
Securing
AI-Generated
Code
Andreas Nelson

1

“It is our job to create computing technology such
that nobody has to program. And that the
programming language is human. Everybody in the
world is now a programmer. This is the miracle of
artificial intelligence.”

Jensen Huang, CEO of Nvidia

2

Why
should
we care?

The majority
of AI usage
in the US is
in software
development

Handa et al, 2024 3

Outline
● Background

● Security Risks

● Methods of Mitigation

● Conclusion

● Sources

4

Background

5

Core Technologies - Neural Networks

● Interconnected "neurons" organized in

layers

● Connection strength determined by

weights

● Computations in hidden layers

● Backpropagation

○ Adjusting weights to minimize

errors based on training

6

NN’s typically have many hidden layers
Islam et al, 2019

Core Technologies - Large Language
Models (LLMs)

LLMs are a type of Deep Neural Network

Pairs and layers

● Training: vast amounts of text and
code

● Transformer Architecture
○ NN architecture designed for

sequence processing

7

Decoder

Vaswani et al, 2017

Encoder

Core Technologies - Large Language
Models (LLMs)

● Input Processing
○ Input text/code ➡ Numbers + Word Order

● Encoder: Context weighting and tokenization
● Decoder: Generates output using input context

and previous output

8

Decoder

Vaswani et al, 2017

Encoder

Key Platforms- Github & Visual Studio Code

Github

● Free platform to collaborate and
share code

VSC

● Microsoft’s Integrated Development
Environment (IDE)

9

Code Generation Tools

Interface between VSC and AI models

● Gemini

● Claude

● ChatGPT

Allows for the generation of code

Fu et al, 2025

10

Vulnerabilities - Common Weakness Enumerators

CWE’s stem from issues in,

● Design
● Implementation
● Operation

Designated with different levels of severity

11

Code Evaluation Tools

CodeQL

● Developed by Github
● Checks code security

○ Runs queries against a
database representation
code to identify patterns
associated CWEs

12

HumanEval

● Checks Functional
Correctness

● Benchmark dataset
○ Compares derived

answer
○ Correct tries per

attempts

Security Risks

13

The Fundamental Problem

● Inherited vulnerabilities in
training data

○ Stack Overflow
○ Github

● Malicious intent and human
error

14

How Common Are These Risks?

Fu et al, 2025

15

27.3% chance of containing one or
more security weakness

What Kinds of
Vulnerabilities?

● 43 different CWE’s identified

across 733 Copilot code

snippets

● most commonly found,
○ CWE-330 (Insufficient

Randomization)

○ CWE-94 (Code Injection)

○ CWE-79 (Cross Site

Scripting)
16

Fu et al, 2025

Severity of Vulnerabilities

● 8 being in the most severe
vulnerabilities of 2023

● 2 of the 3 most common being in
the top 25 (2024)

○ CWE-94 (#11: Code Injection)
○ CWE-79 (#1: Cross Site

Scripting)
● These 8 critical types accounted for

233 out of 628 (37.1%) of all
weaknesses found in the study

cwe.mitre.org 17

Factors Influencing Risk
Vulnerabilities differ by language

● Python
○ System interaction

■ CWE-78 (OS Command Injection)
○ Utility Tool domain projects

● JavaScript
○ Dynamic code generation

■ CWE-79 (XSS)
■ CWE-94 (Code Injection)

○ Web App projects

18Fu et al, 2025

Mitigation Strategy 1:
Fine-Tuning Training Data

19

Concept

Improve the quality of
the generated code

20

Improve the quality
of training material

Methodology

● Creating security focused training data

○ Use real-world vulnerability fixes for CWEs

○ extracting pairs of insecure code and their

corresponding secure versions

○ Li et al. collected 4900 commits

● CodeQL to evaluate output before and after

21

Results

Notable increase in generating non-vulnerable code.

