
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Andreas E. Nelson

Securing AI-Generated Code
Andreas E. Nelson

nel02254@morris.umn.edu
Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
The increasing use of AI for code generation presents signif-
icant security challenges, as these tools often lack inherent
security awareness and can produce vulnerable code. This
paper investigates these security risks, outlining common
types of vulnerabilities (such as injection flaws and improper
resource handling) found in AI-generated code. It further
explores and evaluates mitigation techniques aimed at im-
proving code security, including model fine-tuning and ad-
versarial strategies like Security Verifier Enhanced Neural
Steering (SVEN). Findings indicate that while current meth-
ods offer promising ways to reduce vulnerabilities, ongoing
research and development are crucial for the secure and
responsible deployment of AI in software development.

Keywords: Large Language Models, AI Code Generation,
Security Risks, Secure Coding Practices, Adversarial Testing.

1 Introduction
The landscape of software development is rapidly evolving
with the advent of powerful Artificial Intelligence (AI) tools
capable of generating functional code. Driven by advance-
ments in deep learning, particularly Large Language Models
(LLMs), tools like GitHub Copilot, Amazon CodeWhisperer,
and Codeium have gained significant popularity [1, 2]. These
AI pair programmers promise substantial benefits, offering
potential increases in developer productivity by automat-
ing repetitive coding tasks, suggesting code completions,
and even generating entire code blocks based on natural
language descriptions [1, 4]. However, this technological ad-
vancement presents a significant challenge: the security risk
of the generated code. This paper focuses primarily on vul-
nerabilities detectable by automated scanning tools, while
acknowledging that other types of security issues, poten-
tially requiring deeper semantic understanding, might also
arise in AI-generated code and represent an area for future
investigation.
LLMs are typically trained on vast datasets comprising

billions of lines of code scraped from public repositories like
GitHub [4]. While this allows them to learn diverse coding
patterns, it also means they inadvertently learn and repli-
cate security vulnerabilities present in their training data
[2, 4]. Consequently, the code generated by these AI tools
may contain common weaknesses, potentially introducing

critical security flaws into software projects at scale. Empiri-
cal studies confirm this risk. For instance, Fu et al. analyzed
code snippets identified as potentially AI-generated within
GitHub projects (identificationmethodology involved search-
ing for specific keywords and patterns associated with AI
tool usage, though review status by human programmers
was not definitively determined), finding a notable percent-
age (approximately 27-30%) contained security weaknesses
[2]. The widespread adoption of these tools raises concerns
about the potential for propagating vulnerabilities across
the software ecosystem, making the security assessment of
AI-generated code a critical area of research [2].

This paper provides a roadmap for understanding and
addressing these security challenges. We begin by provid-
ing essential background on the underlying technologies,
namely Neural Networks and the Transformer architecture
powering modern LLMs (Section 2). We then explore the spe-
cific security risks and common vulnerability types observed
in code generated by these models, drawing on recent em-
pirical studies (Section 3). Subsequently, we examine current
strategies aimed at mitigating these risks. These include fine-
tuning pre-trainedmodels on security-focused datasets using
real-world vulnerability fixes (Section 4). This technique has
been shown to improve secure code generation, with studies
demonstrating notable improvements for C, although results
varied for C++ potentially due to language-specific factors
impacting vulnerability patterns and fine-tuning effective-
ness [6]. We also examine employing specialized security
hardening techniques such as adversarial training and out-
put steering mechanisms like Security Verifier Enhanced
Neural Steering (SVEN) (Section 5). SVEN not only enabled
effective adversarial testing but also significantly increased
secure code generation rates (e.g., from 59.1% to 92.3% in
some settings) [4]. Finally, we conclude by summarizing the
key challenges and future directions for ensuring the safe
and responsible use of AI in code generation (Section 6). Un-
derstanding both the capabilities and the security pitfalls of
these tools is crucial for navigating their integration into
modern software development practices effectively.

