Securing
Al-Generated

ﬁ 3
Andreas Nelson v




“It is our job to create computing technology such
that nobody has to program. And that the
programming language is human. Everybody in the
world is now a programmer. This is the miracle of
artificial intelligence.”

Jensen Huang, CEO of Nvidia



Why
should
we care?

The majority
of Al usage
in the US is
in software
development

Computer and
mathematical

Building grounds cleaning
and maintenance

Protective
service

Personal care
and service

Architecture and
engineering
Community and
social service

Arts, design, sports,
entertainment, and media
Life, physical, and

social science

Legal
services

Farming, fishing,
and forestry

3.4% @
0.1% @@ 2.9%
0.4% @@ 2.3%
0.5% @=@ 2.0%
1.7% @@ 4.5%

1.6% @® 2.1%

®37.2%

. % of Claude
conversations

1.4% @ ® 10.3%
g N % of U.S.
0.9% @@ 6.4.% workers
0.8% @ 0.9%
01% @ 0.3%
| T | | T
0% 10% 20% 30% 40%

Representation relative to US economy

Handa et al, 2024



Outline

Background

Security Risks
Methods of Mitigation
Conclusion

Sources



Background



Core Technologies - Neural Networks

Hidden

Interconnected "neurons" organized in
Input
layers Output
e Connection strength determined by
weights
e Computations in hidden layers
e Backpropagation
o  Adjusting weights to minimize

. NN'’s typically have many hidden layers
errors based on training vP Y Islametal,201y9 Y



Decoder

( Output \

Probabilities

Core Technologies - Large Language
MOdels (LLMS) Encoder

( N\
[} J
LLMs are a type of Deep Neural Network ( T
. 1 Md: Norm J Multi-Head
eed ion
Pairs and layers Forward - N
e Training: vast amounts of text and N | e | || s
code Atanion "Atenion
e Transformer Architecture =l 1 | S =28
o NN architecture designed for Positional A Positional
. Encoding D 5% Encoding
sequence processing ot Gutout
Embedding Embedding

K Inputs J Outputs

Vaswani et al, 2017 (shifted right) )




Core Technologies - Large Language

Models (LLMs)

Input Processing

o Input text/code = Numbers + Word Order
Encoder: Context weighting and tokenization
Decoder: Generates output using input context

and previous output

Vaswani et al, 2017

Decoder

( Output \
Probabilities
Encoder
Feed
( \ Forward
[ J
| Add & Norm }o-\
rLad i o) Multi-Head
Feed Attention
Forward F D) Nx
e
Nix Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
At 7 LY J)

\ J I\ <,
Positional & @ Positional
Encoding Encoding

Input Qutput
Embedding Embedding
Inputs Outputs
K J thfted right) )




Key Platforms- Github & Visual Studio Code

Github

e Free platform to collaborate and

share code GitHub

e Microsoft’s Integrated Development
Environment (IDE)

VSC




Code Generation Tools @ GitHub CODI|Ot

1 def Calcu 1ateDaysBetweenDates|:" datel, date2):

Interface between VSC and Al models # datel and date2 are in the format of 'YYYY-MM-DD'
yearl, monthl, dayl = map(int, datel.split('-'))
year2, month2, day2 = map(int, date2.split('-'))

e Gemini days = 0

while yearl < year2 or monthl < month2 or dayl < day2:

® Claude ch?‘/b += 1

L,!uj,l = 1
® ChatGPT if o‘a.},wz].—.» 3;(?:
aay =
onthl += 1
Allows for the generation of code K montaL> 1af

yearl +=

return days

Fu et al, 2025



Vulnerabilities - Common Weakness Enumerators

CWE’s stem from issues in,

e Design
e [Implementation
e Operation

Designated with different levels of severity

11



Code Evaluation Tools

CodeQL

e Developed by Github
e Checks code security
o Runs queries against a
database representation
code to identify patterns
associated CWEs

HumanEval

e Checks Functional
Correctness
e Benchmark dataset
o Compares derived
answer
o Correct tries per
attempts

12



Security Risks



The Fundamental Problem

e Inherited vulnerabilities in

training data
o Stack Overflow
o Github

e Malicious intent and human
error

GitHub

stack overflow

14



How Common Are These Risks?

# Snippets containing

# containing more than

L # Snippets #8S i ak

anguage nppets ecurity weaknesses security weaknesses one security weakness
Python 419 387 124 (29.5%) 65 (15.5%)
JavaScript 314 241 76 (24.2%) 37 (11.8%)
Total 733 628 200 (27.3%) 102 (13.9%)

27.3% chance of containing one or
more security weakness

Fu et al, 2025

15



What Kinds of
Vulnerabilities?

