
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Armando Valdez

Machine Learning in SQL Injections Detection
Armando Valdez

valde148@morris.umn.edu
Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
As SQL injection (SQLi) techniques grow more complex,
traditional rule-based detection methods are increasingly
ineffective. Attackers now use advanced tools to bypass
static filters and signature-based Web Application Firewalls
(WAFs), exposing major gaps in web security. This paper
explores how machine learning (ML) models have become
essential for detecting unpredictable SQLi threats. Analyzing
Improved Text-CNN and XploitSQL, it highlights ML’s role
in both defending against and generating advanced attacks.
Detection models like Improved Text-CNN recognize subtle
patterns in SQL queries, while adversarial tools like Xploit-
SQL show how machine learning can also be used to evade
defenses. Together, they reflect a growing machine learning
arms race in fighting SQL injections.

Keywords: SQLi, Machine Learning, Deep Learning, Queries

1 Introduction
SQL injection (SQLi) is a hacking technique where malicious
SQL statements are inserted into web input fields to manip-
ulate database queries. Despite increased awareness, SQLi
remains one of the most dangerous threats according to the
Open Web Application Security Project (OWASP). Tradi-
tional defenses—such as input validation, query filters, and
rule-based Web Application Firewalls (WAFs)—often fail to
adapt to modern obfuscation techniques. As a response, ma-
chine learning (ML) has emerged as a powerful tool capable
of learning complex attack patterns and improving SQLi
detection [5, 12]. This paper explores the role of machine
learning in both detecting and generating SQLi attacks. It
begins by providing background on how SQLi works and
why traditional defenses fall short. Then, it explains how
machine learning models are trained, focusing on neural
networks and reinforcement learning. The structure of the
Improved Text-CNN model is detailed, highlighting its com-
ponents like embeddings, convolutional layers, and attention
mechanisms. Next, the paper analyzes the adversarial archi-
tecture of XploitSQL using workflow diagrams to show how
it generates evasive payloads. Both models are evaluated
through testing frameworks that assess their accuracy and
evasion capabilities. The paper then compares the strengths
and weaknesses of each approach before concluding with
reflections on the future of adaptive ML-based cybersecurity
solutions.

2 Background
2.1 SQL Injection Techniques
SQL stands for Structured Query Language, and is a program-
ming language that is used to command databases. Queries
are used to make simple commands used to reorganize, take
or insert data from databases [12]. SQLi are attacks on SQL
queries that I discussed in the Introduction. A common tar-
get for these attacks is a login form, where an attacker can
manipulate input fields to trick the application into logging
them in without valid credentials. This is a type of in-band
SQL injection, where the attacker uses the same communi-
cation channel to both send the malicious input and receive
the results, unlike out-of-band SQL injection, which is the
opposite of in-band, that sends data back through a differ-
ent path than the one used to inject the payload [6]. One
common form of in-band SQLi is the tautology-based attack,
which works by injecting conditions that are always true.
For example, injecting a statement like OR 1 = 1 into a pass-
word field changes the logic of the query so that the attacker
can successfully log in without knowing the password. This
allows the attacker to bypass authentication checks entirely
[4].

2.2 Example of a Simple SQL Injection Attack
Suppose in a login system the backend query looks for a
user with a matching username and password. If an attacker
enters admin as the username and any symbols followed by
OR 1 = 1 as the password, the query logic is changed. Instead
of checking whether the password is correct, it evaluates
whether 1 = 1, which is always true. As a result, the appli-
cation grants access without validating the actual password
[4, 6].

2.3 Limitations of Traditional SQL Injection
Detection Techniques

Signature-based WAFs compare inputs to a list of known
attack patterns, while rule-based systems look for specific
SQL keywords or suspicious structures. However, tautology-
based injections are easily disguised using variations like
OR NOT FALSE, OR A=A, or by inserting comments and
special characters. These variations may not match known
signatures but still achieve the same malicious effect. Static
detection systems lack an understanding of semantic equiv-
alence in SQL logic. For example, a rule that flags OR 1=1



Machine Learning in SQL Injections Detection

may completely miss a more complex variant of OR TRUE,
even though both create the same logical bypass [6].