2 Background: Neural Networks and Large
Language Models

To understand the security risks of AI-generated code, it’s
essential to grasp the fundamentals of the underlying tech-
nologies: Neural Networks (NNs) and, more specifically, the



Securing AI-Generated Code

Transformer architecture which is often used to build Large
Language Models (LLMs) [8].

2.1 Neural Network Fundamentals
Neural Networks (NNs) are computational models inspired
by the structure and function of biological brains, represent-
ing a model for information processing [5]. They consist of
interconnected nodes, or "neurons," organized in layers: an
input layer designed to receive information, one or more
layers of hidden units, and an output layer that signals the
network’s response [5]. Each connection between neurons
carries a real-valued weight, determining the strength and
influence (excitatory or inhibitory) of the signal passed be-
tween them [5]. Information flows through the network,
starting at the input layer, passing through the hidden layers
where computations involving weighted sums and activation
functions occur, and finally reaching the output layer to pro-
duce the result (e.g., a prediction, classification, or generated
code) [5]. Common activation functions include the sigmoid
function, often used to introduce non-linearity [5].

The core of NN learning involves adjusting these connec-
tion weights so the network can efficiently perform a task,
often by learning from examples or input-output relations
[5]. This adjustment is typically achieved through minimiz-
ing errors using a process called backpropagation [7]. During
training, the network makes a prediction based on its current
weights. This prediction is compared to the correct target
output, and an error value is calculated using a loss func-
tion, which measures how incorrect the prediction was [7].
Backpropagation then efficiently calculates the gradient (the
direction and magnitude of the error’s sensitivity to each
weight) of the loss function with respect to each weight us-
ing the chain rule [5, 7]. These gradients guide the update of
the weights, typically via an optimization algorithm like gra-
dient descent, iteratively reducing the error and improving
the network’s performance on the training data [5, 7].
Deep Learning involves NNs with multiple hidden layers

(deep architectures) [7]. These numerous layers enable the
networks to learn complex patterns and hierarchies of fea-
tures from large datasets, making them powerful for tasks re-
quiring sophisticated data representations [7]. Various types
of NNs exist, including simple Feed Forward Neural Networks
where data travels in one direction [5], Recurrent Neural Net-
works (RNNs) designed to handle sequences by incorporating
memory of previous steps [3, 5], and Convolutional Neural
Networks which use convolutional filters and are particularly
effective for representing spatial relationships and structures
(hierarchies) like those in images [5, 7].

2.2 Transformer Architecture and Large Language
Models

Most current state-of-the-art AI code generation tools are
based on Large Language Models (LLMs). LLMs are a type
of deep learning model characterized by their massive size

(often billions of parameters or weights) and their training
on vast quantities of text and code data scraped from sources
like GitHub [4]. This extensive training allows them to un-
derstand and generate human-like text and functional code
across various programming languages [3, 4]. These mod-
els typically undergo a common training process involving
unsupervised pre-training on raw data to learn general repre-
sentations, subsequently followed by fine-tuning for specific
downstream tasks [3].
A key innovation enabling the creation of modern LLMs

is the transformer architecture, introduced by Vaswani et al.
[3, 8]. The transformer architecture processes sequences of
input data (e.g., natural language text or code tokens) and
produces sequences of output data (e.g., translated text or
generated code) [8]. Unlike earlier sequential models like
RNNs (which struggled with parallelization and processing
very long sequences partly due to vanishing gradients, where
error signals diminish exponentially as they propagate back
through time, making it hard to learn long-range depen-
dencies [3, 7]), transformers process input data in parallel
and rely solely on attention mechanisms [3]. The attention
mechanism allows the model, when generating a specific
word or code token, to dynamically weigh the importance
of all other tokens in the input sequence [3]. It does this by
mapping a query (representing the current focus) and a set
of key-value (K-V) pairs (representing all input tokens and
their associated information) to an output [3]. It can "pay
attention" to the most relevant parts of the input, regardless
of their distance within the sequence [3]. This mechanism is
vital for understanding context, handling long-range depen-
dencies in text and code (e.g., matching brackets, tracking
variable usage), and ultimately generating coherent and con-
textually appropriate output [3, 4]. This ability to capture
complex, long-range relationships within code structures is
what makes transformer-based LLMs particularly adept at
code generation tasks [1, 4].