● C: from 60.6% to 70.4%
● C++: 63.9% to 64.5%

22

Li et al, 2024

Limitations

Training data creation labor-intensive

Computationally resource heavy

Success depends on quality and coverage of the dataset

CWE generalizations (Other languages/CWEs)

Increasing security, decreasing functional correctness

23

Mitigation Strategy 2:
Security Hardening

24

Concept

● Fine-tuning models is expensive

● Enhancing security without full model

retraining

● influencing the generation process

directly at inference time

25

Steering

Security Verifier Enhanced

Neural-Steering (SVEN)

● Balancing functional

correctness with security

○ Security Hardening

○ Adversarial Testing

26

He et al, 2023

Steering Process

● Adversarial Testing

○ generate insecure code

● Security Hardening

○ Including adversarial examples

in hardening process

○ Recognize and resist generating

insecure code

27

He et al, 2023

Methodology

● How SVEN Works
○ Adversarial Training finds areas of

insecurity
○ Areas mapped to prefix vectors
○ Vectors guide new prompts away

from negative weights
○ Only affects areas of security

● Evaluation
○ CodeQL
○ HumanEval

28

He et al, 2023

SVEN Effectiveness

Security improvements

≈ 30%

Closely matched

original LLMs in

HumanEval within

1-2%

29

Baseline
Adversarial
Hardening

He et al, 2023

Conclusions

30

Comparison

Fine Tuning

● Pros: 10%
○ Improved security for targeted

CWEs/languages
○ Modifies model's inherent behavior

● Cons:
○ Requires retraining/fine-tuning

(compute/data intensive)
○ Improvement may not generalize well
○ Can hurt code validity

Hardening

● Pros: 30%
○ Modular
○ Demonstrated effective security

control
○ Preserves functional correctness

● Cons:
○ May not generalize perfectly to all

unseen CWEs
○ Effectiveness relies on quality of

curated prefix-training data
31

Future Implications

Humans are safe… for now

● Review of generated code still necessary

● Current need for developer education

● Iterative CodeQL checks

32

Sources
● Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li,

Mojtaba Shahin, Jiaxin Yu, and Jinfu Chen. 2025.
Security Weaknesses of Copilot-Generated Code in
GitHub Projects: An Empirical Study. ACM Trans. Softw.
Eng. Methodol. Just Accepted (February 2025).
https://doi-org.ezproxy.morris.umn.edu/10.1145/371684
8

● Owura Asare, Meiyappan Nagappan, and N. Asokan.
2024. A User-centered Security Evaluation of Copilot. In
Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering (ICSE '24).
Association for Computing Machinery, New York, NY,
USA, Article 158, 1–11.
https://doi-org.ezproxy.morris.umn.edu/10.1145/359750
3.3639154

● Jingxuan He and Martin Vechev. 2023. Large Language
Models for Code: Security Hardening and Adversarial
Testing. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security
(CCS '23). Association for Computing Machinery, New York,
NY, USA, 1865–1879.
https://doi-org.ezproxy.morris.umn.edu/10.1145/3576915.36
23175

● Junjie Li, Aseem Sangalay, Cheng Cheng, Yuan Tian, and
Jinqiu Yang. 2024. Fine Tuning Large Language Model for
Secure Code Generation. In Proceedings of the 2024
IEEE/ACM First International Conference on AI Foundation
Models and Software Engineering (FORGE '24).
Association for Computing Machinery, New York, NY, USA,
86–90.
https://doi-org.ezproxy.morris.umn.edu/10.1145/3650105.36
52299

33

https://doi-org.ezproxy.morris.umn.edu/10.1145/3716848
https://doi-org.ezproxy.morris.umn.edu/10.1145/3716848
https://doi-org.ezproxy.morris.umn.edu/10.1145/3597503.3639154
https://doi-org.ezproxy.morris.umn.edu/10.1145/3597503.3639154
https://doi-org.ezproxy.morris.umn.edu/10.1145/3576915.3623175
https://doi-org.ezproxy.morris.umn.edu/10.1145/3576915.3623175
https://doi-org.ezproxy.morris.umn.edu/10.1145/3650105.3652299
https://doi-org.ezproxy.morris.umn.edu/10.1145/3650105.3652299

Questions?

34