Both the Improved Text-CNN andXploitSQL studies demon-
strate that static systems, including commercialWAFs, can be
bypassed by intelligently crafted tautology-based injections.
XploitSQL, in particular, uses large language models (LLMs)
combined with reinforcement learning to generate highly
evasive in-band payloads. These payloads are designed to
execute the same tautology logic but in forms that static
filters often fail to recognize. Because of these limitations,
modern defense strategies are shifting toward machine learn-
ing–based models, which can learn and generalize from large
datasets of known and mutated attacks.

2.4 Machine Learning and Subsets of ML
Machine learning (ML) is a system that allows computers
to learn patterns from data and make decisions or predic-
tions without being explicitly programmed. Instead of using
fixed rules, ML models adapt by analyzing large datasets,
identifying trends, and improving performance over time
[8].
Neural networks (NN), a subset of ML, are computer sys-

tems made of layers of connected nodes (called neurons)
that process data step by step. Each layer transforms the
input into patterns and passes it to the next. The input layer
takes in raw data, hidden layers extract important features,
and the output layer gives the final result. Weights that con-
nect inputs, layers, and outputs control how important each
input is when making a prediction, and they get adjusted
during training to help the model improve. A neural network
takes the incoming values, multiplies them by weights, adds
them up to another parameter called bias, and passes the
result through a mathematical function known as an acti-
vation function. Neural networks are trained by showing
them many labeled (i.e containing the correct answer that
the model is trying to learn) examples and using a method
called backpropagation to adjust their internal weights. This
means they learn over time which patterns lead to which
outcomes, getting better at making correct predictions [8].

For binary classification tasks, such as identifying whether
a SQL query is normal or malicious, the output layer typically
contains two neurons, and their outputs are passed through
a Softmax function to convert them into class probabilities.
The softmax function is a formula that measures probabilities
from 0 to 1 [12].
Deep learning (DL), a subset of machine learning, uses

multi-layered neural networks to automatically learn and
extract complex patterns from data. Unlike earlier models
that relied on manually selected features, deep learning mod-
els can process raw input and gradually learn meaningful
representations through layers [6].

Reinforcement Learning (RL) is a subset ofML and is used in
the XploitSQL system to train a language model to generate
smarter SQL injection attacks. The model learns by trial and

error, directly interacting with the environment it operates
in, in this case web systems [3]. It also creates SQL queries,
and if those queries are valid, malicious, and successfully
bypass detection systems, it receives a higher reward. Over
time, the model uses this feedback to improve, making its
attacks more evasive and harder for security tools to catch.

2.5 Subsets of Deep Learning
This section discusses subsets of deep learning, including
Convolutional Neural Networks (CNNs) and Large Language
Models (LLMs), both have shown remarkable success in nat-
ural language processing (NLP).
CNNs are deep learning models that use convolutional

filters to scan input text and automatically detect local pat-
terns, such as short phrases or logic operators commonly
found in SQL injection attacks [12]. They are especially ef-
fective in tasks like text classification, where the model must
determine whether a given query is benign or malicious.

Large Language Models (LLMs) are another subset of DL
model, trained on massive datasets to understand and gener-
ate human-like text. In the XploitSQL framework, an LLM is
fine-tuned to generate SQL injection queries by learning the
structure and logic of actual SQL statements. It serves as the
base generator, producing a variety of SQLi payloads, which
are then refined through reinforcement learning to become
more effective at bypassing detection systems [9].