3 Security Risks in AI-Generated Code
While powerful, LLMs trained on vast datasets, including
code from public repositories like GitHub, inadvertently
learn and replicate security vulnerabilities present in that
data [2, 4]. Key code-generation tools include GitHub Copilot
(GitHub/Microsoft/OpenAI), Amazon CodeWhisperer, and
Codeium [2]. The sheer scale and heterogeneity of this train-
ing data make it currently impractical to curate a sufficiently
large, vulnerability-free dataset for training general-purpose
code-generation models. LLMs often lack inherent security
awareness [4]. Empirical studies have confirmed the risks;
one evaluation by Pearce et al. discovered that, in various
security-relevant scenarios, 40% of Copilot-generated pro-
grams contained dangerous vulnerabilities, with other state-
of-the-art LLMs found to have similarly concerning security
levels [4]. Another study found ChatGPT often generates



Andreas E. Nelson

code below minimal security standards [4]. A large-scale
empirical study by Fu et al. analyzing code generated by
Copilot, CodeWhisperer, and Codeium found within GitHub
projects provides further evidence [2]. Their methodology in-
volved searching for keywords and patterns associated with
AI tool usage to identify potentially generated code, but did
not definitively determine if the code was subsequently re-
viewed or modified by human developers [2]. Analyzing 733
distinct code files identified as likely containing AI-generated
code, they found security weaknesses in 29.5% of Python
snippets and 24.2% of JavaScript snippets [2]. Overall, 200
of the 733 snippets (27.3%) contained at least one security
weakness, highlighting the significant frequency of insecure
code integration in real-world open-source development [2].

3.1 Nature and Types of Vulnerabilities
The diverse security issues in AI-generated code reflect the
insecure patterns learned from vast training datasets, in-
cluding extensive public code from repositories like GitHub
[2, 4]. Studies have shown that LLMs can produce code sus-
ceptible to a range of Common Weakness Enumeration (CWE)
types – a standardized classification system for software
weaknesses [4, 6].

The study by Fu et al. identified a total of 628 distinct se-
curity weaknesses spanning 43 different CWE types within
the 200 vulnerable code snippets analyzed [2]. This variety
underscores the breadth of potential security flaws develop-
ers might encounter. Among the most frequently occurring
issues identified by Fu et al. were CWE-330 (Use of Insuf-
ficiently Random Values), representing 18.15% of identified
weaknesses, followed by CWE-94 (Improper Control of Gener-
ation of Code - ‘Code Injection’), CWE-79 (Cross-site Scripting -
XSS), and CWE-78 (OS Command Injection) [2]. Other notable
examples include Path Traversal (CWE-22), Use of Uninitial-
ized Variable (CWE-457), Missing Release of Resource (CWE-
772), and SQL Injection (CWE-89) [2]. The high prevalence
of these specific CWEs suggests common pitfalls in how
LLMs handle randomness, code execution based on input,
web interactions, and database queries. Crucially, eight of
the 43 CWE types identified by Fu et al. were listed in the
2023 CWE Top-25 Most Dangerous SoftwareWeaknesses list,
accounting for 233 (37.1%) of the total security weaknesses
found, emphasizing that AI tools are propagating some of
the most critical and widespread vulnerabilities [2].

