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“It is our job to create computing technology such 
that nobody has to program. And that the 
programming language is human. Everybody in the 
world is now a programmer. This is the miracle of 
artificial intelligence.”

Jensen Huang, CEO of Nvidia
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Why 
should 
we care?

The majority 
of AI usage 
in the US is 
in software 
development 

Handa et al, 2024 3
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Background
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Core Technologies - Neural Networks

● Interconnected "neurons" organized in 

layers 

● Connection strength determined by 

weights

● Computations in hidden layers

● Backpropagation

○ Adjusting weights to minimize 

errors based on training 
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NN’s typically have many hidden layers
Islam et al, 2019



Core Technologies - Large Language 
Models (LLMs)

LLMs are a type of Deep Neural Network

Pairs and layers

● Training: vast amounts of text and 
code 

● Transformer Architecture
○ NN architecture designed for 

sequence processing

7

Decoder

Vaswani et al, 2017

Encoder



Core Technologies - Large Language 
Models (LLMs)

● Input Processing
○ Input text/code ➡ Numbers + Word Order

● Encoder: Context weighting and tokenization
● Decoder: Generates output using input context 

and previous output
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Decoder

Vaswani et al, 2017

Encoder



Key Platforms- Github & Visual Studio Code

Github

● Free platform to collaborate and 
share code

VSC

● Microsoft’s Integrated Development 
Environment (IDE)
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Code Generation Tools

Interface between VSC and AI models

● Gemini

● Claude

● ChatGPT

Allows for the generation  of code

Fu et al, 2025
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Vulnerabilities - Common Weakness Enumerators

CWE’s stem from issues in,

● Design
● Implementation
● Operation

Designated with different levels of severity
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Code Evaluation Tools

CodeQL

● Developed by Github
● Checks code security

○ Runs queries against a 
database representation 
code to identify patterns 
associated CWEs
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HumanEval

● Checks Functional 
Correctness

● Benchmark dataset
○ Compares derived 

answer
○ Correct tries per 

attempts



Security Risks
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The Fundamental Problem

● Inherited vulnerabilities in 
training data

○ Stack Overflow
○ Github

● Malicious intent and human 
error
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How Common Are These Risks?

Fu et al, 2025
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27.3% chance of containing one or 
more security weakness



What Kinds of 
Vulnerabilities?

● 43 different CWE’s identified 

across 733 Copilot code 

snippets

● most commonly found,
○  CWE-330 (Insufficient 

Randomization)

○ CWE-94 (Code Injection)

○ CWE-79 (Cross Site 

Scripting)
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Fu et al, 2025



Severity of Vulnerabilities

● 8 being in the most severe 
vulnerabilities of 2023

● 2 of the 3 most common being in 
the top 25 (2024)

○ CWE-94 (#11: Code Injection)
○ CWE-79 (#1: Cross Site 

Scripting)
● These 8 critical types accounted for 

233 out of 628 (37.1%) of all 
weaknesses found in the study

cwe.mitre.org 17



Factors Influencing Risk
Vulnerabilities differ by language

● Python
○ System interaction

■ CWE-78 (OS Command Injection)
○ Utility Tool domain projects

● JavaScript
○ Dynamic code generation

■ CWE-79 (XSS)
■ CWE-94 (Code Injection)

○ Web App projects

18Fu et al, 2025



Mitigation Strategy 1: 
Fine-Tuning Training Data
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Concept

Improve the quality of 
the generated code
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Improve the quality 
of training material 



Methodology

● Creating security focused training data

○ Use real-world vulnerability fixes for CWEs

○ extracting pairs of insecure code and their 

corresponding secure versions 

○ Li et al. collected 4900 commits

● CodeQL to evaluate output before and after

21



Results

Notable increase in generating non-vulnerable code.

● C: from 60.6% to 70.4%
● C++: 63.9% to 64.5%
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Li et al, 2024



Limitations

Training data creation labor-intensive

Computationally resource heavy

Success depends on quality and coverage of the dataset

CWE generalizations (Other languages/CWEs)

Increasing security, decreasing functional correctness
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Mitigation Strategy 2: 
Security Hardening

24



Concept

● Fine-tuning models is expensive

● Enhancing security without full model 

retraining

● influencing the generation process 

directly at inference time
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Steering

Security Verifier Enhanced 

Neural-Steering (SVEN)

● Balancing functional 

correctness with security

○ Security Hardening

○ Adversarial Testing
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He et al, 2023



Steering Process

● Adversarial Testing

○ generate insecure code

● Security Hardening

○ Including adversarial examples 

in hardening process

○ Recognize and resist generating 

insecure code 
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He et al, 2023



Methodology

● How SVEN Works
○ Adversarial Training finds areas of 

insecurity 
○ Areas mapped to prefix vectors
○ Vectors guide new prompts away 

from negative weights
○ Only affects areas of security

● Evaluation
○ CodeQL
○ HumanEval
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He et al, 2023



SVEN Effectiveness

Security improvements 

≈ 30%

Closely matched 

original LLMs in 

HumanEval within 

1-2%
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Baseline
Adversarial
Hardening

He et al, 2023



Conclusions
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Comparison

Fine Tuning

● Pros: 10%
○ Improved security for targeted 

CWEs/languages
○ Modifies model's inherent behavior

● Cons: 
○ Requires retraining/fine-tuning 

(compute/data intensive)
○ Improvement may not generalize well
○ Can hurt code validity

Hardening

● Pros: 30%
○ Modular
○ Demonstrated effective security 

control 
○ Preserves functional correctness   

● Cons: 
○ May not generalize perfectly to all 

unseen CWEs 
○ Effectiveness relies on quality of 

curated prefix-training data
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Future Implications

Humans are safe… for now

● Review of generated code still necessary

● Current need for developer education

● Iterative CodeQL checks
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Questions?
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