT’s lowered
computational cost, this suggests that using DistilBERT in a
BERT QA RL + RS system may be the best choice. This is un-
less someone has a demand for extremely accurate responses,
in which case one should go with RoBERTa.

7 Conclusion

As the number of devices in human society increases, the
potential for harm caused by malicious hackers increases
in parallel. Thus, it is vital that pentester’s have access to
accurate pentesting tools. However, the tools currently avail-
able also have a high rate of false positives, wasting the
pentesters time. In order to create more accurate tools, many
researchers have attempted to integrate machine learning.
Moreno and her fellow researchers created the BERT QA RL
+ RS, the first penetration testing tool to integrate both deep
reinforcement learning and a BERT large language model.

The BERT QA RL + RS has demonstrated remarkable ac-
curacy, with all accuracy metrics being 99% or above for
both the highest performing and most computationally ef-
ficient BERT QA RL + RS model. The total training time
of the lightweight model is also only 12.1 hours. When the
machine is prompted, the machine takes about 23 minutes
when the reinforcement learning agent is activated. This re-
duces both the time and resources it takes to pentest complex
systems. By providing recommendations with context, it is
also easier for the pentester to verify the correctness of the
recommendation, saving pentester time.

It should be kept in mind that the BERT QA RL + RS has
currently only been trained and tested on intentionally static
and vulnerable test systems/environments. Real-world sys-
tems are typically more variable, and change incrementally
over time. Real systems are also hopefully not as vulnera-
ble as the intentionally vulnerable test environments. Thus
the model’s training and execution times are expected to
be significantly higher in a real world environment. Future
research should focus on evaluating and improving the BERT
QA RL + RS performance on these real systems.

Acknowledgments

I would like to thank my advisor, Kristin Lamberty, for all
the wonderful help she gave me during the development of
this paper, including providing helpful suggestions, helping
with latex, and helping in figure editing. I would also like
to thank my course professor, Elena Machkasova, for all the
wonderful suggestions and feedback.

References

[1] 2017. https://stats.stackexchange.com/questions/182734/what-
is-the-difference-between-a-neural-network-and-a-deep-neural-
network-and-w

[2] 2023. https://tinkerd.net/blog/machine-learning/bert-embeddings/

[3] AltexSoft. 2023. https://www.altexsoft.com/blog/language-models-
gpt/

[4] Aileen Bacudio, Xiaohong Yuan, Bill Chu, and Monique Jones. 2011.
An Overview of Penetration Testing. International Journal of Network
Security Its Applications 3 (11 2011), 19-38. https://doi.org/10.5121/
ijnsa.2011.3602

[5] MITRE Corporation. 2024. https://www.cve.org/about/Metrics

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805 [cs.CL] https://arxiv.org/

(7]

(8]
(9]

[10]

[11]
[12]

[13]

[14]

Linnea Gilbertson

abs/1810.04805

Sloan Haywood, Genevieve Warren, and Alex Wolf. 2024. Understand-
ing tokens. https://learn.microsoft.com/en-us/dotnet/ai/conceptual/
understanding-tokens

iamrajmihir. 2023. https://www.geeksforgeeks.org/a-beginners-
guide-to-deep-reinforcement-learning/

Adil Lheureux. 2024. Feed-forward vs Feedback Neural Net-
works. https://www.digitalocean.com/community/tutorials/feed-
forward-vs-feedback-neural-networks

Ariadna Claudia Moreno, Aldo Hernandez-Suarez, Gabriel Sanchez-
Perez, Linda Karina Toscano-Medina, Hector Perez-Meana, Jose
Portillo-Portillo, Jesus Olivares-Mercado, and Luis Javier Garcia Vil-
lalba. 2025. Analysis of Autonomous Penetration Testing Through
Reinforcement Learning and Recommender Systems. Sensors 25, 1
(2025). https://doi.org/10.3390/525010211

prateek bajaj. 2025. https://www.geeksforgeeks.org/what-is-
reinforcement-learning/

Karen Scarfone, Murugiah Souppaya, Amanda Cody, and Angela
Orebaugh. 2021. NIST SP 800-115. https://www.nist.gov/privacy-
framework/nist-sp-800-115

Petroc Taylor. 2023. Number of devices and connections per
person worldwide 2023 | statista. https://www.statista.com/
statistics/1190270/number-of-devices-and-connections-per-person-
worldwide/

veena ghorakavi. 2025. https://www.geeksforgeeks.org/neural-
networks-a-beginners-guide/

https://stats.stackexchange.com/questions/182734/what-is-the-difference-between-a-neural-network-and-a-deep-neural-network-and-w
https://stats.stackexchange.com/questions/182734/what-is-the-difference-between-a-neural-network-and-a-deep-neural-network-and-w
https://stats.stackexchange.com/questions/182734/what-is-the-difference-between-a-neural-network-and-a-deep-neural-network-and-w
https://tinkerd.net/blog/machine-learning/bert-embeddings/
https://www.altexsoft.com/blog/language-models-gpt/
https://www.altexsoft.com/blog/language-models-gpt/
https://doi.org/10.5121/ijnsa.2011.3602
https://doi.org/10.5121/ijnsa.2011.3602
https://www.cve.org/about/Metrics
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://learn.microsoft.com/en-us/dotnet/ai/conceptual/understanding-tokens
https://learn.microsoft.com/en-us/dotnet/ai/conceptual/understanding-tokens
https://www.geeksforgeeks.org/a-beginners-guide-to-deep-reinforcement-learning/
https://www.geeksforgeeks.org/a-beginners-guide-to-deep-reinforcement-learning/
https://www.digitalocean.com/community/tutorials/feed-forward-vs-feedback-neural-networks
https://www.digitalocean.com/community/tutorials/feed-forward-vs-feedback-neural-networks
https://doi.org/10.3390/s25010211
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.nist.gov/privacy-framework/nist-sp-800-115
https://www.nist.gov/privacy-framework/nist-sp-800-115
https://www.statista.com/statistics/1190270/number-of-devices-and-connections-per-person-worldwide/
https://www.statista.com/statistics/1190270/number-of-devices-and-connections-per-person-worldwide/
https://www.statista.com/statistics/1190270/number-of-devices-and-connections-per-person-worldwide/
https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/
https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/

	Abstract
	1 Introduction
	2 Background
	2.1 Penetration Testing
	2.2 BERT Language Models
	2.3 Deep Reinforcement Learning
	2.4 Neural Networks

	3 BERT QA RL + RS Overview
	4 BERT QA
	5 Reinforcement Learning Agent
	6 Overall Model Results
	7 Conclusion
	Acknowledgments
	References