3 Training the ML Models
3.1 Training Neural Networks
Neural networks (NN) and deep learning (DL) models are
made of layers of connected units that process input, extract
features, and make predictions. In SQL injection detection,
input queries are first broken down into tokens—individual
words, symbols, or operators. These tokens are converted
into numerical representations using word embeddings like
Word2Vec, which capture semantic relationships by plac-
ing tokens used in similar ways closer together in vector
space. For example, logical operators like OR and AND often
appear in similar contexts within SQL queries, so their em-
beddings are positioned near each other. These embeddings
are passed through the network, where the model adjusts
weights through training on labeled data using backpropa-
gation, gradually learning to detect patterns associated with
SQL injection [8, 12].
In the case of the Improved Text-CNN model, convolu-

tional layers are used to detect short, meaningful patterns
in the input, while the Channel Attention Mechanism (CAM)
assigns importance to the most relevant features. Pooling
is a process in neural networks that reduces the size of the
data while keeping the most important information. After
pooling, the final set of features is passed to a fully connected
layer that produces the final output—a prediction indicating
whether the input is a normal query or a SQL injection [12].



Armando Valdez

Figure 1. Improved Text-CNN Algorithm Diagram [12].

Backpropagation, which is the process of adjusting weights
and biases to minimize the number of incorrect answers on
training data, repeats over many iterations, as the network
continues to learn from thousands of examples. With each
round of training, the network gradually improves, lowering
its error and increasing its ability to generalize.

3.2 Training Reinforcement Learning
Reinforcement learning (RL) is a training method where a
model learns by interacting with an environment and receiv-
ing feedback based on its performance. The model generates
outputs—such as examples, queries, or actions—and receives
a reward depending on how well the output meets certain
goals. Larger rewards encourage behaviors that succeed,
while low or no rewards discourage ineffective behaviors.
Over time, the model adjusts its internal parameters to fa-
vor generating more successful outputs. To keep learning
stable, algorithms like Proximal Policy Optimization (PPO)
are used, which control how much the model can change
at each step, preventing sudden, destabilizing updates. This
approach enables the model to gradually improve its perfor-
mance through trial and error.[5]

4 Structure of Improved Text CNN
4.1 Embedding Layer
In this section, I will go over Figure 1 and explaining the parts
of the diagram of the Improved Text-CNN which include
Embedding, Conv, avgpool, maxpool, MLP, Pooling, and FC.
The embedding layer is the first critical stage in the Im-

proved Text-CNN model, where raw SQL queries are trans-
formed into a format that the NN can process. When a query
such as SELECT * FROM users WHERE id = ’1’ OR ’1’=’1’
enters the model, it begins as plain text [6]. However, neural
networks cannot directly interpret words or characters—they
require numerical input. To achieve this, the query is first
tokenized, meaning it is broken down into individual units
such as ’SELECT’, ’*’, ’FROM’, ’users’, ’OR’, and so on. These
tokens represent the smallest elements of meaning in the
query.
Once tokenized, each word or symbol is converted into

a dense vector using the Word2Vec embedding technique.
Word2Vec maps each token to a vector where similar words
are located near each other in vector space [12].
Without the embedding layer, the model would have no

way to understand the meaning or relationships between to-
kens in a query. By converting words into vectors that carry

contextual meaning, the embedding layer lays the foundation
for the neural network to recognize signs of SQL injection
in both obvious and disguised forms.[12]

4.2 Convolutional Layer (Conv)
This layer is responsible for detecting local patterns in the
input, specifically sequences of tokens that may indicate
suspicious or malicious behavior. To do this, the model uses
convolutional filters, also known as kernels, which are small
sliding windows that move across the input text. Each filter
looks at a fixed number of consecutive tokens at a time to
capture patterns of varying lengths.[12]
As each filter slides across the input text, it performs a

convolution that computes a weighted combination of the
values in the window. This produces a feature map, a new se-
quence of values that highlights where in the query the filter
detected meaningful patterns. For instance, a filter with size
3 might learn to recognize common SQL injection phrases
such as "OR 1=1". Importantly, these filters are trained au-
tomatically. Each filter becomes a type of “pattern detector”
that activates when it sees a specific feature in the query
[12].

These feature maps serve as the next input for the Channel
Attention Mechanism (CAM), which analyzes and weighs the
importance of each pattern before the model proceeds to
pooling and classification. By the end of the convolutional
stage, the model has converted the raw word embeddings
into structured features that highlight key token sequences
that might indicate an injection attempt.[12]

4.3 Pooling
CAM kicks in to decide which of these maps should have
more or less influence on the final prediction. To do that,
it uses two specialized pooling operations which are global
max pooling and global average pooling. It also has a small
fully connected neural network, also known as a multi-layer
perceptron (MLP).

