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“It is our job to create computing technology such
that nobody has to program. And that the
programming language is human. Everybody in the
world is now a programmer. This is the miracle of
artificial intelligence.”

Jensen Huang, CEO of Nvidia



Why
should
we care?
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Core Technologies - Neural Networks

Hidden

Interconnected "neurons" organized in
Input
layers Output
e Connection strength determined by
weights
e Computations in hidden layers
e Backpropagation
o  Adjusting weights to minimize

. NN'’s typically have many hidden layers
errors based on training vP Y Islametal,201y9 Y
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( Output \

Probabilities

Core Technologies - Large Language
MOdels (LLMS) Encoder

( N\
[} J
LLMs are a type of Deep Neural Network ( T
. 1 Md: Norm J Multi-Head
eed ion
Pairs and layers Forward - N
e Training: vast amounts of text and N | e | || s
code Atanion "Atenion
e Transformer Architecture =l 1 | S =28
o NN architecture designed for Positional A Positional
. Encoding D 5% Encoding
sequence processing ot Gutout
Embedding Embedding

K Inputs J Outputs

Vaswani et al, 2017 (shifted right) )




Core Technologies - Large Language

Models (LLMs)

Input Processing

o Input text/code = Numbers + Word Order
Encoder: Context weighting and tokenization
Decoder: Generates output using input context

and previous output

Vaswani et al, 2017
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Key Platforms- Github & Visual Studio Code

Github

e Free platform to collaborate and

share code GitHub

e Microsoft’s Integrated Development
Environment (IDE)

VSC




Code Generation Tools @ GitHub CODI|Ot

1 def Calcu 1ateDaysBetweenDates|:" datel, date2):

Interface between VSC and Al models # datel and date2 are in the format of 'YYYY-MM-DD'
yearl, monthl, dayl = map(int, datel.split('-'))
year2, month2, day2 = map(int, date2.split('-'))

e Gemini days = 0

while yearl < year2 or monthl < month2 or dayl < day2:

® Claude ch?‘/b += 1

L,!uj,l = 1
® ChatGPT if o‘a.},wz].—.» 3;(?:
aay =
onthl += 1
Allows for the generation of code K montaL> 1af

yearl +=

return days

Fu et al, 2025



Vulnerabilities - Common Weakness Enumerators

CWE’s stem from issues in,

e Design
e [Implementation
e Operation

Designated with different levels of severity
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Code Evaluation Tools

CodeQL

e Developed by Github
e Checks code security
o Runs queries against a
database representation
code to identify patterns
associated CWEs

HumanEval

e Checks Functional
Correctness
e Benchmark dataset
o Compares derived
answer
o Correct tries per
attempts
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Security Risks



The Fundamental Problem

e Inherited vulnerabilities in

training data
o Stack Overflow
o Github

e Malicious intent and human
error

GitHub

stack overflow
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How Common Are These Risks?

# Snippets containing

# containing more than

L # Snippets #8S i ak

anguage nppets ecurity weaknesses security weaknesses one security weakness
Python 419 387 124 (29.5%) 65 (15.5%)
JavaScript 314 241 76 (24.2%) 37 (11.8%)
Total 733 628 200 (27.3%) 102 (13.9%)

27.3% chance of containing one or
more security weakness

Fu et al, 2025
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What Kinds of
Vulnerabilities?

43 different CWE'’s identified
across 733 Copilot code
snippets

most commonly found,
o  CWE-330 (Insufficient

Randomization)
o CWE-94 (Code Injection)
o CWE-79 (Cross Site
Scripting)

Distribution of CWEs in code snippets

CWE-ID Name Frequency Percentage
CWE-330 Use of Insufficiently Random Values Weakness 114 18.15%
CWE-94 Improper Control of Generation of Code ('Code Injection’) 62 9.87%
CWE-79 Ifn\pruper. Ne?llr.ah%au’on of Input During Web Page Generation &6 Gk
(’Cross-site Scripting’)
Improper Neutralization of Special Elements used in an OS ) ’
OWE-78 Command ('OS Command Injection’) 2 G2L%
CWE-427 Uncontrolled Search Path Element 35 5.57%
CWE-457 Use of Uninitialized Variable 30 4.78%
imitati a Ps P P tric 1 .
CWE-22 Ifnpruper Lmut‘thon of a Pathname to a Restricted Directory 29 o
(’Path Traversal’)
CWE-772 Missing Release of Resource after Effective Lifetime 29 4.62%

Fu et al, 2025
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Severity of Vulnerabilities

8 being in the most severe
vulnerabilities of 2023
2 of the 3 most common being in
the top 25 (2024)
o CWE-94 (#11: Code Injection)
o CWE-79 (#1: Cross Site
Scripting)
These 8 critical types accounted for
233 out of 628 (37.1%) of all
weaknesses found in the study

cwe.mitre.org

Llcje]els]ofa]afu]n]-

Improper Neutralization of Input During Web Page Generation ('Cross-site
Scripting')
CWE-79 | CVEs in KEV: 3 | Rank Last Year: 2 (up 1) A