3.2 Factors Influencing Vulnerabilities
Several factors contribute to the generation of insecure code.
The sheer complexity of secure coding practices means that
even human developers make mistakes, and LLMs trained
on human code inherit these tendencies [1]. The vast scale
of training data scraped from public repositories inevitably
includes insecure patterns [2, 4]. The specific programming

language or domain can also influence risk [2, 6]. For in-
stance, Fu et al. observed that Python weaknesses often re-
lated to system calls (like OS Command Injection) and data
processing, while JavaScript issues more commonly involved
dynamic code-generation (Code Injection) and web security
flaws (XSS), reflecting the typical usage contexts of these
languages [2]. This difference might be linked to language
features like dynamic typing, which can make static analysis
harder and potentially simplify insecure code-generation if
the model doesn’t need to reason about the entire program
flow [2]. Application domain also matters; Fu et al. found
Web Applications contributed the most CWEs in JavaScript,
while Utility Tools were the largest source in Python [2].
Furthermore, the prompts given to the LLM can significantly
impact the security of the output; vague or poorly defined
prompts are more likely to result in insecure code [1, 4].
User studies also suggest task complexity might play a role;
Asare et al. found Copilot assistance correlated with more
secure solutions for harder problems, potentially by provid-
ing established secure patterns, but observed no difference
for simpler tasks [1].

3.3 Evaluating Security Risks
Evaluating the security of LLM-generated code is crucial for
understanding and mitigating risks. Researchers determine
vulnerability rates by employing a combination of methods,
often starting with automated scanning and refining results
through manual checks. Static Analysis tools like CodeQL,
a semantic code analysis engine developed by GitHub, are
frequently used to automatically scan generated code for
patterns matching known vulnerability types (CWEs) across
specific, predefined scenarios; these tools analyze the code
structure without executing it [2, 6]. Since automated tools
may produce false positives or miss certain vulnerability
types (especially logical flaws), Manual Code Review by se-
curity experts is often necessary to confirm findings and
assess the severity of potential issues [1, 2, 4], serving as
a key step in studies like Fu et al. to filter static analysis
results [2]. Additionally, benchmarking helps quantify risks
and track improvements by comparing vulnerability rates
across different models and conditions (e.g., with/without
security prompts), or against human-written code [1, 4, 6].
For example, a study by He et al. evaluated an LLM on a

scenario designed to elicit a Null Pointer Dereference (CWE-
476) [4]. The prompt could ask the model to allocate memory
and then use it, like copying data from standard input into
a newly allocated buffer [4]. A vulnerable response might
use malloc but fail to check if the returned pointer (buf) is
NULL before attempting to read from standard input into buf
using fgets, potentially leading to a crash if malloc failed
[4]. This reflects a common pattern where basic safety checks
are overlooked [4]. A static analysis tool like CodeQL could
detect this potential dereference of a possibly null pointer
[4]. Comparing the frequency of such vulnerable generations



Securing AI-Generated Code

across different models or techniques provides a measure of
their relative security [4].

4 Mitigation Strategy: Fine-Tuning for
Security

One promising approach to reduce vulnerabilities in AI-
generated code, without requiring complex architectural
changes, is fine-tuning [6]. This involves taking a general-
purpose pre-trained LLM and further training it on a smaller,
curated dataset specifically designed to teach secure coding
practices [6]. The goal is to adapt the LLM’s learned pat-
terns to favor secure code generation, effectively learning
to generate secure code directly from prompts or transform
potentially unsafe patterns into safer equivalents [6].

4.1 Fine-Tuning Methodology
The process typically involves several key steps:

1. Creating a Security-Focused Dataset: This requires
compiling a specialized dataset. A key approach by Li
et al. is using real-world vulnerability fixes [6]. They
collected 4900 vulnerability-fixed commits across 580
open-source projects, extracting paired examples of
insecure code and their corresponding secure ver-
sions from established vulnerability datasets [6]. This
dataset contained over 14,000 source files (primarily
C/C++, distinct from the Python/JavaScript focus in
Section 3) and aimed to expose the model to practical
examples of fixing vulnerabilities and implementing
secure coding patterns [6]. Compiling such datasets
focuses on specific vulnerability types (e.g., CWEs)
relevant to the target programming languages [6].