43 different CWE'’s identified
across 733 Copilot code
snippets

most commonly found,
o  CWE-330 (Insufficient

Randomization)
o CWE-94 (Code Injection)
o CWE-79 (Cross Site
Scripting)

Distribution of CWEs in code snippets

CWE-ID Name Frequency Percentage
CWE-330 Use of Insufficiently Random Values Weakness 114 18.15%
CWE-94 Improper Control of Generation of Code ('Code Injection’) 62 9.87%
CWE-79 Ifn\pruper. Ne?llr.ah%au’on of Input During Web Page Generation &6 Gk
(’Cross-site Scripting’)
Improper Neutralization of Special Elements used in an OS ) ’
OWE-78 Command ('OS Command Injection’) 2 G2L%
CWE-427 Uncontrolled Search Path Element 35 5.57%
CWE-457 Use of Uninitialized Variable 30 4.78%
imitati a Ps P P tric 1 .
CWE-22 Ifnpruper Lmut‘thon of a Pathname to a Restricted Directory 29 o
(’Path Traversal’)
CWE-772 Missing Release of Resource after Effective Lifetime 29 4.62%

Fu et al, 2025

16



Severity of Vulnerabilities

8 being in the most severe
vulnerabilities of 2023
2 of the 3 most common being in
the top 25 (2024)
o CWE-94 (#11: Code Injection)
o CWE-79 (#1: Cross Site
Scripting)
These 8 critical types accounted for
233 out of 628 (37.1%) of all
weaknesses found in the study

cwe.mitre.org

Llcje]els]ofa]afu]n]-

Improper Neutralization of Input During Web Page Generation ('Cross-site
Scripting')
CWE-79 | CVEs in KEV: 3 | Rank Last Year: 2 (up 1) A

Out-of-bounds Write
CWE-787 | CVEs in KEV: 18 | Rank Last Year: 1 (down 1) ¥

Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection’)
CWE-89 | CVEs in KEV: 4 | Rank Last Year: 3

Cross-Site Request Forgery (CSRF)
CWE-352 | CVEs in KEV: 0 | Rank Last Year: 9 (up 5) A

Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
CWE-22 | CVEs in KEV: 4 | Rank Last Year: 8 (up 3) A

Out-of-bounds Read
CWE-125 | CVEs in KEV: 3 | Rank Last Year: 7 (up 1) A

Improper Neutralization of Special Elements used in an OS Command ('0OS

Command Injection')
CWE-78 | CVEs in KEV: 5 | Rank Last Year: 5 (down 2) ¥

Use After Free
CWE-416 | CVEs in KEV: 5 | Rank Last Year: 4 (down 4) ¥

Missing Authorization
CWE-862 | CVEs in KEV: 0 | Rank Last Year: 11 (up 2) A

Unrestricted Upload of File with Dangerous Type
CWE-434 | CVEs in KEV: 0 | Rank Last Year: 10

Improper Control of Generation of Code ('Code Injection')
CWE-94 | CVEs in KEV: 7 | Rank Last Year: 23 (up 12) A 17




Factors Influencing Risk

Vulnerabilities differ by language

Python
System interaction

@)

O

@)

@)

CWE-78 (OS Command Injection)
Utility Tool domain projects

JavaScript

Dynamic code generation

CWE-79 (XSS)

CWE-94 (Code Injection)
Web App projects

v

® Al Application

® Network Communication
® Utility Tool

¥ Web Application

u Game

® Others

(a) application domains of Python code

\

u Al Application

® Network Communication
= Utility Tool

® Web Application

= Game

& Others

(b) application domains of JavaScript code

Fu et al, 2025

18



Mitigation Strategy 1:
Fine-Tuning Training Data



Concept

Improve the quality
of training material

Improve the quality of
the generated code

20



Methodology

e Creating security focused training data
o Use real-world vulnerability fixes for CWEs
o extracting pairs of insecure code and their
corresponding secure versions
o Lietal. collected 4900 commits

e CodeQL to evaluate output before and after

21



Results

Notable increase in generating non-vulnerable code.