Global max pooling takes a single feature map and extracts
only its highest value which is the strongest signal that the
convolutional filter produced across the entire SQL query.
For example, if a filter activates strongly when it sees "OR
1=1".[12]

Global average pooling computes the average of all the
values in the same feature map. This gives the model a more
balanced view, telling it how consistently important that
feature was across the whole query.[12]
Both of these pooled values—one from max pooling and

one from average pooling—are then stacked together to cre-
ate a two-element vector for each feature map. This vector is
passed into a small MLP, a basic neural network with one or
two layers, which processes this information and outputs a
single attention score (a value between 0 and 1). This score is
the model’s judgment of how important that specific feature
map is to the overall task.[12]



Machine Learning in SQL Injections Detection

Figure 2. Workflow of LLM and RL models in training XploitSQL [5]

Once the attention score is generated, it is multiplied back
onto the original feature map, effectively scaling it. A score
near 1 keeps the feature map strong, while a score near
0 dampens it. This process repeats for every feature map
produced by the convolutional layer. The end result is a
refined set of features where the most relevant patterns are
given greater weight in the final decision-making. [12]

4.4 Fully Connected Layer
Once the feature maps have been refined by CAM the model
compresses each one down to a single value using global max
pooling, producing a flat feature vector. This vector repre-
sents the most important patterns detected across all filters,
a summary of what the model has learned from the SQL
query. This summary is then passed into the fully connected
(FC) layer, which means a layer where every input feature is
connected to every output neuron. The FC layer combines all
the extracted and weighted features using learned weights
and biases to compute raw prediction scores, also called log-
its. These scores represent how strongly the model believes
the input belongs to each possible class. In this case, there
are two classes: a normal SQL query or a SQL injection.[12]
However, these raw scores are not yet interpretable as

probabilities. That’s where the Softmax function comes in.
Softmax takes the logits produced by the FC layer and trans-
forms them into a probability distribution across the output
classes. It scales the values so that they sum to 1, making
them easier to interpret. For example, if the model outputs
logits like [1.2, 3.8], the Softmax layer might convert them
into probabilities like [0.08, 0.92], meaning the model is 92
percent confident the query is a SQL injection. This probabil-
ity becomes the model’s final prediction. If the SQLi class has
the highest score, the model classifies the query as malicious;
otherwise, it is marked as normal.[12]

5 Structure of XploitSQL
5.1 Large Language Model and Actor
In this section, I will go over Figure 2 and explain what
Actor, Critic, Reward, and how they relate to the workflow
of XploitSQL.

XploitSQL is a system designed to generate SQLi payloads
by combining LLMs with reinforcement learning techniques.
LLMs are deep learning models trained on massive amounts
of text data to understand and generate human-like lan-
guage [9]. In this system, an LLM is used to create initial
SQL queries, and reinforcement learning is applied to refine
them into more evasive and effective attacks. In the case of
XploitSQL, the LLM is fine-tuned specifically on SQL syntax
and injection patterns, allowing it to generate syntactically
valid and potentially malicious SQL queries.

In reinforcement learning terminology, the Actor is the
component that makes decisions or takes actions. In this sys-
tem, the Actor is the LLM itself, and its action is to generate
a SQLi payload (an attempted SQL injection query) based on
a given prompt or context. This could be a natural language
instruction like “generate a login bypass,” or it could be an
abstract representation of the SQL injection task [5].
When the LLM receives this input, it uses what it has

learned during pretraining and fine-tuning to produce the
entire query, token by token. This process is probabilistic:
the model selects words based on learned patterns and prob-
abilities, forming queries such as OR 1=1. At this early stage,
the LLM isn’t yet optimized to evade detection, it simply
produces what it “knows” from training.
That’s where reinforcement learning comes in next to

refine the LLM so that it learns to generate payloads that
are not only valid but also capable of bypassing detection
systems [5, 9].



