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PENETRATION TESTING (PENTESTING)

• Mimics real world hacker attack

• Identifies security vulnerabilities

• Pentesting tools:
• Find or analyze vulnerabilities

• Help perform exploitation



WHY

• Combines deep reinforcement learning (DRL) and a large language mode 
(LLM) to:

• Reduce false positive rates

• Save pentester time by:

• Reducing needed database searching for vulnerabilities

• Suggest exploitation routes for proof of concept tests



OUTLINE
• Penetration Testing Background
• BERT QA RL + RS Model Overview
• Large Language Model and BERT Background
• BERT QA
• Deep Reinforcement Learning Background
• Deep Reinforcement Learning Agent
• Results
• Conclusion



BLACK-BOX PENTESTING
• Pentesting without prior knowledge of system structure or source code



VULNERABILITY ANALYSIS DATABASES

• Common Vulnerability and Exposures (CVE)

• List of security vulnerabilities 

• Common Weakness Enumeration (CWE) 

• List of underlying weaknesses 

• Links to CVEs



EXPLOITATION PHASE



LARGE LANGUAGE MODEL

• Trained on large amounts of data

• Generate language response to prompt and/or context

• Able to do this thanks to billions of internal parameters

• Enables them to capture patterns in language

• Create a probability distribution for likely words



BERT BACKGROUND

• Bidirectional Encoder Representations from Transformers 
(BERT)

• Masked language model
• Easily fine tunable



DEEP REINFORCEMENT LEARNING BACKGROUND

• Combines reinforcement learning and deep neural networks
• Referred to as the reinforcement learning (RL) agent



MODEL OVERVIEW



BERT QA

• Query:

• Consist of pentester goal and knowledge of target systems architecture

• Answer:

• Response output by BERT QA, can identify vulnerabilities, give penetration test suggestions, ect.

• Context:

• Where the information from the outputted answer came from



EXAMPLE QUESTION, CONTEXT, AND ANSWER

Question: What tests do you recommend for a Class C IP address, with Ubuntu 20.0 operating system, 
running an Apache PHP 5.2.4 server?

Context: According to CWE-116, CWE-79, and CWE-94, with improper neutralization of resource inputs, 
enabling potential remote code execution,

Answer: it is possible to use a proof of concept for XSS and then inject arbitrary code by modifying 
functions.lib.php.



BERT QA ARCHITECTURE INPUTS



TOKENS



EMBEDDINGS



FEED-FORWARD NEURAL NETWORK AND MULTI-
HEAD ATTENTION



TOKEN EMBEDDINGS



SOFTMAX



REINFORCEMENT LEARNING BACKGROUND

• RL consists of:
• An agent, the decision maker
• An environment, the surrounding system
• Policy, controls the agent’s decisions
• State, RL agent’s location in the environment
• Action, a possible decision for the RL agent
• Reward, positive or negative feedback
• Convergence, changing its policy to get the most reward possible



DEEP REINFORCEMENT LEARNING BACKGROUND

• Basic Reinforcement Learning needs environmental model
• Not possible in pentesting as number of states is large and changes are 

common
• Q-learning is model free

• Instead estimates cumulative future rewards
• Uses deep neural networks

• Picks up on intricate input to output mappings
• Able to use in an environment with far more states and actions



DEEP REINFORCEMENT LEARNING STEPS

1. Planning and Preparation:
• Uses the question to define objectives and scope of the pentest

2. Reconnaissance:
• Uses Network mapper to identify useful system architecture

3. Vulnerability Analysis:
• Uses Nmap Vulners to identify potential vulnerabilities

4. Exploitation and Post-Exploitation:
• Uses Metasploit modules to find attack path and develop exploit code



Q-VALUE

• Multiple iterations of prior steps
• Q value: Highest estimated reward
• Selects most effective learned action or random action
• Rewards for successful actions
• Policy changes if action fails



RL AGENT CONCLUSION

• Concludes either when:
• Max Q-value reached for each step

• Agent can’t make progress towards max Q-Value

• Highest reward state action pairs assembled into JSON data set
• Sent to BERT QA
• Which begins a new round of BERT QA training



BERT MODELS TESTED

• BERT Uncased:
• First most basic BERT model

•  RoBERTa:
• Uses a larger dataset and uses slightly different masking approach

• DistilBERT:
• Lightweight BERT with lower computational cost



TRAINING TIME AND LOSS
• Training Loss: difference between BERTs actual output and expected output for all answers



QA ACCURACY RESULTS

• Precision:
• Recall:
• Exact Match: 



CONCLUSION

• BERT QA RL + RS is a highly accurate and efficient pentesting tool for all stages 
of black-box pentesting 

• But it has only been tested on intentionally vulnerable test environments

• Both execution and training times will likely increase with real world 
applications

• Future research should:
• Evaluate how it performs on real world systems

• With real cybersecurity experts
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