2. Model Selection and Training: A pre-trained LLM
is chosen for fine-tuning. Li et al. selected GPT-J, a
smaller model in the GPT family, with comparable
code generation performance to the larger Codexmodel
while being more computationally feasible for aca-
demic research and fine-tuning [6]. The chosen model
is then trained (weights adjusted via backpropagation)
on the specialized security dataset to better predict or
generate the secure code examples [6].

3. Evaluation Setup: Assessing the effectiveness re-
quires a dedicated evaluation framework. This often
involves crafting a dataset of code generation sce-
narios focusing on specific, high-risk CWEs (such as
those from the "CWE Top 25 Most Dangerous Soft-
ware Weaknesses" list [6]). These scenarios typically
include a natural language description and an incom-
plete code snippet for the model to complete, targeting
languages like C and C++ [6].

4. Vulnerability Detection: Static analysis tools are
frequently used to evaluate the generated code. Tools
like CodeQL, a popular semantic code analysis engine,
automatically detect potential vulnerabilities in the

model’s output for the test scenarios [2, 6]. The rates of
vulnerable vs. non-vulnerable code generated by the
fine-tuned model are then compared to the original
pre-trained model [6].

4.2 Fine-Tuning Results and Implications
Studies by Li et al. [6] and He et al. [4] have shown that fine-
tuning can significantly reduce the generation of insecure
code for specific vulnerability types targeted during training.
The experiments by Li et al. [6] on GPT-J fine-tuned with
vulnerability fixes yielded a notable 10% absolute increase
(from 60% to 70.4%) in the generation of non-vulnerable code
for C scenarios. A slight increase (from 63.9% to 64.5%) was
observed for C++ [6]. Manual examination suggested the
fine-tuned model learned specific secure behaviors present
in the fix data; for example, in scenarios related to out-of-
bounds array access (CWE-125), the fine-tuned model con-
sistently implemented proper boundary checks before ac-
cessing array elements, mirroring patterns observed in the
vulnerability fixes used for training [6]. Related work also
suggests models fine-tuned on datasets emphasizing secure
handling of web inputs showed a marked decrease in gener-
ating code vulnerable to XSS [4].

However, fine-tuning presents challenges and limitations.
It is often specific; improving security for one CWEmight not
generalize well to others, as evidenced by differing improve-
ment rates across languages (C vs C++ in the Li et al. study)
[6]. Careful dataset creation is crucial and labor-intensive,
and the process requires significant computational resources,
although choices like using GPT-J can make it more feasible
compared to training larger models from scratch [6]. Fur-
thermore, Li et al. [6] observed a higher rate of syntactically
invalid code generation in C++ scenarios for the fine-tuned
model, suggesting potential trade-offs between enforcing
security patterns and maintaining code correctness or flu-
ency (the study primarily focused on syntax, but functional
correctness could also be impacted) [6]. While effective for
targeted improvements, fine-tuning alone may not eliminate
all risks, and its success depends heavily on the quality, cov-
erage, and representativeness of the fine-tuning dataset [6].

5 Mitigation Strategy: Security Hardening
Techniques

Beyond fine-tuning the model’s weights, other techniques
aim to harden large language models (LLMs) against gen-
erating insecure code, often by influencing the generation
process directly or by using adversarial methods to improve
robustness and evaluation [4]. These methods are particu-
larly relevant given the significant cost associated with re-
training or fully fine-tuning massive foundation models [4].