Armando Valdez

5.2 Critic
The goal is to determine whether the LLM successfully gen-
erated a query that is malicious, executable, and capable of
evading detection. Each generated query is referred to as a
transformed query, meaning it has evolved from the LLM’s
learned patterns into a potentially harmful SQL injection at-
tempt. The evaluation process is overseen by the Critic, a key
component in reinforcement learning that assigns a numeri-
cal score (or reward) based on how effective or ineffective
the LLM’s generated query was [3].
The first part of the evaluation asks, "Is it valid SQL?"

This step ensures that the generated payload is syntactically
correct and can be executed by a database without producing
an error. Even if a query contains injection logic, it won’t be
useful if it causes a syntax error.

Next, the system checks, "Is it a SQL injection?" Thismeans
asking whether the transformed query changes the logic of
the original query in a malicious way. A query that intro-
duces such logic is considered a successful SQL injection.
This step ensures that the model isn’t just producing harm-
less or decorative changes, but is actively learning to break
the intended behavior of the query.

The third and most important test is, "Does it evade detec-
tion?" This is where the model is evaluated against existing
SQL injection defenses, including both WAF and machine
learning models detectors like CNNs. If the transformed
query successfully bypasses these defenses, it receives a high
reward. If it is flagged or blocked, the reward is lowered [5].

Finally, the system performs a query similarity check. This
step measures how different the transformed query is from
the original input. A high similarity score would mean the
LLM generated a query that is too close to what it already
knows, suggesting it is not creating sufficiently new or cre-
ative payloads. In contrast, a more substantially modified
query that still works evades detection, and receives a higher
reward is preferred. This discourages the model frommaking
only superficial changes like altering spaces or punctuation.
Instead, it pushes the model to invent new variations of SQL
injection that are both functional and harder to detect.

5.3 Reward
A high reward means the payload was valid, executed an
injection, and bypassed security systems. A low reward sig-
nals failure because it might be that the query was invalid,
not malicious, or got caught by a detector. This reward be-
comes the key feedback that guides how the LLM improves
its future generations.

To process this feedback, XploitSQL uses PPO to help the
model learn what works without overcorrecting based on
just one example. When the model receives a reward for
a specific output, PPO adjusts the probabilities the model
assigns to similar actions, in this case, generating similar
query structures [5].

In the XploitSQL system, the loop of generation, evalu-
ation, reward, and PPO-based learning enables the model
to behave like an adaptive, evolving attacker. But beyond
technical performance, the real value lies in what it reveals
to defenders [9].

6 Testing Models
6.1 Results for Improved Text-CNN
To evaluate the performance of the Improved Text-CNN
model, experiments were conducted using a dataset gener-
ated from LibInjection, a widely used SQL injection detec-
tion library available on GitHub. This dataset included a
balanced mix of malicious SQL injection queries and normal
SQL statements, allowing the model to learn clear distinc-
tions between safe and harmful inputs. The data was divided
into three parts: a training set used to teach the model, a
validation set to tune model parameters, and a test set used
to evaluate the model’s final performance on new, unseen in
the training and validation SQL code [5].
The evaluation focused on measuring the model’s per-

formance using standard classification metrics: accuracy,
precision, recall, and F1-score.
Accuracy measures the overall proportion of correct pre-

dictions, including both benign and malicious queries, out
of all predictions made. Precision measures the proportion of
queries the model flagged as malicious that was malicious,
reflecting how accurate positive predictions are. Recall mea-
sures the proportion of all actual malicious queries that the
model successfully identified, reflecting its ability to catch
every threat and minimize missed detections. F1-score is the
harmonic mean of precision and recall, providing a single
metric that balances both false positives and false negatives
to give a holistic view of model performance [1].