Out-of-bounds Write
CWE-787 | CVEs in KEV: 18 | Rank Last Year: 1 (down 1) ¥

Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection’)
CWE-89 | CVEs in KEV: 4 | Rank Last Year: 3

Cross-Site Request Forgery (CSRF)
CWE-352 | CVEs in KEV: 0 | Rank Last Year: 9 (up 5) A

Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
CWE-22 | CVEs in KEV: 4 | Rank Last Year: 8 (up 3) A

Out-of-bounds Read
CWE-125 | CVEs in KEV: 3 | Rank Last Year: 7 (up 1) A

Improper Neutralization of Special Elements used in an OS Command ('0OS

Command Injection')
CWE-78 | CVEs in KEV: 5 | Rank Last Year: 5 (down 2) ¥

Use After Free
CWE-416 | CVEs in KEV: 5 | Rank Last Year: 4 (down 4) ¥

Missing Authorization
CWE-862 | CVEs in KEV: 0 | Rank Last Year: 11 (up 2) A

Unrestricted Upload of File with Dangerous Type
CWE-434 | CVEs in KEV: 0 | Rank Last Year: 10

Improper Control of Generation of Code ('Code Injection')
CWE-94 | CVEs in KEV: 7 | Rank Last Year: 23 (up 12) A 17




Factors Influencing Risk

Vulnerabilities differ by language

Python
System interaction

@)

O

@)

@)

CWE-78 (OS Command Injection)
Utility Tool domain projects

JavaScript

Dynamic code generation

CWE-79 (XSS)

CWE-94 (Code Injection)
Web App projects

v

® Al Application

® Network Communication
® Utility Tool

¥ Web Application

u Game

® Others

(a) application domains of Python code

\

u Al Application

® Network Communication
= Utility Tool

® Web Application

= Game

& Others

(b) application domains of JavaScript code

Fu et al, 2025
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Mitigation Strategy 1:
Fine-Tuning Training Data



Concept

Improve the quality
of training material

Improve the quality of
the generated code
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Methodology

e Creating security focused training data
o Use real-world vulnerability fixes for CWEs
o extracting pairs of insecure code and their
corresponding secure versions
o Lietal. collected 4900 commits

e CodeQL to evaluate output before and after
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Results

Notable increase in generating non-vulnerable code.

C: from 60.6% to 70.4%
C++:63.9% to 64.5%

Total (C) 278 427 135 | 194 462 185

Total (C++) 206 365 269 | 131 238 171
Non-vulnerable ratio (C) 60.6% 70.4%
Non-vulnerable ratio (C++) 63.9% 64.5%
Invalid ratio (C) 16.1% 22.0%
Invalid ratio (C++) 32.0% 56.1%

Lietal, 2024
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Limitations

Training data creation labor-intensive

Computationally resource heavy

Success depends on quality and coverage of the dataset
CWE generalizations (Other languages/CWESs)

Increasing security, decreasing functional correctness
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Mitigation Strategy 2:
Security Hardening



Concept

Fine-tuning models is expensive
Enhancing security without full model
retraining

influencing the generation process

directly at inference time
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Steering

Security Verifier Enhanced
Neural-Steering (SVEN)

e Balancing functional
correctness with security
o Security Hardening

o Adversarial Testing

Functional correctness Security
A

-
= st

Distribution of generated code

Original LM
Security hardening

Adversarial testing

He et al, 2023
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Steering Process

e Adversarial Testing
o generate insecure code
e Security Hardening
o Including adversarial examples
in hardening process
o Recognize and resist generating

insecure code

SEC

-~ LM — B

Prompt

—> Repairer — =

He et al, 2023
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Methodology

e How SVEN Works
o Adversarial Training finds areas of
insecurity
o Areas mapped to prefix vectors
o Vectors guide new prompts away
from negative weights
o Only affects areas of security
e Evaluation
o CodeQL
o HumanEval

D D I:I P(E) =06
 —
P Hidden states P () =04
LM + Prompt (a) LM Inference

~ (b) SVEN,e. Inference
] P(E) =09
I ! Attention ! I I P(El) =01

SVENgec Hidden states :
He et al, 2023
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Overall Security

100 87.4
] 67.2
SVEN Effectiveness
35 5 36 5 419
Security improvements I
= 30% 350M 6.1B

Functional Correctness
Closely matched

48
original LLMs in 41641.0398

58 367358346
HumanEval within 260947 4 I

24
1-2% Baseline [l
Adversarial Bl |2 “7'25
Hardening
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o
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Conclusions
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Comparison

Fine Tuning Hardening
e Pros: 10% e Pros: 30%
o Improved security for targeted o  Modular
CWEs/languages o Demonstrated effective security
o Modifies model's inherent behavior control
e Cons: o Preserves functional correctness
o Requires retraining/fine-tuning e Cons:
(compute/data intensive) o May not generalize perfectly to all
o Improvement may not generalize well unseen CWEs
o  Can hurt code validity o Effectiveness relies on quality of

curated prefix-training data
31



Future Implications

Humans are safe... for now

e Review of generated code still necessary
e Current need for developer education

e lterative CodeQL checks
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Questions?
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