Andreas E. Nelson

5.1 Adversarial Methods for Security Evaluation and
Hardening

Adversarial methods leverage the concept of an "adversary,"
which can be another model or a crafted process, attempt-
ing to expose weaknesses in the target LLM or, conversely,
to improve its defenses through targeted training [4]. Two
key directions exist. Firstly, Adversarial Testing focuses on
evaluating an LLM’s security posture from an adversarial
standpoint. This involves crafting specific prompts or inputs
designed to intentionally induce the LLM into generating in-
secure code [4]. The goal is often to deliberately degrade the
LLM’s security performance to understand its vulnerabilities
under attack scenarios and identify weaknesses missed by
standard benchmarks or functional testing [4]. This provides
a stress test of the model’s security awareness [4]. Secondly,
adversarial training aims to improve model robustness by
incorporating adversarial examples directly into the training
process [4]. Inputs known or likely to cause the target LLM
to produce insecure code (identified perhaps by an auxiliary
adversarial model or specific heuristics designed to probe
weaknesses) are included alongside standard training data
[4]. The target LLM learns to recognize and resist generating
insecure code even when presented with these challenging
or potentially malicious inputs [4]. This process can involve
iterative refinement, where the adversary gets better at find-
ing weaknesses and the target model gets better at defending
against them, minimizing susceptibility [4]. Studies show
adversarial training can improve robustness against specific
types of adversarial prompts [4].

5.2 Steering LLMs with Verifiers and Prefixes (SVEN)
A distinct and novel approach, exemplified by Security Ver-
ifier Enhanced Neural Steering (SVEN), aims to guide the
output of an existing, unmodified LLM towards desired prop-
erties like security without retraining or fine-tuning its core
parameters (i.e., without changing the weights of the large,
pre-trained model) [4]. This directly addresses the challenge
of modularity – the prohibitive expense and difficulty of
modifying massive, pre-trained foundation LLMs [4].

SVEN formulates security hardening and adversarial test-
ing as a controlled code generation task: the LLM receives
not just the standard prompt but also an additional binary
property (e.g., "generate secure code" or "generate unsafe
code") that guides the generation process towards the speci-
fied property, while aiming to preserve the LLM’s ability to
generate functionally correct code [4].
SVEN achieves this control using learnable "prefixes" –

small, property-specific continuous vectors (sequences of num-
bers optimized during training) that are prepended to the
LLM’s internal state before processing the user prompt [4].
These prefixes effectively encode the desired property (like

‘security’ or ‘vulnerability’). They are optimized using spe-
cialized loss functions applied to different code regions (neu-
tral vs. security-sensitive) within a high-quality, manually
curated dataset derived from sources like CrossVul, Big-
Vul, and VUDENC (large datasets containing vulnerabil-
ity information and associated code fixes from open-source
projects) after careful filtering to remove non-security fixes
and project-specific code [4]. The loss function rewards the
model for producing outputs similar to the original model
in non-security-sensitive regions, helping preserve function-
ality [4]. Crucially, during this prefix training phase, the
weights of the base LLM remain frozen; only the small prefix
vectors are updated [4]. This makes the approach highly
data-efficient compared to full fine-tuning, as it leverages
the existing capabilities of the large LLM [4].
The operational process involves several steps. First is

Prefix Training, where separate prefixes are trained using
a security-labeled dataset to represent characteristics like
‘secure’ (SVEN_sec) and ‘vulnerable’ (SVEN_vul) [4]. Special-
ized loss functions, including a contrastive loss (to differen-
tiate secure vs. insecure generation) and a Kullback-Leibler
(KL) divergence loss, are used to optimize only the prefix
vectors while the main LLM’s weights are kept frozen [4].
The KL divergence loss term encourages the model’s output
distribution (when using a prefix) to remain similar to the
original LLM’s distribution in non-security-sensitive code
regions, thereby helping to preserve functional correctness
[4]. Second is Guided Generation: during code generation
(inference), the user selects a desired prefix (e.g., SVEN_sec
for security hardening or SVEN_vul for adversarial testing).
This prefix vector is simply prepended to the input repre-
sentation before being fed into the original, unchanged LLM
[4]. The prefix vector influences the LLM’s internal computa-
tions, particularly the attention mechanism (how the model
weighs the importance of different input tokens when gener-
ating output). This effectively steers the generation process
towards producing code that aligns with the characteristic
encoded in the prefix (e.g., more secure code or intentionally
vulnerable code) without having altered the base LLM [4].
Extensive evaluations showed SVEN was highly effective [4].
As shown in Figure 1, applying SVEN_sec to harden a