To demonstrate its effectiveness, the Improved Text-CNN
was compared against several baseline models. The first was
CNN, which uses filters to scan text for local patterns but
does not use an attention mechanism to prioritize which
patterns are most important.[10] Another baseline was the
Text-RNN, a Recurrent Neural Network model that processes
queries sequentially but is less focused on capturing local
patterns [11]. The original Text-CNN model combined con-
volutional layers with word embeddings lacked the attention
mechanism [12].
The testing results showed that the Improved Text-CNN

model outperformed all these baselines, achieving the high-
est values across all metrics. It reached an accuracy of 92.40
percent, precision of 92.45 percent, recall of 92.29 percent,
and an F1-score of 92.37 percent, indicating it was better at
correctly identifying both obvious and hidden SQL injection
attacks.



Machine Learning in SQL Injections Detection

6.2 Results of XploitSQL
Testing XploitSQL involved measuring how well the sys-
tem could generate SQL injection payloads that are both
functional and evasive. The generated attacks were evalu-
ated against various detection systems, including both open-
source and commercial-grade Web Application Firewalls
(WAFs) such as ModSecurity (an open-source WAF) and
Fortinet (a commercial enterprise WAF) [5, 7]. Detection was
also tested against machine learning classifiers like CNNs,
RNNs, and LSTMs, which are deep learningmodels commonly
used for text-based threat detection [10, 11].

The evaluation focused on three key criteria: validity, en-
suring that generated payloads were executable SQL; mali-
ciousness, verifying whether they successfully altered query
logic; and evasion, determining whether the attacks could by-
pass detection systems [5]. Only valid and malicious queries
were considered when calculating evasion rates.

The evasion rate was defined as the percentage of ma-
licious queries that were not detected by a given defense
system. For example, if 1,000 valid and malicious attack pay-
loads were generated and 893 of them bypassed detection by
a CNN model, the evasion rate would be (893 / 1000) × 100 =
89.3 percent.

XploitSQL was compared against three baseline systems:
AdvSQLi, which generates adversarial SQLi through muta-
tion rules; WAF-A-MOLE, a reinforcement learning–based
evasion tool; and LLM-SQLi, which uses a large language
model without reinforcement learning [2, 5, 9].
A key finding was the difference between the untuned

large languagemodel and the fully trainedXploitSQL. Against
a CNN-based detector, the base LLM-SQLi model achieved
an evasion rate of 44.38 percent, while XploitSQL, after rein-
forcement learning, doubled its success to 89.37 percent.

Further testing against commercial WAFs showed similar
results. Against ModSecurity, a widely used open-source
detection tool, XploitSQL achieved a 63.58 percent evasion
rate, outperforming AdvSQLi’s 37.18 percent and WAF-A-
MOLE’s 49.10 percent. Against Fortinet, XploitSQL achieved
71.91 percent evasion. Even against Amazon’s AWS WAF
and F5 Networks’ security platform, XploitSQL maintained
its lead, achieving evasion rates over 65 percent in both cases
[5].

7 Strengths and Weaknesses of Each
Approach

The Improved Text-CNN model is a powerful deep learning
system that excels at detecting both obvious and obfuscated
SQL injection (SQLi) patterns. It learns semantic relation-
ships through word embeddings, enabling it to generalize
beyond simple keyword matching. Its convolutional layers
effectively detect short, meaningful patterns (like "OR 1=1"),
while the Channel Attention Mechanism (CAM) improves
precision by focusing on the most relevant features. Testing

showed high accuracy and F1-scores, confirming its strong
performance against a variety of SQLi payloads, including
those that evade traditional rule-based systems [10, 12].

However, Improved Text-CNN relies on learning only from
the training data, limiting it to patterns seen during training,
and may struggle with zero-day or novel attacks. Like many
neural networks, it lacks interpretability, making it hard to
explain why a query was flagged. Ultimately, it remains a
passive defense—it reacts to attacks but does not anticipate
or generate them.
XploitSQL, by contrast, represents an offensive applica-

tion of machine learning. It combines a Large Language
Model (LLM) with Reinforcement Learning (PPO) to gener-
ate syntactically valid, malicious, and evasive SQLi payloads.
While it is designed to create attacks, XploitSQL also serves
a defensive purpose by generating advanced adversarial ex-
amples that can be used to retrain and strengthen machine
learning–based detection systems. Unlike mutation-based
tools, XploitSQL adapts its strategies through feedback, con-
sistently outperforming other generators across machine
learning classifiers and commercial WAFs [5, 9].
Nonetheless, XploitSQL has limitations. It is computa-

tionally expensive to train, requires thousands of iterations,
and lacks transparency into why a specific attack succeeds.
Moreover, it raises ethical concerns, as such tools could be
weaponized by hackers if not properly controlled.