C: from 60.6% to 70.4%
C++:63.9% to 64.5%

Total (C) 278 427 135 | 194 462 185

Total (C++) 206 365 269 | 131 238 171
Non-vulnerable ratio (C) 60.6% 70.4%
Non-vulnerable ratio (C++) 63.9% 64.5%
Invalid ratio (C) 16.1% 22.0%
Invalid ratio (C++) 32.0% 56.1%

Lietal, 2024

22



Limitations

Training data creation labor-intensive

Computationally resource heavy

Success depends on quality and coverage of the dataset
CWE generalizations (Other languages/CWESs)

Increasing security, decreasing functional correctness

23



Mitigation Strategy 2:
Security Hardening



Concept

Fine-tuning models is expensive
Enhancing security without full model
retraining

influencing the generation process

directly at inference time

25



Steering

Security Verifier Enhanced
Neural-Steering (SVEN)

e Balancing functional
correctness with security
o Security Hardening

o Adversarial Testing

Functional correctness Security
A

-
= st

Distribution of generated code

Original LM
Security hardening

Adversarial testing

He et al, 2023

26



Steering Process

e Adversarial Testing
o generate insecure code
e Security Hardening
o Including adversarial examples
in hardening process
o Recognize and resist generating

insecure code

SEC

-~ LM — B

Prompt

—> Repairer — =

He et al, 2023

27



Methodology

e How SVEN Works
o Adversarial Training finds areas of
insecurity
o Areas mapped to prefix vectors
o Vectors guide new prompts away
from negative weights
o Only affects areas of security
e Evaluation
o CodeQL
o HumanEval

D D I:I P(E) =06
 —
P Hidden states P () =04
LM + Prompt (a) LM Inference

~ (b) SVEN,e. Inference
] P(E) =09
I ! Attention ! I I P(El) =01

SVENgec Hidden states :
He et al, 2023

28



Overall Security

100 87.4
] 67.2
SVEN Effectiveness
35 5 36 5 419
Security improvements I
= 30% 350M 6.1B

Functional Correctness
Closely matched

48
original LLMs in 41641.0398

58 367358346
HumanEval within 260947 4 I

24
1-2% Baseline [l
Adversarial Bl |2 “7'25
Hardening

He et al, 2023 pass@ I pass@ 10 pass@50 pass@ |00

o

29



Conclusions

30



Comparison

Fine Tuning Hardening
e Pros: 10% e Pros: 30%
o Improved security for targeted o  Modular
CWEs/languages o Demonstrated effective security
o Modifies model's inherent behavior control
e Cons: o Preserves functional correctness
o Requires retraining/fine-tuning e Cons:
(compute/data intensive) o May not generalize perfectly to all
o Improvement may not generalize well unseen CWEs
o  Can hurt code validity o Effectiveness relies on quality of

curated prefix-training data
31



Future Implications

Humans are safe... for now

e Review of generated code still necessary
e Current need for developer education

e lterative CodeQL checks

32



Sources

® Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li,
Mojtaba Shahin, Jiaxin Yu, and Jinfu Chen. 2025.
Security Weaknesses of Copilot-Generated Code in
GitHub Projects: An Empirical Study. ACM Trans. Softw.
Eng. Methodol. Just Accepted (February 2025).
https://doi-org.ezproxy.morris.umn.edu/10.1145/371684
8

o Owura Asare, Meiyappan Nagappan, and N. Asokan.
2024. A User-centered Security Evaluation of Copilot. In
Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering (ICSE '24).
Association for Computing Machinery, New York, NY,
USA, Article 158, 1-11.
https://doi-org.ezproxy.morris.umn.edu/10.1145/359750
3.3639154

Jingxuan He and Martin Vechev. 2023. Large Language
Models for Code: Security Hardening and Adversarial
Testing. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security
(CCS '23). Association for Computing Machinery, New York,
NY, USA, 1865-1879.
https://doi-org.ezproxy.morris.umn.edu/10.1145/3576915.36
23175

Junjie Li, Aseem Sangalay, Cheng Cheng, Yuan Tian, and
Jingiu Yang. 2024. Fine Tuning Large Language Model for
Secure Code Generation. In Proceedings of the 2024
IEEE/ACM First International Conference on Al Foundation
Models and Software Engineering (FORGE '24).
Association for Computing Machinery, New York, NY, USA,
86-90.
https://doi-org.ezproxy.morris.umn.edu/10.1145/3650105.36
52299

33


https://doi-org.ezproxy.morris.umn.edu/10.1145/3716848
https://doi-org.ezproxy.morris.umn.edu/10.1145/3716848
https://doi-org.ezproxy.morris.umn.edu/10.1145/3597503.3639154
https://doi-org.ezproxy.morris.umn.edu/10.1145/3597503.3639154
https://doi-org.ezproxy.morris.umn.edu/10.1145/3576915.3623175
https://doi-org.ezproxy.morris.umn.edu/10.1145/3576915.3623175
https://doi-org.ezproxy.morris.umn.edu/10.1145/3650105.3652299
https://doi-org.ezproxy.morris.umn.edu/10.1145/3650105.3652299

Questions?

34