2.7B parameter CodeGen LLM significantly boosted its se-
cure code generation rate on a set of test scenarios from a
baseline of 59.1% to 92.3% [4]. Conversely, using SVEN_vul
for adversarial testing degraded the security rate to 36.8%
[4]. Importantly, as illustrated in Figure 2, these strong se-
curity controls were achieved while closely matching the
original LLM’s functional correctness on benchmarks like
HumanEval [4]. Further experiments showed SVEN’s robust-
ness to prompt perturbations, applicability across different
LLMs (CodeGen, InCoder, SantaCoder), and even some gener-
alization capability to CWEs not seen during prefix training
[4]. SVEN thus offers a flexible, modular, and data-efficient



Securing AI-Generated Code

Figure 1. Security results of SVEN hardening (SVEN_sec,
green) and adversarial testing (SVEN_vul, orange) compared
to the original CodeGen LM (grey) across different model
sizes (parameters). Security rate is the percentage of secure
programs generated for main CWE test scenarios [4].

Figure 2. Functional correctness results (pass@k on Hu-
manEval benchmark) for SVEN hardening (SVEN_sec, green)
and adversarial testing (SVEN_vul, orange) compared to the
original CodeGen LM (grey), likely across different model
sizes [4]. Pass@k measures the percentage of problems for
which at least one of k generated solutions passes unit tests.

method to control output security without costly retraining
or fine-tuning [4].

6 Conclusion
AI code generation tools present a significant advancement
for software development, offering notable productivity ben-
efits but also introducing substantial security risks [1, 4].
Large Language Models, trained on vast public datasets, can
inadvertently learn and propagate vulnerabilities like injec-
tion flaws and insecure handling of randomness or resources,
making mitigation essential [2, 4]. Empirical studies confirm
that AI-generated code frequently contains common and
severe weaknesses found in real-world projects [2, 4]. Cur-
rent mitigation strategies, including security-focused fine-
tuning and adversarial techniques like SVEN, demonstrate
potential for reducing specific vulnerabilities [4, 6]. Fine-
tuning can teach models secure patterns from vulnerability

fixes [6], while methods like SVEN allow for guiding exist-
ing models towards security without costly retraining [4].
However, these approaches often face limitations in gener-
alization across different vulnerability types or languages,
require high-quality curated data, and may have trade-offs
with code correctness (primarily syntactic, though poten-
tially functional as well) [4, 6]. Presently, no single technique
offers a complete solution [4].
Moving forward, ensuring the safe deployment of AI in

software development necessitates a multi-faceted approach.
Key challenges include improving the generalization of secu-
rity enhancements and overcoming the difficulty of obtain-
ing comprehensive training and evaluation datasets [4, 6].
Future research should prioritize developing inherently se-
cure model architectures, creating more realistic evalua-
tion benchmarks, exploring combinations of mitigation tech-
niques (like fine-tuning plus inference-time steering or ro-
bust post-generation analysis), enhancing automated repair
tools (including LLM-based ones like Copilot Chat which
have shown some success [2]), and addressing the data bottle-
neck through automated curation or careful crowdsourcing
[1, 2, 4, 6]. Care must be taken in crowdsourcing efforts, how-
ever, to mitigate the risk of potentially malicious contribu-
tions. Effective human-AI collaboration remains paramount.
Developers must stay vigilant, utilizing tools and knowledge
to critically evaluate AI-generated code [1, 2]. Integrating
automated security analysis into AI-assisted workflows and
promoting developer education on secure coding in the con-
text of AI are vital steps [2]. Ultimately, harnessing AI’s ben-
efits while managing its security risks demands a concerted
effort from researchers, developers, and practitioners. A com-
mitment to rigorous evaluation and balancing innovation
with security will be crucial as these powerful tools become
increasingly integrated into software creation [1, 2, 4].