8 Conclusion
The Improved Text-CNN and XploitSQL models represent
two interconnected approaches to the SQL injection prob-
lem—one built for defense, the other for attack. Both use
machine learning but differ in design and purpose.

Improved Text-CNN serves as a defensive classifier, using
word embeddings, convolutional filters, and CAM to detect
malicious SQL patterns with high accuracy and F1-scores,
making it effective against known and slightly modified at-
tacks. Machine learning models like this are needed because
traditional rule-based systems often fail to catch mutated or
hidden SQLi attempts.

XploitSQL, on the offensive side, combines LLMswith rein-
forcement learning (PPO) to generate evasive SQLi payloads.
It achieved evasion rates up to 89.37 percent by continu-
ously adapting its strategies against ML-based detectors and
commercial WAFs.
Their interaction highlights a growing truth: defenses

must evolve too. Static systems will fall behind, making
adaptive, explainable machine learning models critical for
the future of cybersecurity.

References
[1] Kemi Akanbi, Odunayo Gabriel Adepoju, and Kofi Isaac Nti. 2024.

Developing A System for Automatic Prediction of Polycystic Ovary
Syndrome Using Machine Learning. In Proceedings of the 2024 7th
International Conference on Machine Learning and Machine Intelligence



Armando Valdez

(MLMI) (MLMI ’24). Association for Computing Machinery, New York,
NY, USA, 20–26. https://doi.org/10.1145/3696271.3696275

[2] Luca Demetrio, Andrea Valenza, Gabriele Costa, and Giovanni Lago-
rio. 2020. WAF-A-MoLE: evading web application firewalls through
adversarial machine learning. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing (Brno, Czech Republic) (SAC ’20).
Association for ComputingMachinery, New York, NY, USA, 1745–1752.
https://doi.org/10.1145/3341105.3373962

[3] Jasmina Gajcin, Jovan Jeromela, and Ivana Dusparic. 2024. Semifactual
Explanations for Reinforcement Learning. In Proceedings of the 12th
International Conference on Human-Agent Interaction (Swansea, United
Kingdom) (HAI ’24). Association for Computing Machinery, New York,
NY, USA, 167–175. https://doi.org/10.1145/3687272.3688324

[4] Kritarth Jhala and Shukla Umang D. 2017. Tautology based Advanced
SQL Injection Technique: A Peril to Web Application. In Proceedings
of the National Conference on Latest Trends in Networking and Cyber
Security (NCLTNCS). IJIRST, Ahmedabad, India. https://www.ijirst.
org/articles/SALLTNCSP008.pdf

[5] Daniel Leung, Omar Tsai, Kourosh Hashemi, Bardia Tayebi, and Mo-
hammad A. Tayebi. 2024. XploitSQL: Advancing Adversarial SQL In-
jection Attack Generation with Language Models and Reinforcement
Learning. In Proceedings of the 33rd ACM International Conference on
Information and Knowledge Management (Boise, ID, USA) (CIKM ’24).
Association for ComputingMachinery, New York, NY, USA, 4653–4660.
https://doi.org/10.1145/3627673.3680102

[6] Muyang Liu, Ke Li, and Tao Chen. 2020. DeepSQLi: deep semantic
learning for testing SQL injection. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(Virtual Event, USA) (ISSTA 2020). Association for Computing Machin-
ery, New York, NY, USA, 286–297. https://doi.org/10.1145/3395363.
3397375

[7] G. Rama Koteswara Rao, R. Satya Prasad, and M. Ramesh. 2016. Neu-
tralizing Cross-Site Scripting Attacks Using Open Source Technologies.
In Proceedings of the Second International Conference on Information
and Communication Technology for Competitive Strategies (Udaipur,
India) (ICTCS ’16). Association for Computing Machinery, New York,
NY, USA, Article 24, 6 pages. https://doi.org/10.1145/2905055.2905230

[8] Rajesh Sharma and Mia Tang. 2024. Machine Learning & Neural Net-
works. InACM SIGGRAPH 2024 Courses (Denver, CO, USA) (SIGGRAPH
Courses ’24). Association for Computing Machinery, New York, NY,
USA, Article 14, 130 pages. https://doi.org/10.1145/3664475.3664574

[9] Chenyuan Yang, Zijie Zhao, and Lingming Zhang. 2025. KernelGPT:
Enhanced Kernel Fuzzing via Large Language Models. In Proceedings
of the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (Rotter-
dam, Netherlands) (ASPLOS ’25). Association for Computing Machin-
ery, New York, NY, USA, 560–573. https://doi.org/10.1145/3676641.
3716022

[10] Shuxin Yang, Min Guo, Jianqing Wu, Yishan Chen, Guangjian Huang,
and Bowen Zeng. 2025. Hybrid Inverted Transformer-CNN Model for
Train Primary-Delay Recovery Time Prediction. In Proceedings of the
4th Asia-Pacific Artificial Intelligence and Big Data Forum (AIBDF ’24).
Association for ComputingMachinery, New York, NY, USA, 1103–1110.
https://doi.org/10.1145/3718491.3718669

[11] Jianyang Yu, YuanyuanQiao, Kewu Sun, Hao Zhang, and Jie Yang. 2018.
Classification of Transaction Behavior in Tax Invoices Using Composi-
tional CNN-RNN Model. In Proceedings of the 2018 ACM International
Joint Conference and 2018 International Symposium on Pervasive and
Ubiquitous Computing andWearable Computers (Singapore, Singapore)
(UbiComp ’18). Association for Computing Machinery, New York, NY,
USA, 315–318. https://doi.org/10.1145/3267305.3267597

[12] Wei Zhao, Junling You, and Qinghui Chen. 2024. SQL Injection Attack
Detection Based on Text-CNN. In Proceedings of the 2024 International
Conference on Generative Artificial Intelligence and Information Security

(Kuala Lumpur, Malaysia) (GAIIS ’24). Association for Computing
Machinery, New York, NY, USA, 292–296. https://doi.org/10.1145/
3665348.3665398

https://doi.org/10.1145/3696271.3696275
https://doi.org/10.1145/3341105.3373962
https://doi.org/10.1145/3687272.3688324
https://www.ijirst.org/articles/SALLTNCSP008.pdf
https://www.ijirst.org/articles/SALLTNCSP008.pdf
https://doi.org/10.1145/3627673.3680102
https://doi.org/10.1145/3395363.3397375
https://doi.org/10.1145/3395363.3397375
https://doi.org/10.1145/2905055.2905230
https://doi.org/10.1145/3664475.3664574
https://doi.org/10.1145/3676641.3716022
https://doi.org/10.1145/3676641.3716022
https://doi.org/10.1145/3718491.3718669
https://doi.org/10.1145/3267305.3267597
https://doi.org/10.1145/3665348.3665398
https://doi.org/10.1145/3665348.3665398

	Abstract
	1 Introduction
	2 Background
	2.1 SQL Injection Techniques
	2.2 Example of a Simple SQL Injection Attack
	2.3 Limitations of Traditional SQL Injection Detection Techniques
	2.4 Machine Learning and Subsets of ML
	2.5 Subsets of Deep Learning

	3 Training the ML Models
	3.1 Training Neural Networks
	3.2 Training Reinforcement Learning

	4 Structure of Improved Text CNN
	4.1 Embedding Layer
	4.2 Convolutional Layer (Conv)
	4.3 Pooling
	4.4 Fully Connected Layer

	5 Structure of XploitSQL
	5.1 Large Language Model and Actor
	5.2 Critic
	5.3 Reward

	6 Testing Models
	6.1 Results for Improved Text-CNN
	6.2 Results of XploitSQL

	7 Strengths and Weaknesses of Each Approach
	8 Conclusion
	References