Acknowledgments
I would like to thank Dr. Elena Machkasova for guiding
me through the writing process. I would also like to thank
Dr. Wenkai Guan for his advice and guidance of the senior
seminar course. Finally, I would like to extend thanks to Ollie
Willete for his valuable feedback.

References
[1] Owura Asare, Meiyappan Nagappan, and N. Asokan. 2024. A User-

centered Security Evaluation of Copilot. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering (Lisbon, Portugal)
(ICSE ’24). Association for Computing Machinery, New York, NY, USA,
Article 158, 11 pages. https://doi.org/10.1145/3597503.3639154

[2] Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, Jiaxin
Yu, and Jinfu Chen. 2025. Security Weaknesses of Copilot-Generated
Code in GitHub Projects: An Empirical Study. ACM Trans. Softw. Eng.
Methodol. (Feb. 2025). https://doi.org/10.1145/3716848 Just Accepted.

[3] Anthony Gillioz, Jacky Casas, Elena Mugellini, and Omar Abou Khaled.
2020. Overview of the Transformer-basedModels for NLP Tasks. In 2020
15th Conference on Computer Science and Information Systems (FedCSIS).

https://doi.org/10.1145/3597503.3639154
https://doi.org/10.1145/3716848


Andreas E. Nelson

179–183. https://doi.org/10.15439/2020F20
[4] Jingxuan He and Martin Vechev. 2023. Large Language Models for

Code: Security Hardening and Adversarial Testing. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications
Security (Copenhagen, Denmark) (CCS ’23). Association for Computing
Machinery, New York, NY, USA, 1865–1879. https://doi.org/10.1145/
3576915.3623175

[5] Mohaiminul Islam, Guorong Chen, and Shangzhu Jin. 2019. An
Overview of Neural Network. American Journal of Neural Networks
and Applications 5, 1 (2019), 7–11. https://doi.org/10.11648/j.ajnna.
20190501.12

[6] Junjie Li, Aseem Sangalay, Cheng Cheng, Yuan Tian, and Jinqiu Yang.
2024. Fine Tuning Large Language Model for Secure Code Generation.

In Proceedings of the 2024 IEEE/ACM First International Conference on AI
Foundation Models and Software Engineering (Lisbon, Portugal) (FORGE
’24). Association for Computing Machinery, New York, NY, USA, 86–90.
https://doi.org/10.1145/3650105.3652299

[7] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An
overview. Neural Networks 61 (2015), 85–117. https://doi.org/10.1016/j.
neunet.2014.09.003

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. In Proceedings of the 31st International Conference
on Neural Information Processing Systems (Long Beach, California, USA)
(NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 6000–6010.

https://doi.org/10.15439/2020F20
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.11648/j.ajnna.20190501.12
https://doi.org/10.11648/j.ajnna.20190501.12
https://doi.org/10.1145/3650105.3652299
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003

	Abstract
	1 Introduction
	2 Background: Neural Networks and Large Language Models
	2.1 Neural Network Fundamentals
	2.2 Transformer Architecture and Large Language Models

	3 Security Risks in AI-Generated Code
	3.1 Nature and Types of Vulnerabilities
	3.2 Factors Influencing Vulnerabilities
	3.3 Evaluating Security Risks

	4 Mitigation Strategy: Fine-Tuning for Security
	4.1 Fine-Tuning Methodology
	4.2 Fine-Tuning Results and Implications

	5 Mitigation Strategy: Security Hardening Techniques
	5.1 Adversarial Methods for Security Evaluation and Hardening
	5.2 Steering LLMs with Verifiers and Prefixes (SVEN)

	6 Conclusion
	Acknowledgments
	References

